开孔泡沫铝夹芯管压缩与弯曲力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫金属具有轻质、高比强度及优异的吸能特性等特点,以泡沫金属为填充材料制备而成的夹芯结构材料是一种新型的轻质的结构功能材料,其压缩和弯曲等力学行为及变形失效的形式和机理已经成为材料科学、力学等领域中的热点课题之一。
     本文采用渗流法制备开孔泡沫纯铝和铝硅合金,将其加工后填充到铝合金圆管和不锈钢方管中,制成开孔泡沫铝夹芯圆管及夹芯方管,分别进行压缩和弯曲实验,研究泡沫铝力学性能及结构参数对开孔泡沫铝夹芯圆管轴向压缩的力学性能和吸能特性的影响,以及对夹芯不锈钢方管的弯曲力学行为和变形特征的影响。所制备结构的主要参数为:泡沫铝的孔径为0.65~2.3mm,相对密度为0.399~0.524;夹芯圆管:径厚比为5~30.4;夹芯方管:t/b为0.012~0.032。首先,对开孔泡沫铝夹芯铝管进行准静态单轴向压缩实验,研究了泡沫铝夹芯圆管的压缩应力-应变行为和变形特征,并研究泡沫铝基体性能和孔径等特征参数以及夹芯管的结构特征参数对其压缩行为、力学性能和吸量特性的影响规律。结果表明:压缩过程中,泡沫铝夹芯铝管的载荷—位移曲线呈现出弹性段、波动的屈服平台段和压实段三阶段特征;铝管的径厚比以及泡沫铝本身的参数和强度对填充管的屈服强度、平均压溃力和吸能特性均有着非常显著的影响。由于泡沫铝与管壁间相互作用使得夹芯管的抗变形能力显著提高,且管壁的变形模式发生改变,管壁只发生向外翻折变形,并且所产生的环状褶皱减少。
     其次,对开孔泡沫铝夹芯不锈钢方管进行准静态三点弯曲实验,重点研究不锈钢方管的t/b比值,泡沫铝的结构参数以及泡沫铝的填充方式对夹芯方管弯曲行为及变形模式的影响规律。结果表明:填充泡沫铝后,由于泡沫铝的支持抑制作用,不锈钢方管的局部弯曲变形模式发生改变,管壁由空管时的单一褶皱变为夹芯方管的多重褶皱模式,形成更多的塑性铰,褶皱长度减小,显著提高不锈钢方管的弯曲承载能力,且夹芯方管弯曲变形模式与方管的t/b比值相关。
     另外,对不同填充方式的泡沫铝夹芯方管进行弯曲实验,结果表明:夹芯方管填充的泡沫铝必需达到一定的长度,即最小有效长度L f ,eff,夹芯方管才能在较大范围的转角内依然保持较高的抗弯强度。最小有效长度的确定对制备部分填充泡沫铝的轻质夹芯结构有着重要的指导意义,有利于结构轻量化设计。
Metallic foams are ultralight materials which possess high specific strength and energy absorption capacity. The metallic sandwich structure material is a new kind of ultralight structural and functional material which is prepared by filling metallic foams core into thin-walled structure. The mechanical behaviors and the deformation failure of sandwich structure have become one of the research hotspots in the material science, mechanics and other fields.
     In this paper, the aluminum foam-filled tubes are prepared by filling open-cell aluminum foams into thin-walled tubes. The open-cell aluminum foams are prepared by means of infiltrating process. The influence of the structural characteristic parameters both of the aluminum foam and the hollow tube on mechanical behaviors, energy absorption and yield behavior of the aluminum foam-filled tubes are explored. The main parameters of the samples are the relative density and pore diameter of the foam ranging form 0.399~0.524and 0.65~2.3mm respectively. The foam filled cylindrical tube diameter thickness ratio is between 5~30.4, and the foam-filled square tubes have the thickness width ratio (t/b) ranging form 0.012~0.032.
