梨果实跌落冲击动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今果实在贮运过程中的损伤问题已引起越来越多的关注,利用科学手段减少损伤是现代农业技术的重要课题之一。果实在采摘、清洗、分级及贮运过程中存在着振动、碰撞、冲击、静载、挤压等载荷形式的作用,形成以塑性或脆性破坏形式为主的现时损伤和以粘弹性变形为主的延迟损伤。而跌落冲击是导致果实损伤的重要原因之一。
     针对果实在实际贮运过程中的跌落冲击现象,本文以水晶梨和贡梨为研究对象,通过跌落冲击试验得出这两种果实跌落损伤的临界高度。在分析其粘弹性特征的基础上,提出了一个表征其跌落冲击特性的非线性粘弹性流变模型,根据试验结果得出模型参数,而且得出理论和试验的相关性高达0.97。
     通过准静态压缩试验研究了瓦楞纸板和发泡聚苯乙烯两种缓冲材料的非线性粘弹性特征。结合理论分析和试验,导出了能同时表征这两种缓冲材料的动力学模型,并得出模型参量。该模型在表征纸板未压溃阶段时吻合度很高,但是不能用于表征出现塑性变形(即压溃)以后纸板的压缩性能。而且由试验发现,此模型在表征发泡聚苯乙烯的压缩性能时比表征瓦楞纸板的更为稳定。
     根据果实本身的粘弹性特性和缓冲材料的压缩性能,设计了果实缓冲冲击试验,并分析了果实缓冲冲击的动力学特性,比较了瓦楞纸板和发泡聚苯乙烯这两种缓冲材料用于梨缓冲包装时其缓冲性能的差异。在同样的冲击力作用下,采用瓦楞纸板作为缓冲垫比发泡聚苯乙烯能够更大减小果实的变形量,降低果实的损伤率。因此,在保证缓冲材料性能稳定的前提下,瓦楞纸板比发泡聚苯乙烯更适合作为梨缓冲包装的材料。
     结合梨果实和缓冲材料的粘弹性模型,进行刚性和缓冲两种工况下梨果实的跌落冲击动力学响应分析。采用无量纲化的方法简化了跌落冲击动力学方程,用四阶“龙格-库塔”法解出了该无量纲化的响应方程,得出梨果实跌落冲击的“变形量-时间”“速度-时间”“加速度-时间”的关系。
     由此分析得到水晶梨和贡梨在刚性跌落以及采用文中的两种缓冲材料后缓冲跌落冲击的损伤边界曲线。并初步探讨了果实缓冲包装的设计和验证方法。
The damage problem of fruit during storing and transporting is paid more and more attentions nowadays. Damage reducing by scientific methods is one of the most important subjects in the area of modern agricultural technology. Fruits are bruised by vibration, collision, impact, static compression and extrusion during harvesting handling, cleaning, classification and transportation. There are two damage styles, one is instant plastic damage and the other is lingering viscoelastic bruise. Dropping impact is one of the most important causes for fruits` damage.
     By taking dropping impact experiment using ShuiJing pear and Gong pear, the critical heights of bruise damage boundaries are got. A rheological viscoelastic model which depicts the dropping impact properties of pears is developed in this paper. The parameters of the model are calculated and validated by the dropping experiments. It is confirmed that the model is valid to describe the dropping impact characteristics of Shuijing pear and Gong pear, and the pertinences between theory and experiment is as high as 0.97.
     The nonlinear viscoelastic characteristics of corrugated paper and EPS are studied by static compression experiment. Combing theoretic analysis and experiment, a dynamic model which can describe both the above two cushion materials is got, and the parameters are also calculated and validated. The model is suitable to express the compression trait when the deformation is reparable; but not appropriate for describing the trait after the deformation is beyond retrieved. This model is more appropriate to describe the compression property of EPS than corrugated board.
     Dropping impact tests of fruits with cushion materials are designed based on the theories of viscoelastic characteristics of fruits and the compressibility of cushion materials. The dropping dynamic specialty of fruits with cushion materials and the different cushion capacity of corrugated paper and EPS are discussed in the paper. Under the same impact force, the deformation of pear is reduced more by using corrugated board as cushion material than using EPS. Therefore, corrugated board is more suitable than EPS to protect pear from bruise.
