肌肉类软组织动态力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体组织和防弹衣之类人体防护系统中的软材料在使用中不可避免会承受冲击载荷。为了设计用于抵御来自不同方向飞来的重物利器损害的人体防护系统,必须对其防护能力予以准确的模拟评估,并能进行优化设计。这种模拟评估和优化设计要求了解所有相关材料的动态力学性能。这些材料既包括人体组织生物材料,又包括制备人体防护系统的软材料。然而,与金属、陶瓷等工程装甲材料相比,人们对这些软材料、尤其是人体组织生物材料的动态力学性能了解甚少,这主要是因为软组织材料在冲击加载条件下的动态性能测试难度较大。
     鉴于以上情况,本研究以实验研究为主,提出了一套能准确、可靠测定这些生物材料动态力学性能的霍普金森压杆(SHPB)和拉杆(SHTB)实验技术,成功的获得了肌肉材料沿纤维方向和垂直纤维方向的动态压缩和拉伸应力应变曲线,并且发展了能够描述肌肉材料在很宽应变率范围内力学性能的横向同性超粘弹性本构模型。
     本文首先针对霍普金森压杆(SHPB)和拉杆(SHTB)进行软材料实验室存在的透射信号小,应力均匀难以达到等问题进行了系统的讨论。针对透射信号小的问题,可采用选用广义波阻抗低的杆件和高灵敏度传感器的方法。低波阻抗的粘弹性杆在提高透射信号上具有很大的优势,但是应力波在粘弹性杆中传播会发生弥散和衰减,通过DFT算法编写了计算粘弹性杆波传播系数的程序,并由实验和程序计算得到了尼龙杆的衰减系数和相速度,通过验证发现该程序在修正弥散和衰减效应问题上结果可信。半导体应变片和石英压电传感器在检测微弱信号方面发挥着重大作用,尤其是石英压电传感器,不但检测微弱信号的能力很强,还可用于检测试样的应力均匀性,在SHPB实验中占据重要地位。传感器在使用中会存在一些问题,如各类传感器的灵敏度系数标定、半导体应变片的非线性及石英片检测应力均匀时惯性力信号的干扰,本文对这些问题都进行了讨论,并提出了解决办法。
     试样的应力均匀条件是决定试样结果是否可靠的一个必要条件,本文从量纲分析出发,利用LS-DYNA软件进行数值模拟,考察了五个无量纲β,θ/τs,Eα/Es,tr/τs,νr/Cs对粘弹性试样应力和应变均匀性的影响。发现2τs升时的梯形波加载最利于低波阻抗比的粘弹性试样的应力和应变均匀。对于某一确定的材料,2τs升时的梯形波加载下,β越小,θ/τs越大,Eα/Es越大,应力均匀所需的时间越短,而νr/Cs则存在一个极限值,并且发现在小于或等于2τs升时的梯形波加载,应变较应力更易均匀。通过传感器检测应力的均匀性也可判断应变的均匀性是否满足。
     肌肉软组织具有一定的生命意义,离体实验只要尽量模拟正常的生理状态才能反映活体组织的性能,文中采用新鲜的生猪猪肉为研究对象,通过合理的保存和加工,摒除了离体组织死后时间对实验结果的影响。并利用岛津试验机和生物材料实验机对其进行了准静态压缩和拉伸测试。发现在kreb溶液保存下,死后17小时肌肉力学性能基本无变化。结合已有文献的结果与本实验结果进行比较发现,实验数据尽管存在一些差异,但是还是有一定的可比性。实验结果表明,压缩时垂直纤维方向的强度比纤维方向要大,而拉伸时则相反,通过纤维向和垂直纤维向压缩和拉伸的变形特性,对此进行了分析。并且对拉伸时断裂性能也进行了分析。
     采用改进的SHPB和SHTB实验装置对猪后腿肌肉进行了一系列实验,得到了高应变率下猪后腿肌肉沿纤维方向和垂直纤维方向的压缩和拉伸应力应变曲线。结果表明,在很宽的应变率范围,肌肉具有明显的应变率效应,高应变率下的流动应力远远高于准静态下的流动应力。而且加载方向也对力学性能有影响,垂直纤维方向压缩时强度要高于纤维向压缩。拉伸时,低应变率下,纤维向的拉伸强度要高于垂直于纤维方向,高应变率出现了异常:应变较小时,垂直于纤维方向的应力反而比纤维方向要大,但是当变形逐渐增加后,两方向的强度则无显著不同,纤维方向流动应力有逐渐高于垂直纤维方向的趋势。
     本文首次发展了一个可用于描述肌肉类软组织准静态及高应变率下力学性能的横向同性超粘弹性本构模型,并通过对实验数据进行拟合得出了模型中的材料参数,拟合的结果与实验结果重复较好,可为以后进行人体数值模拟提供了肌肉组织的材料参数。
Soft materials of human tissues and bullet-proof vests will inevitably be subject to impact loading. In order to design to a body-protection system that can withstand impacts from various directions, the protective ability of the system must be simulated and evaluated accurately, then be optimized. In such simulation-based evaluation and optimization, dynamic mechanical properties of used materials are required. These materials include both biological materials of human tissues and soft materials of body-protection systems. However, compared to metals and ceramics used in a body-protection system, dynamic mechanical properties of soft materials, especially biological materials of human tissues are poorly understood, mainly because of the difficulty in testing their dynamic behavior under impact loadings.
     With regard to the difficulty, this study mainly based on experimental research and has proposed a set of accurate, reliable Split Hopkinson Pressure Bar (SHPB) and Split HopkinsonTensile Bar (SHTB) experimental techniques to test dynamic mechanical properties of biological materials. Using these techniques, we have obtained dynamic compression and tensile stress-strain curves of muscles, along their fiber direction and perpendicular to the fiber. Further, a transverse isotropic hyperviscoelastic constitutive model has been built to describe the behavior of muscles at a wide range of strain rate.