     Firstly, the static compression experiments have been conducted to investigate the compressive mechanical behavior of the circularity 6063 aluminum tubes filled with aluminum foams, The results show that the compressive load-displacement curves of aluminum tubes with foam filler exhibit a distinct characteristic of three deformation regions, i.e. elasticity region,serrated plastic plateau region and densification region. The factors such as the diameter thickness ratio of aluminum tube, the density and property of aluminum foam have remarkable effect on the mean crushing load and energy absorption characteristics of the foam-filled tube. Additionally, the compressive deformation pattern of the aluminum tube is also modified by the aluminum foam core, as compared with the non-filled tube. The wall of the tube with foam filler just folded outward during compression deformation.
     Secondly, the quasi-static three-point bending behavior of square 202 stainless steel tubes filled with aluminum foams is producted. The influence of aluminum foam relative density, t/b ratio and partially foam filled on bending behavior of the foam-filled tubes are mainly studied. The experimental results showed that the foams filler changes the local deformation mode of the tube, causes localized folding to propagate to the adjacent sections, and forces the tubes to form more plastic hinge lines, shorts the folding length. Therefore the foam filling improves the bending resistance of stainless steel tubes. Meanwhile,t/b ratio is the mainly influence parameter for deformation mode of the tube.
     Finally, It is also indicated that the length of the foam filling must reach a certain length, just the effective foam length L f ,eff, can the foam-filled tubes maintain higher crushing resistance under large scale rotation. The effective foam length L f ,eff offers significant reduction of the foam weight and should be used as a guideline for designing the ultralight foam-filled tubes.
引文
[1] W. Thiele, Production methods for metallic foams. Metals and Materials,August,1972:349-367.
    [2]宝鸡有色金属研究所,粉末冶金多孔材料(下册),北京:冶金工业出版社,1977: 1-24.
    [3] K.C.Rusch, Load-Compression Behavior of Brittle Foams.Journal of Applied Polymer Science, 1970(14): 1263-1276.
    [4] R.W.Shuttleworth, V.O.Shestopal and P.C.Goss.Open-Cell Flexible Polyurethane Foams: Comparison of Static and Dynamic Compression Properties.Journal of Applied Polymer Science, 1985(30):333-343.
    [5] Y.Yamada, K.Shimojima, M.Mabuchi et al.Compressive deformation behavior of Al2O3 foam.Materals Science and Engineering, 2000( A277): 213-217.
    [6]卢天健,何德坪,陈常青等,超轻多孔金属材料的多功能特性及应用.力学进展,2006, 36(4): 517~535.
    [7] P.H. Thornton, C.L. Magee. The deformation of aluminum foams. Metallurgical Transactions, 1975(6A): 1253-1263.
    [8] J.T.Beals, M.S.Thompson,Density gradient effects on aluminum foam compression behavior. JOURNAL OF MATERIALS SCIENCE, 1997(32): 3595-3600.
    [9] C.C.Yang, H.Nakae. Foaming characteristics control during production of aluminum alloy foam. Journal of Alloys and Compounds, 2000,313: 188-191.
    [10] B.Sosnik, US Patent, 2434775, 1948.
    [11] J.C.Elliott, US Patent, 2751289, 1956.
    [12] A.E.Simone, L.J.Gibson. Aluminum foams produced by liquid state process.Acta Mater, 1998 (46):3109-3123.
    [13] H.Kanahashi, T.Mukai, Y.Yamada et al.Dynamic Compression of an Ultra-Low Density Aluminum Foam.Materals Science and Engineering, 2000(A280): 349-353.
    [14] H.B.Smith, A.F.Bastawros, D.R.Mumm et al.Compressive Deformation and Yielding Mechanisms in Cellular Aluminum Alloys Using x-Ray Tomography and Surface Strain Mapping.Acta Mater, 1998(46): 3583-3592.
    [15] O.B.Olurin, N.A.Fleck, M.F.Ashby.Deformation and Fracture of Aluminum Foams.Materials Science and Engineering, 2000(A291): 136-146.