     In this paper, analysis has been performed systematically on weak transmission signal and stress uniformity in SHPB and SHTB experiments on soft materials. With respect to weak transmission signal, we selected bars of small wave impedance and very sensitive sensors. Viscoelastic bars of small wave impedance show advantage in improving the transmission signal, but the dispersion and attenuation of a stress wave occur in viscoelastic bars. A code to compute propagation coefficient in viscoelastic bars has then been compiled based on DFT algorithm. The code has been validated by comparing calculation results with propagation coefficient and phase velocity obtained experimentally. Semiconductor gauges and quartz piezoelectric sensors have bee applied to detect weak signals, particularly the latter not only be used to detect weak signal but also to detect the stress uniformity of the specimen in SHPB experiments. Solutions to the problems in using these sensors, such as the calibration of various sensors, non-linearity of semiconductor gauge and signal interference in due to inertia signal in detecting the stress uniformity, have been proposed in this thesis.
     Stress uniformity of a sample is a necessary to the validity of SHPB and SHTB. In this study, we analyze the influence of five dimensionless parameters (β,θ/τs, Eα/Es, tr/τs, vr/Cs) on stress or strain uniformity of viscoelastic materials, based on dimensional analysis and numerical simulation using LS-DYNA. We find that the loading with trapezoidal wave of rise time of 2τs easily leads to stress or strain uniformity of a viscoelastic specimen of small wave impedance. To a certain material loaded with trapezoidal wave of rise time of 2τs, the smallerβ, the largerθ/τs and Ea/Es, the shorter duration to achieve stress uniformity. And there is a limit of vr/Cs, when loading with trapezoidal wave of rise time no longer than 2τs, it is much easier to achieve stress uniformity. Both stress or strain uniformity is detected by using sensors.
     To analyze the properties of muscle tissues of living creatures, fresh porcine muscle being properly preserved and processed has been taken as the research object of this study, and the effect of the duration after the death on experiments has been neglected. Quasi-static compression and tensile experiments have been conducted by using Shimadzu testing machine and biological testing machine. It has been found that the mechanical properties of the porcine muscle preserved in kreb liquid are almost unchanged after the death of 17-hour. Combining existing researches and experiments of this study, we consider that the experimental data is comparable although some difference. Our experiments show that compression strength vertical to fibers is much larger than that along them wherever opposite result will be obtained in tensile. The deformation of specimens has been analyzed based compression/tensile along fibers or vertical to them. Fracture of specimens under tensile has also been discussed.
     Using improved SHPB and SHTB devices, we have conducted a series of experiments on the muscles of porcine hams. The compression and tensile stress-strain curves of the muscles along their fiber and perpendicular to the fiber at high strain rates have been obtained. The experiments shows that the muscle has a significant strain rate effect at a very wide range of strain rates, flow stress at a high strain rate is much larger than that under a quasi-static loading. Loading direction also affects their mechanical behaviors. Compression strength vertical to fibers is much larger than that along them. Tensile strength along fibers at a low strain rate is larger than that vertical to fibers. But at high strain rates tensile strength vertical to fibers is larger than that along fibers at a small strain. When strain increases, the strength of these two directions are not obviously different. Flow stress along fibers seems to become larger than that vertical to fibers.
     This thesis firstly developed a transverse isotropic hyperviscoelastic constitutive model to describe the behavior of soft tissues like muscles under quasi-static loadings or high strain-rate loadings. Through experiments and experimental data processing, the parameters of the constitutive have been obtained and well cover the experimental results. Consequently, this study can provide material data to numerical simulation of the behavior of the tissue of human muscles.
引文
[1]刁颖敏.生物力学的原理与应用[M].上海:同济大学出版社,1991:6-11.
    [2]冯元桢.活组织的力学特征:生物力学[M].第一版ed.长沙:湖南科学技术出版社,1986:6-11.
    [3]陶祖莱.生物力学导论[M].天津:天津科技翻译出版社公司,2000:1-10.
    [4]Yamada H. Strength of Biological Materials[M]. Williams and Wilkins,1970.
    [5]成自龙.冲击生物力学研究的进展[J].航天医学与医学工程.1994(04):313.
    [6]刘炳坤.冲击损伤生物力学研究进展[J].航天医学与医学工程.1999(01):62-66.
    [7]King A I. PROGRESS OF RESEARCH ON IMPACT BIOMECHANICS[J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME.1993,115(4): 582-587.
    [8]Mertz H J, Neathery R F. Performance requirements and characteristics of mechanical necks[M]. Human Impact Response, W. F. King H J M, NY:Plenum Press,1973,263-268.
    [9]King A I. Fundamentals of impact biomechanics:Part Ⅰ-biomechanics of the head, neck, and thorax[J]. Annual Review of Biomedical Engineering.2000,2:55-81.
    [10]Forbes P A, Cronin D S, Deng Y C, et al. Numerical Human Model to Predict Side Impact Thoracic Trauma [C]. Springer; 2005.
    [11]Linder-Ganz E, Shabshin N, Itzchak Y, et al. Assessment of mechanical conditions in sub-dermal tissues during sitting:A combined experimental-MRI and finite element approach[J]. JOURNAL OF BIOMECHANICS.2007,40(7):1443-1454.
    [12]Mcelhaney J H. Dynamic response of bone and muscle tissue[J]. Journal of Applied Physiology.1966:1231-1236.
    [13]何平笙.高聚物的力学性能[M].第二版ed.合肥:中国科学技术大学出版社,2008.
    [14]Humphrey J D. Continuum biomechanics of soft biological tissue[J]. Proc.R.Soc.Lond.A. 2002,459(46):3-46.
    [15]Bischoff J E. Constitutive modeling and testing of biological soft tissue.[D]. The University of Michigan,2001.
    [16]Wilkes G L, I. A. Brown, R H W. The biomechanical properties of skin[J]. CRC Critical Reviews in Bioengineering.1973:453-495.
    [17]Rudenko O V, Sarvazyan A P. Wave biomechanics of the skeletal muscle[J]. ACOUSTICAL PHYSICS.2006,52(6):720-732.
    [18]葛长荣、马美湖.肉与肉制品工艺学[M].北京:中国轻工业出版社,2005.
    [19]马中和.生物力学导论[M].北京:北京航空学院出版社,1986.