    [16] T.J.Lu, J.M.One.Characterization of close-celled cellular aluminum alloys. JOURNAL OF MATERIALS SCIENCE, 2001(36): 2773-2786.
    [17] J.Banhart, J.Baumeister, M.Weber.Powder metallurgical technology for the production of metallic foams, Proceedings of the powder Metallurgy European Congress Euro PM95.1995.p. 201-208.
    [18]邹毅,何德坪,蒋家桥,新型球形孔低孔隙率高强度泡沫铝合金[J].中国科学,B辑,2004,34 (1): 168~176.
    [19]何德坪,何思渊,尚金堂,超轻多孔金属的进展与物理学.物理学进展,2006,26(3,4): 346~350.
    [20]高峰,泡沫铝研究与应用进展[J].江苏冶金,2008,36(2):3-6.
    [21]陈雯等,泡沫金属材料的特性、用途及制备方法[J].有色矿冶,1999,1: 33-36.
    [22]吴新光,刘荣佩,熔体吹气发泡法制备泡沫铝合金研究[J].云南冶金,2003,32(1): 50-53.
    [23]许庆彦等,多孔泡沫金属的研究状[J].铸造设备研究,1997(1):18-24
    [24] P.S. Liu, K.M. Liang. Evaluating Electrical for High Porosity Metals. Materials Science and Technology,2000(16): 341.
    [25] F.S. Han, Z.G. Zhu, J.C. Gao. Compressive Deformation and energy Absorbing Characteristic of Foamed Aluminum. METALLURGICAL AND MATERIALS TRANSACTION A,1998(29A):2497-2502.
    [26] H. Fusheng, Z.Zhengang and C.Hefa, G. Junchang, Effects of process parameters structure of foamed aluminum. Journal Materials Processing technology,2003(6684):1-3.
    [27]程和法,黄笑梅,薛国宪等,冲击波在泡沫铝中的传播和衰减特性[J].材料科学与工程学报,2004,22(1): 78-81.
    [28]张学斌,凤仪,郑海务等,泡沫铝动态力学性能研究[J].合肥工业大学学报,2002(2): 290-294.
    [29]刘培生,泡沫金属力学性能的若干问题.稀有金属材料与工程,2004,33(5): 473~476.
    [30] C.Y. Zhao, T.J. Lu, H.P. Hodson. Thermal radiation in ultralight metal foams with open cells[J]. Heat and Mass Transfer, 2004,47: 2927-2939.
    [31] Igor Sevostianov, Jaroslav Kovacik , Frantisek Simanck,Elasticandelectric properties of closed-cell aluminum foams Cross-property connection,Materials Scienceand Engineering A 420,2006:87–99.
    [32]曹国英,王芳,王录才,泡沫金属的力学性能及研究进展[J].铸造设备研究,2008,4:51-54.
    [33]杜春风,宋焕成,邱嘉杰,一种新型泡沫铝及表面改性[J].上海有色金属,2008,3:20-23.
    [34] Ashby M F , Lu T J . Metal foams - a survey [J ] . Science inChina (Series B) ,2003 ,46 (6) :511 - 532.
    [35] L.J.Gibson,M.F.Ashby,CellularSolids: Structure and Properties,2nd,Cambridge University Press,UK.1997.
    [36]何徳坪,陈锋,张勇等.发展中的新型多孔泡沫金属.材料导报,1993(4):11-15.
    [37] A.R. Kennedy. The effects of TiH2 heat treatment on gas release and foaming in Al-TiH2 performs. Scripta Materialia,2002,47: 763-767.
    [38]张伟开,李乃哲,何德坪.渗流法制备高孔隙率多孔铝[J].中国有色金属学报,2005,15(8):1248~1252.
    [39] Gregg S.J.,Sing K.S.W.,Adsorption Surface Area and Porosity,Academic Press,New Yok,1982.
    [40] Sing K.S.W.,Pure and Applied Chemistry,1985;57;603.
    [41]郑明军,何德坪,陈锋.多孔铝合金的压缩应力-应变特征及能量吸收性能.中国有色金属学报,2001,Vol.(11S2):81-85.