    [20]威尔基D R.肌肉[M].北京:科学出版社,1981.
    [21]S S, C R. Molecular diversity of myofibrillar proteins:gene regulation and functional significance[J]. Physiol Rev.1996,76(2):371.
    [22]Palmer M L. A non-linear hierarchical model of stretch-induced injury to skeletal muscle fibers[D]. The University of Michigan,2002.
    [23]Huxley H E, Nanson E J. Changes in the cross-striations of muscle during contraction and stretch and their structural implications[J]. Nature.1954,173:973-976.
    [24]Huxley A F. Cross-bridge action:present views, prospects, and unknowns.[J]. J.Biomech. 2000,33:1189-1195.
    [25]Huxley A F. Muscle structure and theories of contraction[J]. Progress in Biophysics and Biophysical Chemistry.1957,7:255-318.
    [26]Shah S B, Davis J, Weisleder N, et al. Structural and functional roles of desmin in mouse skeletal muscle during passive deformation[J]. BIOPHYSICAL JOURNAL.2004,86(5): 2993-3008.
    [27]成海平.活体生物软组织力学特性研究的现状[J].国外医学:生物医学工程分册.1994,17(6):316-322.
    [28]Nano-mechanics of skeletal muscle structures[J].
    [29]Dicarlo S E, Sipe E, Layshock J P, et al. Experiment demonstrating skeletal muscle biomechanics[J]. ADVANCES IN PHYSIOLOGY EDUCATION.1998,20(1):59-71.
    [30]成海平.离体生物软组织力学特性研究的现状[J].四川解剖学杂志.1994,2(2):101-105.
    [31]成自龙.冲击生物力学研究的进展[J].航天医学与医学工程.1994,7(4):313.
    [32]Magid A, Law D J. Myofibrils bear most of the resting tension in frog skeletal muscle[J]. Science.1985,230:1280-1282.
    [33]Barloo M L, Linke W A, Pollack G N. Basis of passive tension and stiffness in isolated rabbit myofibrils[J]. Am.J.Physio.1997,273:266-276.
    [34]Funatsu T, Higuchi H, Ishiwata S. Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin[J]. J.Cell Biol.1990,110:53-62.
    [35]Horowits R. The physiological role of titin in striated muscle[J]. Rev.Physiol.Biochem.Phamacol.1999,138:57-96.
    [36]Linke W A, Ivemeyer M, Olivieri N, et al. Towards a molecular understanding of the elasticity of titin[J]. J.Mol.Biol.1996,262:62-71.
    [37]Granzier H, Kellermayer M, Aelmes M, et al. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction[J]. Biophys. 1997,73:2043-2053.
    [38]Willems M, Purslow P P. Mechanical and structural characteristics of single muscle fibres and fibre groups from raw and cooked pork Longissimus muscle[J]. MEAT SCIENCE.1997, 46(3):285-301.
    [39]Van Ee C A, Chasse A L, Myers B S. Quantifying skeletal muscle properties in cadaveric test specimens:Effects of mechanical loading, postmortem time, and freezer storage[J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME. 2000,122(1):9-14.
    [40]Woo L Y, Orlando C A, Camp J F, et al. Effects of postmortem storage by freezing on ligament tensile behavior[J]. J. Biomech.1986,19:399-404.
    [41]Smith C W, Young I S, Kearney J N. Mechanical properties of tendons:changes with sterilization and preservation[J]. ASME J. Biomech. Eng.1996,118(1):56-61.
    [42]Foutz T L, Stone E A, Abrams C F. Effects of freezing on mechanical properties of rat skin[J]. Am. J. Vet. Res.1992,53:788-792.
    [43]Stemper B D, Yoganandan N, Stineman M R, et al. Mechanics of fresh, refrigerated, and frozen arterial tissue[J]. JOURNAL OF SURGICAL RESEARCH.2007,139(2):236-242.
    [44]Ebenstein D M, Pruitt L A. Nanoindentation of biological materials[J]. NANO TODAY. 2006,1(3):26-33.
    [45]Guo D L, Chen B S, Liou N S. Investigating full-field deformation of planar soft tissue under simple-shear tests[J]. JOURNAL OF BIOMECHANICS.2007,40(5):1165-1170.
    [46]Anderson J, Joumaa V, Stevens L, et al. Passive stiffness changes in soleusmuscles from desmin knockout mice are not due to titin modifications.[J]. Pflugers Archiv-European Journal of Physiology.2002,444(6):771-776.
    [47]Anderson J, Li Z L, Goubel F. Passive stiffness is increased in soleus muscle of desmin knockout mouse[J]. Muscle& Nerve.2001,24(8):1090-1092.
    [48]Gosselin L E, Adams C, Cotter T A, et al. Effect of exercise training on passive stiffness in locomotor skeletal muscle:Role of extracellular matrix[J]. Journal of Applied Physiology. 1998,85(3):1011-1016.
    [49]Davis J, Kaufman K R, Lieber R L. Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle[J]. Journal of Biomechanics.2003,36(4):505-512.
    [50]Muhl Z E. Active length-tension relation and the effect of muscle pinnation on fibre lengthening[J]. Journal of Morphology.1982,173:285-1292.
    [51]Woittiez R D, Huijing P A, Boom H B K, et al. A three-dimensional muscle model:a quantified relation between form and function of skeletal muscles[J]. Journal of Morphology. 1984,182:95-113.
    [52]Van Loocke M, Lyons C G, Simms C. THE THREE-DIMENSIONAL MECHANICAL PROPERTIES OF SKELETAL MUSCLE:EXPERIMENTS AND MODELLING[J].
    [53]Morrow D A, Donahueb T L H, Odegardb G M, et al. Transversely isotropic tensile material properties of skeletal muscle tissue[J]. Journal of the Mechanical Behavior of Biomedical Materials.2009.
    [54]章湘明,马念科,杨帆,et al.心肌组织力学行为的测试系统[J].清华大学学报-自然科学版.2006,46(11):1941-1944.
    [55]方红荣,唐陶,章湘明,et al.基于实验的心肌被动力本构模型[J].力学学报.2008,40(3):355-363.
    [56]Grieve A P A C. Compressive properties of soft tissues[C]. Amsterdam:Free University Press,1988.
    [57]Bosboom E M H, Thomassen J A M, Oomens C W J, et al. A numerical experimental approach to determine the transverse mechanical properties of skeletal muscle. [G]. New York: Gordon and Breach Sciences Publishers,2001:187-192.
    [58]Bosboom E M H, Hesselink M K C, Oomens C W J, et al. Passive transverse mechanical properties of skeletal muscle under in vivo compression.[J]. Journal of Biomechanics.2001, 34:1365-1368.
    [59]Van Loocke M, Lyons C G, Simms C K. A validated model of passive muscle in compression[J]. JOURNAL OF BIOMECHANICS.2006,39(16):2999-3009.
    [60]Van Loocke M, Lyons C G, Simms C K. Viscoelastic properties of passive skeletal muscle in compression:Stress-relaxation behaviour and constitutive modelling[J]. JOURNAL OF BIOMECHANICS.2008,41(7):1555-1566.
    [61]Van Loocke M, Simms C K, Lyons C G. Viscoelastic properties of passive skeletal muscle in compression-Cyclic behaviour[J]. JOURNAL OF BIOMECHANICS.2009,42(8): 1038-1048.
    [62]Zheng Y P, Mak A, Lue B. Objective assessment of limb tissue elasticity:Development of a manual indentation procedure[J]. JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT.1999,36(2):71-85.
    [63]Palevski A, Glaich I, Portnoy S, et al. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling[J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME.2006,128(5): 782-787.
    [64]Kaiser M A. Advancements in the Split Hopkinson Bar Test[D]. Blacksburg, Virginia:1998.
    [65]张智峰HopkinsonJ压杆测试技术探讨[D].哈尔滨工程大学,2005.
    [66]Song B, Chen W, Ge Y, et al. Dynamic and quasi-static compressive response of porcine muscle[J]. JOURNAL OF BIOMECHANICS.2007,40(13):2999-3005.
    [67]Chen W, Lu F, Frew D J, et al. Dynamic compression testing of soft materials[J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME.2002,69(3): 214-223.
    [68]Sharma A, Shukla A, Prosser R A. Mechanical characterization of soft materials using high speed photography and split hopkinson pressure bar technique[J]. JOURNAL OF MATERIALS SCIENCE.2002,37(5):1005-1017.
    [69]Ge Y. RADIAL INERTIA EFFECTS ON DYNAMIC RESPONSE OF EXTRA-SOFT MATERIALS IN SPLIT HOPKINSON PRESSURE BAR EXPERIMENTS[D]. Purdue University,2005.
    [70]Song B, Chen W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. EXPERIMENTAL MECHANICS.2004,44(3):300-312.
    [71]Van Sligtenhorst C, Cronin D S, Brodland G W. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus[J]. JOURNAL OF BIOMECHANICS.2006,39(10):1852-1858.
    [72]Chawla A, Mukherjee S, Marathe R, et al. DETERMINING STRAIN RATE DEPENDENCE OF HUMAN BODY SOFT TISSUES USING A SPLIT HOPKINSON PRESSURE BAR[Z]. Spain:2006.
    [73]Pervin F, Chen W W. Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression[J]. JOURNAL OF BIOMECHANICS.2009,42(6): 731-735.
    [74]Saraf H, Ramesh K T, Lennon A M, et al. Mechanical properties of soft human tissues under dynamic loading[J]. JOURNAL OF BIOMECHANICS.2007,40(9):1960-1967.
    [75]Ellwood S, Griffiths L J, Parry D J. A tensile technique for materials testing at high strain rates[J]. J. Phys. E:Sci. Instrum.1982,15:1169-1172.
    [76]宋顺成,田时雨HOPKINSON冲击拉杆的改进及应用[J].爆炸与冲击.1992,12(1): 62-67.
    [77]胡时胜,邓德涛.材料冲击拉伸实验的若干问题探讨[J].实验力学.1998,13(1):9-14.
    [78]Shim V, Liu J F, Lee V S. A technique for dynamic tensile testing of human cervical spine ligaments[J]. EXPERIMENTAL MECHANICS.2006,46(1):77-89.
    [79]Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading[J]. Proc Phys Soc B.1949,62:676-701.
    [80]汪洋,夏源明.杆杆型冲击拉伸试验装置一维试验原理有效性的论证[J].实验力学.1997(01).
    [81]J H, O W E, C J D. Tensile Testing of M aterials at Impact Rates of Strain[J]. J. M ech. Eng. Sci.1960,2:88.
    [82]T N I L. Tensile Testing ofM aterials at H igh Rates of Strain[J]. Exp. M ech.1981,21(5): 177-185.
    [83]Gray G T. "Classic Split-Hopkinson Pressure Bar Testing" Mechanical Testing and Evaluation[M]. Metals Handbook, American Society for Metals,Materials Park, Ohio:2000:8, 462-476.
    [84]high strain-rate testing of low-impedance materials.[J].
    [85]林玉亮,卢芳云,卢力.石英压电晶体在霍普金森压杆实验中的应用[J].高压物理学报2005(04).
    [86]Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. EXPERIMENTAL MECHANICS.2000,40(1):1-6.
    [87]Song B, Ge Y, Chen W, et al. Radial Inertia Effects in Kolsky Bar Testing of Extra-soft Specimens[J]. Experimental Mechanics.2007,47:659-670.
    [88]陶俊林,陈裕泽,田常津,et alSHPB系统圆柱形试件的惯性效应分析[J].固体力学学报.2005,26(1):107-110.
    [89]Meng H, Li Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments[J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING.2003,28(5):537-555.
    [90]徐明利,张若棋,张光莹SHPB实验中试件内早期应力平衡分析[J].爆炸与冲击.2003,23(3):235-240.
    [91]Stress Uniformity Process of Specimens in SHPB Test Under Different Loading Conditions of Rectangular and Half-Sine Input Waves[J].
    [92]宋力,胡时胜.SHPB测试中的均匀性问题及恒应变率[J].爆炸与冲击.2005,25(3):207-216.