    [42] E.Andrews,W.Sanders,L.J.Gibson.Compressive and tensile behavior of aluminum foams.Materials Science and Engerineering,1999(A20):115-124.
    [43] J.Banhart. Manufacture, characterization and application of cellular metals and metal foams [J]. Progress in Materials Science, 2001(46): 559-632.
    [44] T.G.Nieh,K.Higashi,J.Wadsworth,Effect of cell morphology on the compressive properties of open-cell aluminum foams[J]. Materials Science and Engineering A283 (2000) 105–110
    [45] T. Miyoshi, M. Itoh, T. Mukai et al.Enhancement of Energy Absorption in a Closedcell luminum by the Modification of Cellular Structures[J], Scripta Materialia, Vol. 41, No. 10, pp. 1055-1060, 1999
    [46] C.Chen, T.J.Lu, N.A.Fleck.Effect of imperfections on the yielding of two-dimensional foams.J.Mech. Phys. Solids, 1999(47):2235-2272.
    [47]程和法,黄笑梅,许铃,基体对泡沫铝压缩行为与吸能性的影响.有色金属,2003,55(3):10-12.
    [48]王录才,于利民,王芳,李秀山.多孔泡沫金属研究及其前景展望[J].太原重型机械学院学报,2002,23(1):72-76
    [49]王曦,虞吉林.泡沫铝的单向力学行为[J].实验力学, 2001,16(04):438-443
    [50] K.Y.G. Mccullough, N.A.Fleck and M.F.Ashby.Uniaxial Stress-Strain Behavior of Aluminum Alloy Foams.Acta mater., 1999(8):2323-2330.
    [51] A.P.Roberts and E.J.Garboczi.Elastic Model random Three-Dimensional Closed-Cell Cellular Solids. Acta mater.,2001(49):189-197.
    [52]余兴全等.泡沫金属机械阻尼性能研究[J].机械工程材料,1994,18(2):26-28.
    [53]黄福祥,金吉琰,范嗣元等,发泡金属的电磁屏蔽性能研究[J].功能材料, 1996, 27(2):147-149.
    [54] Fusheng Han, Gary Seiffert, Yuyuan Zhao et al. Acoustic absorption behavior of an open-celled aluminun foam. J.Phys. D: Applied Physics,2002(35): 1-9.
    [55] J.Kovacik, F.Simancik.Aluminum Foam Moduilus of Elasticity and Electrical Conductivity According To Percolation Theory.Scripta Materilia, 1998 (39): 239-246.
    [56] John Banhart J. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001,46 : 559-632.
    [57] A. Kim, M.A. Hasan et al.Evaluation of compressive mechanical properties of Al-foams using electrical conductivity[J], Composite Structures 71 (2005) 191–198.
    [58] L.J.Gibson. Mechanical Behavior of Metallic foams[J]. Annu. Rev. Mater.Sci.2000 (30):191-227
    [59]胡清寒编译,适用于更轻量化车辆的泡沫铝材料[J],汽车工艺与材料,2008,5:28-32.
    [60] Hanssen A G ,Langseth M ,Hopperstad O S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler[J].Impact Engng, 2000, 24(5):347—383
    [61] Sigit P. Santosa, Tomasz Wierzbicki, Arve G. Hanssen,Experimental and numerical studies of foam-fIlled sections[J], International Journal of Impact Engineering 24 (2000) 509~534.
    [62] M. Güden, A K. Toksoy, H. Kavi. Experimental investigation of interaction effects in foam-filledthin-walled aluminum tubes [J]. J Mater Sci (2006) 41:6417–6424.
    [63] Hutchinson J,He MY.Buckling of cylindrical sandwich shells with metal foam cores[J].International Journal of Solids and Structures,20 00;37 :67 77-6794
    [64] Seitzberger M. Rammerstorfer FG et al. Crushing of axially compressed steel tubes filled with aluminum foam[J]. ACfa mechanica,1997;1 25:93 -105.