    [93]Sharma A, Shukla A, Prosser R A. Mechanical characterization of soft materials using high
    speed photography and split hopkinson pressure bar technique[J]. JOURNAL OF MATERIALS SCIENCE.2002,37(5):1005-1017.
    [94]朱珏.混凝土类材料冲击本构特性的SHPB技术及Lagrange反解法的研究[D].中国科学技术大学,2005.
    [95]Chen W W, Wu Q, Kang J H, et al. Compressive superelastic behavior of a niti shape memory alloy at strain rates of 0.001-750/s[J]. Int. J. Solids Struct.2001,38:8989-8998.
    [96]Song B, Chen W. One-dimensional dynamic compressive behavior of EPDM rubber[J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME.2003,125(3):294-301.
    [97]Shim V, Liu J F, Lee V S. A technique for dynamic tensile testing of human cervical spine ligaments[J]. EXPERIMENTAL MECHANICS.2006,46(1):77-89.
    [98]Chen W, Zhang B, Forrestal M J. A split hopkinson bar technique for low-impedance materials[J]. Exp. Mech.1999,39:81-85.
    [99]Van Sligtenhorst C, Cronin D S, Brodland G W. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus[J]. JOURNAL OF BIOMECHANICS.2006,39(10):1852-1858.
    [100]胡时胜,唐志平,王礼立.应变片技术在动态力学测量中的应用[J].实验力学.1987,2(2):73-82.
    [101]Forrestal M J, Wright T W, Chen W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING.2007,34(3):405-411.
    [102]Song B, Chen W. Split Hopkinson pressure bar for soft materials[J]. Latin American Journal of Solids and Structures.2005,2:113-152.
    [103]Gary G T, Blumenthal W R. Split Hopkinson pressure bar testing of soft materials[M]. American Society for Metals,2000.
    [104]Dioh N N, Leevers P S, Williams J G. Thickness effects in split hopkinson pressure bar tests[J]. Polymer.1993,34:4230-4234.
    [105]Wu X J, Gorham D A. Stress equilibrium in the split hopkinson pressure bar test[J]. J. Phys.IV France.1997,2:91-96.
    [106]Chen W, Lu F, Frew D J, et al. Dynamic compression testing of soft materials[J]. J. Appl. Mech.2002,69:214-223.
    [107]宋力.霍普金森压杆实验的加载设计与数据处理[D].中国科学技术大学,2005.
    [108]Song B, Chen W. Split Hopkinson pressure bar techniques for characterizing soft materials[J]. Latin American Journal of Solids and Structures.2005,2:113-152.
    [109]S N, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proc. Roy. Soc. Lon. A.1991,435:371-391.
    [110]Parry D J, Walker A G. Hopkinson bar pulse smoothing[J]. Meas. Sci. Technol.1995,6: 443-446.
    [111]Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. EXPERIMENTAL MECHANICS.2005, 45(2):186-195.
    [112]李永胜,张全有,陈维毅.骨骼肌收缩的本构模型[J].太原理工大学学报.2005,36(6):760-764.
    [113]Jm W, L S. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints[J]. J Biomech.1988,22(12):1027-1041.
    [114]Jm W. Hill-Based Muscle Models:A Systems Engineering Perspective[G]. New York: Springer,1990:69-93.
    [115]Gk C, Van Den T B, W H, et al. Modelling of force production in skeletal muscle undergoing stretch[J]. J Biomech.1996,29(8):1091-1104.
    [116]Siebert T, Rode C, Herzog W, et al. Nonlinearities make a difference:comparison of two common Hill-type models with real muscle[J]. BIOLOGICAL CYBERNETICS.2008,98(2): 133-143.
    [117]Ajm S. Continuum theory of the mechanics of fibre-reinforced composites[M]. New York: Springer-Verlag,1984.
    [118]Ja W. A constitutive model and finite element representation for transversely isotropic soft tissues. [D]. The University of Utah,1994.
    [119]Transversely isotropic properties of porcine liver tissue experiments and constitutive modelling [J].
    [120]Dorfmann A, Trimmer B A, Woods W A. A constitutive model for muscle properties in a soft-bodied arthropod[J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE.2007, 4(13):257-269.
    [121]D H J, K S R, Fcp Y. Determination of a constitutive relation for passive myocardium[J]. J Biomech Eng.1990,112:333-346.
    [122]Gielen A W, Oomens C W, Bovendeerd P H, et al. A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction[J]. Comput.Methods Biomech.Biomed.Engin.2000,3:231-244.
    [123]Martins J A C, Pires E B, Salvado R, et al. numerical model of passive and active behavior of skeletal muscles[J]. Comput.Methods Appl.Mech. Engrg.1998,151:419-433.
    [124]Jacques M. Huyghe, Van Campen D H, Arts T, et al. The constitutive behaviour of passive heart muscle tissue-A quasi-linear viscoelastic formulation[J]. J. Bbmechanics.1991,24(9): 841-849.
    [125]Weiss J A, Maker B N, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING.1996,135(1-2):107-128.
    [126]Blemker S S, Pinsky P M, Delp S L. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii[J]. JOURNAL OF BIOMECHANICS.2005,38(4): 657-665.
    [127]Odegard G M, Haut Donahue T L, Morrow D A, et al. Constitutive Modeling of Skeletal Muscle Tissue With an Explicit Strain-Energy Function[J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME.2008,130(6).
    [128]Li J, Luo X J, Kuang Z B. A nonlinear anisotropic model for porcine aortic heart valves[J]. Journal of Biomechanics.2001,34:1279-1289.
    [129]杨黎明,Shim V P W.描述橡胶粘超弹性的一个本构模型[J].宁波大学学报:理工版.2000:102-108.
    [130]Shim V, Yang L M, Lim C T, et al. A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber[J]. JOURNAL OF APPLIED POLYMER SCIENCE.2004,92(1):523-531.
    [131]Ning X G, Zhu Q L, Lanir Y, et al. A transversely isotropic viscoelastic constitutive equation for Brainstem undergoing finite deformation[J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME.2006,128(6): 925-933.