    [65] Seitzberger M, Rammerstorferer al. Experimental studies on the quasi-static axialaluminium foam[J]. International Journal of Sollds and Structures, 2000; 37: 125-4147
    [66] White MD,Jones N,Abramobwicz W A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections [J].International Journal of Mechanical Sciences,1999,4l(2):209~233
    [67] White MD,JonesN,A theoreticalan alysisforthe dynamic axial crushing of top-hat an d double-hat thin-walled sections [J].Proceedings of the Institution of Mechanical Engineering,Part D:Journal of Automobile Engineering,1999,213(D4):307~325
    [68]桂良进,范子杰,王青春,泡沫填充圆管的动态轴向压缩吸能特性[J],清华大学学报(自然科学版),2004, 44 (5):709-712.
    [69]刘建英,方月,泡沫铝夹芯柱体汽车保险杠碰撞的计算机仿真[J],河南工程学院学报(自然科学版),2008,20(1):37-39.
    [70] Kecman D, Bending collapse of rectangular and square section tubes[J],International Journal of Mechanical sciences,1983;25:623 -636
    [71] Thomas SqReid SR, Johnson W,Large deformations of thin-walled circulartubes under transverse loading-1[J],In J Mechanical cience,1976;18:325-333.
    [72] Santosa S, Banhart J, Wierzbicki T, Experimental and numerical analysis of bending of foam-filled sections.Ac taM echanica, 2001;148:199-213
    [73] Haile AM, Fleck NA, Ashby ME,Sandwich panel design using aluminum alloy foam.Advanced Engineering Materials,2000;2( 4):219-222
    [74] Zarei HR,Kr?ger M.Crashworthiness optimization of empty and filled aluminum crash boxes. In:International crashworthiness conference, Athens, 4–7 July 2006.
    [75]许坤,寇东鹏,王二恒,虞吉林,泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为,固体力学学报,2005;26(3):261-266
    [76]谢中友,李剑荣,虞吉林,泡沫铝填充薄壁圆管的三点弯曲实验的数值模拟[J],2007,28(3):261-265.
    [77] Ashby MF,Evans AG,Fleck NA,Metal foams:A design guide.Bostn:Butterworth Heinernann,2000,1.
    [78]蒂吉斯切克雷兹特,多孔泡沫金属[M],左孝青,周芸译。北京:化学工业出版社,2005
    [79] Hans Wolfgang Seeliger. Manufacture of aluminum foam sandwich(AFS) components,Adv Eng Mater,2002,4(10):753.
    [80] J. Banhart. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 46,(2001),559-632.
    [81]薛国宪,程和法,张立勇等,泡沫铝的制备及其力学行为的研究[J],铸造技术,2004, 25(7):520-522,526
    [82]冯仁杰,于九明.蜂窝夹芯复合板及其在汽车工业中的应用[ J].汽车工艺与材料,2003,(8): 30- 32.
    [83] W. Seeliger. Entwicklung und Programmierung eines Materialmodells fur elastoplastische Metallschaume Thesis[D] . University of Bremen MIT- Verlag, Bremen, 2000.
    [84]郑伟,孙悦年.泡沫铝在航天工程中的应用展望[ J ].航天器工程, 2001, 10 (3) : 24229
    [85]钟祥璋等.泡沫铝吸声板的材料特性及应用[J].新型建筑材料,2002(8):51- 53.
    [86]程和法,黄笑梅,陈国宏,渗流法制备泡沫铝工艺的研究[J].轻合金加工技术,2001,29(1): 38-42.
    [87] Y.Yosida, C.Hcugashi,conf. Casting Science and Technology,September,1990:103.
    [88] S.Akiyama,K.Imagawa,A.Kitahala etal. European Pantent Application,021080,Al,1986.
    [89] S.Wip,Y.W.Wang,J.M.Toguri.Aluminum foam stabilization by solid particles[J]. Canadian Metallurgical Quarterly, 1999(1): 81-92.
    [90]何德坪,闻德荪,张勇,舒光冀,铝熔体在多孔介质中的渗流过程.材料研究学报,1997,11(2):113-117.
    [91]杨思一,张勇,刑自聪,泡沫铝合金制备工艺研究.材料科学与工艺,1997, 5(2):96-100.
    [92] J.Burzer,T.Bernard,H.W.Bergmann,in porous and Cellular Materials for StructuralApplications,D.S.Schwartz,D.S.Smith,A.G.Evan,H.N.G.Wadley(eds)MRS Symp.Proc.Vol.512,MPS,Warrendale,PA1998.p.159.
    [93] C.Born,H.Kuckert,G.Wanger,D.Eifler,Materwiss.Werkstofftechn.2000,31.
    [94]张敏,陈长军,姚广春,泡沫铝夹芯板的制备技术[J],材料导报, 2008, 22(1):85-89.
    [95]符文斌.常用化学手册[M],第一版.北京:地质出版社,1997.p86.
    [96]黄伯云,中国材料工程大典,第4卷,有色金属材料工程[M].北京:化学工业出版社,2005.
    [97]中国国家标准化管理委员会. GBT 3251-2006,铝及铝合金管材压缩试验方法[S].北京:中国标准出版社,2006.
    [98] A.G.Hanssen, M.Langseth, O.S. Hopperstad.Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J], International Journal of Impact Engineering, 24 (2000):347-383.
    [99]宋宏伟,虞钢,范子杰等,多孔材料填充薄壁结构吸能的相互作用效应[J],力学学报,2005,37(6):697—703.
    [100] Alexender J M .An approximate analysis of the collapse of thin cylindrical shellsu nder axial loading[J].Quart J Mech App l Math,1960,13(1):10-15.
    [101] Abramowicz W Jones N. Dynamic axial crushing of circular tubes [J]. Impact Engng, 1984, 2(3):263—281.
    [102] Abramowicz W,Wierzbicki T. Axial crushing of foam filled colums[J],Int.J.Mech.Sci.1988,30(314):263—271.
    [103]吴刚,吕志强等,轴向冲击作用下泡沫铝填充圆管吸能特性研究[J],噪声与振动控制,2008,6:61-70
    [104] Degischer,H.P,Kriszt,B.Handbook of Cellular Metals : Production , Processing , Applacations.2002.
    [105]约翰斯顿(B.G.Johnston)著,金属结构稳定设计准则解说[M],北京-中国铁道出版社1981:320-385.
    [106]杜星文,宋宏伟著.圆柱壳冲击动力学及耐撞击设计[M].北京:科学出版社,2004:186-192.
    [107] Amkee Kim,Seong—Sik Chen,Md Anwarul Hasan,et a1.Bending behavior of thin—walled cylindrical tube filled with aluminum alloy foam[J].Key Engineering Materials,2004,170~273:46-51.
    [108] A. G. Hanssen, O. S. Hopperstad ,M. Langseth et al. Bending of square aluminium extrusions withaluminium foam filler[J], Acta Mechanica,2000,142:13-31
    [109] Wierzbicki T, Abramowicz W, Cholami T, Recke L. Stress profiles in thin-walled prismatic columns subjected to crush loading-II. Bending. Computers & Structures 1994;51(6):624-640.
    [110] Sigit Santosa, Tomasz Wierzbicki.Effect of an ultralight metal Tller on the bending collapse behavior of thin-walled prismatic columns[J],International Journal of Mechanical Sciences 41 (1999) 995-1019.
    [111] Chen C ,Harte A.M,Fleck N A.The plastic collapse of sanwich beams with a metallic foam co e.Int rnational Journalof tllechanical Science,20 01;43 :14 83-1506
    [112] Langseth M, Hopperstad OS. Static and dynamic axial crushing of square thin-walled aluminium extrusions.In ternational Journalof Impact Engineering,1996;18 (7-8):94 9-968.
    [113] Sigit Santosa, John Banhart, Tomasz Wierzbick. Bending crush resistance of partially foam-filled sections[J]. Advanced Engineering Materials,2000, 4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700