    [132]Limbert G, Middleton J. A constitutive model of the posterior cruciate ligament[J]. MEDICAL ENGINEERING& PHYSICS.2006,28(2):99-113.
    [133]Pioletti D P, Rakotomanana L R, Benvenuti J F, et al. Viscoelastic constitutive law in large deformations:application to human knee ligaments and tendons[J]. JOURNAL OF BIOMECHANICS.1998,31(8):753-757.
    [1]王从约.杆杆型冲击拉伸试验系统的动力学数值分析-测试原理的验证和试件尺寸的匹配[D].中国科学技术大学,1996.
    [2]Chen W, Zhang B, Forrestal M J. A split hopkinson bar technique for low-impedance materials[J]. Exp. Mech.1999,39:81-85.
    [3]Wang li li, Labibes K, Z A. A Generalization of Split Hopkinson Bar Technique to Using Viscoelastic Bar[J]. International Journal Impact Engineering.1994,15(5):669-686.
    [4]Zhao H, Gary G, Klepaczko J R. On the use of a viscoelastic split Hopkinson pressure bar[J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING.1997,19(4):319-330.
    [5]Bacon C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J]. EXPERIMENTAL MECHANICS.1998,38(4):242-249.
    [6]刘孝敏,胡时胜,陈智.粘弹性压杆中波的衰减和弥散[J].固体力学学报.2002,23(1):81-86.
    [7]郭历伦.粘弹性杆中波传播的数值模拟和实验研究[D].中国工程物理研究院,2005.
    [8]Salisbury C. spectral analysis of wave propagation through a polymeric hopkinson bar[D]. the University of Waterloo,2001.
    [9]H P W, A T S, T V W. Numerical recipes in C 2nd edition[G]. Cambridge:Cambridge University Press,1992.
    [10]孙仲康.快速傅立叶变换及应用[M].北京:人民邮电出版社,1982.
    [11]胡时胜,唐志平,王礼立.应变片技术在动态力学测量中的应用[J].实验力学.1987,2(2):73-82.
    [12]Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. EXPERIMENTAL MECHANICS.2000,40(1):1-6.
    [13]林玉亮,卢芳云,卢力.石英压电晶体在霍普金森压杆实验中的应用[J].高压物理学报.2005(04).
    [14]张福学,王丽坤.现代压电学[M].北京:科学出版社,2002.
    [15]Song B, Chen W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. EXPERIMENTAL MECHANICS.2004,44(3):300-312.
    [16]Casem D, Weerasooriya T, Moy P. Inertial effects of quartz force transducers embedded in a split Hopkinson pressure bar[J]. EXPERIMENTAL MECHANICS.2005,45(4):368-376.
    [1]Song B, Chen W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. EXPERIMENTAL MECHANICS.2004,44(3):300-312.
    [2]Zencker U, Clo R. Limiting conditions for compression testing of ° at specimens in the split hopkinson pressure bar[J]. Exp. Mech.1998,39:343-348.
    [3]Parry D J, Dixon P R, Hodson S, et al. Stress equilibrium effects within hopkinson bar experiments[J]. J. Phys. IV.1994,8:107-112.
    [4]Gary G T, Blumenthal W R. Split Hopkinson pressure bar testing of soft materials[M]. American Society for Metals,2000.
    [5]Dioh N N, Leevers P S, Williams J G. Thickness effects in split hopkinson pressure bar tests[J]. Polymer.1993,34:4230-4234.
    [6]Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading[J]. Proc Phys Soc B.1949,62:676-701.
    [7]Song B, Chen W. Split Hopkinson pressure bar techniques for characterizing soft materials [J]. Latin American Journal of Solids and Structures.2005,2:113-152.
    [8]Wu X J, Gorham D A. Stress equilibrium in the split hopkinson pressure bar test[J]. J. Phys.IV France.1997,2:91-96.
    [9]Chen W, Lu F, Frew D J, et al. Dynamic compression testing of soft materials[J]. J. Appl. Mech.2002,69:214-223.
    [10]Yang L M, Shim V. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING.2005,31(2):129-150.
    [11]Fenghua Z, Lili W, Shisheng H. On the Effect of Non-uniformity in Polymer Specimen of SHPB Test[J]. Jounral of Experimental Mechanics.1992,7(1):23-29.
    [12]朱珏.混凝土类材料冲击本构特性的SHPB技术及Lagrange反解法的研究[D].中国科学技术大学,2005.
    [13]宋力.霍普金森压杆实验的加载设计与数据处理[D].中国科学技术大学,2005.
    [14]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005.
    [15]刘孝敏,胡时胜,陈智.粘弹性压杆中波的衰减和弥散[J].固体力学学报.2002,23(1):81-86.
    [16]G R, G S. Critical Appraisal of Limiting Strain Rates for Compression Testing of Ceramics in a Split Hopkinson Pressure Bar[J]. Journal of American Ceramic Society.1994,77(263-267).
    [17]Pan Y, Chen W, Song B. Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens[J]. EXPERIMENTAL MECHANICS.2005,45(5): 440-446.
    [18]Forrestal M J, Wright T W, Chen W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING.2007,34(3):405-411.
    [19]Song B, Ge Y, Chen W, et al. Radial Inertia Effects in Kolsky Bar Testing of Extra-soft Specimens[J]. Experimental Mechanics.2007,47:659-670.
    [20]Parry D J, Walker A G. Hopkinson bar pulse smoothing[J]. Meas. Sci. Technol.1995,6: 443-446.
    [21]S N, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proc. Roy. Soc. Lon. A.1991,435:371-391.
    [22]Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. EXPERIMENTAL MECHANICS.2005, 45(2):186-195.
    [23]Christensen R J, R S S, S B W. Split-Hopkinson-Bar Tests on rocks under confining pressure[J]. Experimental mechanics.1972:508-513.
    [24]Ellwood S, Griffiths L J, Parry D J. Materials testing at high constant strain rates[J]. J. Phys. E:Sci. Instrum.1982,15:280-282.
    [25]Davies E.D.H, Hunter S. C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of Mechanics and Physics of Solids.1963,11(3): 155-179.
    [26]Gorham D A, Pope P H, Field J E. An improved method for compressive stress-strain measurements at very high strain rates[J]. Proc R Soc London A.1992,438:153-170.
    [27]K S S. Dynamic deformation of aluminium and copper at elevated temperature[J]. J. Mech. Phys. Solids.1971,19:117-135.
    [28]Gorham D A. Specimen inertia in high strain-rate compression[J]. J Phys D.1989,22: 1888-1893.
    [1]威尔基D R.肌肉[M].北京:科学出版社,1981.
    [2]Woo L Y, Orlando C A, Camp J F, et al. Effects of postmortem storage by freezing on ligament tensile behavior[J]. J. Biomech.1986,19:399-404.
    [3]Smith C W, Young I S, Kearney J N. Mechanical properties of tendons:changes with sterilization and preservation[J]. ASME J. Biomech.Eng.1996,118(1):56-61.
    [4]Foutz T L, Stone E A, Abrams C F. Effects of freezing on mechanical properties of rat skin[J]. Am. J. Vet. Res.1992,53:788-792.
    [5]Leitschuh P H, Doherty T J, Taylor D C, et al. Effects of postmortem freezing on tensile failure properties of rabbit extensor digitorum longus muscle tendon complex[J]. JOURNAL OF ORTHOPAEDIC RESEARCH.1996,14(5):830-833.
    [6]谢邦昌.生物统计学[M].北京:中国统计出版社,2003.
    [7]Van Ee C A, Chasse A L, Myers B S. Quantifying skeletal muscle properties in cadaveric test specimens:Effects of mechanical loading, postmortem time, and freezer storage[J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME. 2000,122(1):9-14.
    [8]Van Loocke M, Lyons C G, Simms C K. A validated model of passive muscle in compression[J]. JOURNAL OF BIOMECHANICS.2006,39(16):2999-3009.
    [9]Jacques M. Huyghe, Van Campen D H, Arts T, et al. The constitutive behaviour of passive heart muscle tissue-A quasi-linear viscoelastic formulation[J]. J. Bbmechanics.1991,24(9): 841-849.
    [10]张少实,庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社,2005.
    [11]Van Loocke M, Lyons C G, Simms C K. Viscoelastic properties of passive skeletal muscle in compression:Stress-relaxation behaviour and constitutive modelling[J]. JOURNAL OF BIOMECHANICS.2008,41(7):1555-1566.
    [12]Yc F. Biomechanics:mechanical properties of living tissues.[M]. New York:Springer-Verlag, 1981.
    [13]Morrow D A, Donahueb T L H, Odegardb G M, et al. Transversely isotropic tensile material properties of skeletal muscle tissue[J]. Journal of the Mechanical Behavior of Biomedical Materials.2009.
    [14]Mathur A B, Collinsworth A M, Reichert W M, et al. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy.[J]. Journal of Biomechanics.2001,34(12):1545-1553.
    [15]Linder-ganz E, Gefen A. Mechanical compression-induced pressure sores in rat hindlimb: Muscle stiffness, histology, and computational models[J]. Journal of Applied Physiology. 2004,96(6):2034-2049.
    [16]Willems M, Purslow P P. Mechanical and structural characteristics of single muscle fibres and fibre groups from raw and cooked pork Longissimus muscle[J]. MEAT SCIENCE.1997, 46(3):285-301.
    [1]Song B, Ge Y, Chen W, et al. Radial Inertia Effects in Kolsky Bar Testing of Extra-soft Specimens[J]. Experimental Mechanics.2007,47:659-670.
    [2]Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading[J]. Proc Phys Soc B.1949,62:676-701.
    [3]Nie X, Song B, Ge Y, et al. Dynamic Tensile Testing of Soft Materials[J]. EXPERIMENTAL MECHANICS.2009,49(4):451-458.
    [4]Mcelhaney J H. Dynamic response of bone and muscle tissue[J]. Journal of Applied Physiology.1966:1231-1236.
    [5]Van Sligtenhorst C, Cronin D S, Brodland G W. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus[J]. JOURNAL OF BIOMECHANICS.2006,39(10):1852-1858.
    [6]Song B, Chen W, Ge Y, et al. Dynamic and quasi-static compressive response of porcine muscle[J]. JOURNAL OF BIOMECHANICS.2007,40(13):2999-3005.
    [1]Forbes P A, Cronin D S, Deng Y C, et al. Numerical Human Model to Predict Side Impact Thoracic Trauma [C]. Springer,2005.
    [2]M V M, Van H J, Oomens C W J.a finite element model of the human buttocks for prediction of seat pressuredistributions[J]. Computer Methods in Biomechanics and Biomedical Engineering.2004,7(4):193-203.
    [3]Limbert G, Middleton J. A transversely isotropic viscohyperelastic material-Application to the modeling of biological soft connective tissues[J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES.2004,41(15):4237-4260.
    [4]Weiss J A, Maker B N, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING.1996,135(1-2):107-128.
    [5]Van Loocke M, Lyons C G, Simms C. THE THREE-DIMENSIONAL MECHANICAL PROPERTIES OF skeletal muscle-experiment and modeling[J].
    [6]Van Loocke M, Lyons C G, Simms C K. Viscoelastic properties of passive skeletal muscle in compression:Stress-relaxation behaviour and constitutive modelling[J]. JOURNAL OF BIOMECHANICS.2008,41(7):1555-1566.
    [7]Van Loocke M, Simms C K, Lyons C G. Viscoelastic properties of passive skeletal muscle in compression-Cyclic behaviour[J]. JOURNAL OF BIOMECHANICS.2009,42(8): 1038-1048.
    [8]Tang H, Buehler M J, Moran B. A Constitutive Model of Soft Tissue:From Nanoscale Collagen to Tissue Continuum[J]. ANNALS OF BIOMEDICAL ENGINEERING.2009, 37(6):1117-1130.
    [9]Hill A V. The heat of shortening and the dynamic constants of muscle[C].1938.
    [10]Huxley A F. Muscle structure and theories of contraction[J]. Progress in Biophysics and Biophysical Chemistry.1957,7:255-318.
    [11]Itoa D, Tanakab E, Yamamoto S. A novel constitutive model of skeletal muscle taking into account anisotropic damage[J]. Journal of the Mechanical Behavior of Biomedical Materials. 2009.
    [12]Bischoff J E. Constitutive modeling and testing of biological soft tissue.[D]. The University of Michigan,2001.
    [13]朱艳峰.橡胶类材料硬化的本构研究与非线性有限元分析[D].华南理工大学,2005.
    [14]李晓芳,杨晓翔.橡胶材料的超弹性本构模型[J].弹性体.2005,15(1):50-58.
    [15]Boyce M C, Arruda E M. Constitutive models of rubber elasticity:A review[J]. Rubber Chemistry and Technology.2000,73:504-523.
    [16]R M. A theory of large elastic deformatio[J]. J Appl Phys.1940,11:582-592.
    [17]C B M, M A E. constitutive models of rubber elasticity:a review[J]. Rubber chemistry and technology.2000.
    [18]S R R. Large elastic deformation of isotropic materials:1. Fundamental concepts,11 Some uniqueness theories for pure homogeneous defornmtion[J]. Philos Trans Roy Soc Lond Ser A. 1948,240:459-508.
    [19]G J A, A G. A Strain energy function of rubber. Ⅱ. The characterization of filled vulcanizates[J]. J Appl Polymer Sci.1975,19:2319-2330.
    [20]H Y O. Characterization of elastic properties of carbon black-filled rubber vulcanizates[J]. Rubber Chemistry and Technolog.1990,63(5):792-805.
    [21]H Y O. Some forms of the strain energy for rubber[J]. Rubber Chemistry and technology. 1993,66(5):754-771.
    [22]N G A. A new constitutive relation for rubber[J]. Rubber Chemistry And Technology.1996, 69(1):339-362.
    [23]E A, C B M. The strain-energy function of a hyperelastic material in terms of the extension ratios.[J]. Journal of the mechanics and physics of solid.1993,41(2):353-371.
    [24]W O R. Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberllke solids[J]. Proc R Soc Lond Ser A.1972,326:565-584.
    [25]何平笙.高聚物的力学性能[M].第二版ed.合肥:中国科学技术大学出版社,2008.
    [26]Yc F. Biomechanics:mechanical properties of living tissues.[M]. New York:Springer-Verlag, 1981.
    [27]Limbert G, Middleton J. A constitutive model of the posterior cruciate ligament[J]. MEDICAL ENGINEERING& PHYSICS.2006,28(2):99-113.
    [28]Ajm S. Continuum theory of the mechanics of fibre-reinforced composites[M]. New York: Springer-Verlag,1984.
    [29]Gielen A W, Oomens C W, Bovendeerd P H, et al. A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction[J]. Comput.Methods Biomech.Biomed.Engin.2000,3:231-244.
    [30]Johansson T, Meier P, Blickhan R. A finite-element model for the mechanical analysis of skeletal muscles[J]. JOURNAL OF THEORETICAL BIOLOGY.2000,206(1):131-149.
    [31]D Humphrey J, K Strumpf R, Fcp Yin. Determination of a constitutive relation for passive myocardium[J]. J Biomech Eng.1990,112:333-346.
    [32]Burslow P P. The structure and functional significance of variations in the connective tissue wilhin muscle.[J]. Cow Biochem Physiol A Mol Integr Physiol.2002,133:947-966.
    [33]Criscione J C, Douglas A S, Hunter W C. Physically based strain invariant set for materials exhibiting transversely isotropic behavior[J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS.2001,49(4):871-897.
    [34]Blemker S S, Pinsky P M, Delp S L. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii[J]. JOURNAL OF BIOMECHANICS.2005,38(4):657-665.
    [35]Jekyn T R, Koopman B, Huijing P, et al. finite element model of intramuscular pressure during isometric contraction of skeletal muscle[J]. Phys Med Biol.2002,47:4043-4061.
    [36]Li J, Luo X J, Kuang Z B. A nonlinear anisotropic model for porcine aortic heart valves[J]. Journal of Biomechanics.2001,34:1279-1289.
    [37]Van Loocke M, Lyons C G, Simms C K. A validated model of passive muscle in compression[J]. JOURNAL OF BIOMECHANICS.2006,39(16):2999-3009.
    [38]Lekhnitskii S G. Theory of Elasticity of an Anisotropic Body[M]. Moscow:Mir Publishers, 1981.
    [39]Snedeker J G, Niederer P, Schmidlin F R, et al. Strain-rate dependent material properties of the porcine and human kidney capsule[J]. JOURNAL OF BIOMECHANICS.2005,38(5): 1011-1021.
    [40]Pioletti D P, Rakotomanana L R, Benvenuti J F, et al. Viscoelastic constitutive law in large deformations:application to human knee ligaments and tendons[J]. JOURNAL OF BIOMECHANICS.1998,31(8):753-757.
    [41]杨黎明,Shim V P W.描述橡胶粘超弹性的一个本构模型[J].宁波大学学报:理工版.2000:102-108.
    [42]K O, S O, M F, et al. J Polymer Sci.1976,14:1701-1715.
    [43]Wagner M H. Rheol Acta.1979,18:33-50.
    [44]Taylor Z A, Comas O, Cheng M, et al. On modelling of anisotropic viscoelasticity for soft tissue simulation:Numerical solution and GPU execution[J]. MEDICAL IMAGE ANALYSIS.2009,13(2):234-244.
    [45]Miller K, Chinzei K. Constitutive modelling of brain tissue:experiment and theory[J]. Journal of Biomechanics.1997,30(11-12):1115-1121.
    [46]Miller K. Constitutive modelling of abdominal organs[J].33.2000,3(367-373).
    [47]Lin H T, Dorfmann A L, Trimmer B A. Soft-cuticle biomechanics:A constitutive model of anisotropy for caterpillar integument[J]. JOURNAL OF THEORETICAL BIOLOGY.2009, 256(3):447-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700