     The dropping impact dynamic response of fruits in two conditions of rigidity and cushion protection are discussed. After predigesting the dynamic response equation, Runge-Kutta integration method is invited to solve the equation. Meanwhile, the relation between deformation and time, velocity and time, acceleration and time of pears are educed respectively.
     With the help of these discussions the dropping bruise boundaries of pears and pears with corrugated paper and EPS are developed in this paper. At last the design and validation method for fruits’protection packaging is also presented as a pilot study.
引文
[1]卢立新,王志伟.果实运输中的机械损伤机理及减损包装研究进展[J].包装工程, 2004,25(4): 131-141.
    [2]高永毅,焦群英.果实机械损伤研究概况及发展趋势[J].湘潭师范学院学报(自然科学版), 2002, 24(3): 26-29.
    [3]李小昱,王为,赵静.苹果碰撞损伤预测模型的研究.西北农业大学学报[J]. 1995, Vol.23 No.2: 79~83
    [4]李小昱,王为.苹果碰撞响应数学模型的研究.农业工程学报[J], 1996, Vol12,No.4: 204~207
    [5]李小昱,王为.苹果之间碰撞损伤的研究.西北农业大学学报[J], 1995.23(3):83-86
    [6]李小昱,王为.缓冲材料降低苹果碰撞损伤的研究.西北农业大学学报[J]. 1998, Vol 26 No.3(47-51)
    [7]孙骊,鞠建伟,杨林青.苹果在存放过程中冲击破裂特性的研究.农业工程学报[J], 1998, Vol.14, No.2: 245-246
    [8]陈善锋,周亦斌,王俊,王剑平.梨的下落碰撞冲击加速度特性研究.浙江大学学报(农业与生命科学版), [J]. 2003, 29 (3) : 339-342
    [9]陆秋君,王俊,周亦斌,陈善锋.黄花梨的动态特性试验研究.浙江大学学报(农业与生命科学版) [J]. 2001, 27 (3) : 330-334
    [10]王剑平,王俊,陈善锋,陆秋君.黄花梨的撞击力学特性研究.农业工程学报[J]. 2002, Vol.18, No. 6: 32-35
    [11]王俊,腾斌.桃下落冲击动力学特性及其与坚实度的相关性.农业工程学报[J]. 2004, Vol.20, No. 1: 193-197
    [12]卢立新,王志伟.苹果跌落冲击力学特性研究.农业工程学报[J], 2007, Vol.23,No.2: 254-258
    [13]卢立新,王志伟.基于准静态压缩的果实黏弹塑性模型.包装工程[J], 2006, Vol.21,No.12: 30-33
    [14]卢立新.跌落损伤脆值及损伤边界.包装工程[J], 2005, Vol.26,No.6: 1~11
    [15]周德志,卢立新.果实运输中的机械损伤机理及减损包装研究进展.包装工程[J], 2005, Vol.26,No.6: 12-13, 21
    [16] J E, Schoorl D. Fracture in Potatoes and Apples. Journal of Materials Science. 1983:2017-2028
    [17] Menesatti Paolo, Paglia Graziella. Development of a Drop Damage Index of Fruit Resistance to Damage. J. agric. Engng Res. 2001, 80 ,1:53-64
    [18] Menesatti Paolo; Beni Claudio; Paglia Graziella; Marcelli Simona; D'Andrea Stefano. Predictive Statistical Model for the Analysis of Drop Impact Damage on Peach. J. Agric. Engng Res. (1999) 73, 275-282
    [19] P Menesatti; G. Paglia; S. Solaini; A Zanella; R. Stainer; C Costa; M Cecchetti. Non-linear Multiple Regression Models to estimate the Drop Damage Index of Fruit. Biosystems Engineering, 2002,83 (3): 319-326
    [20] Pang David W; Studman Clif f J; Banks Nigel H.; Baas Peter H. Rapid Assessment of the Susceptibility of Apples to Bruising. J . agric . Engng Res . (1996) 64 , 37-48
    [21] Lichtensteiger M J, Holmes R G., Handy M Y, Blaisdell J L. Impact parameters of Spherical Viscoelastic Objects and Tomatoes. American Society of Agricultural Engineers. 1988, 31(2): 595-602
    [22]马庭,王一临,万军,张伦武.常用缓冲包装材料静态压缩特性试验研究.包装工程[J], 2002年,第23卷,第2期: 4-8
    [23]王冬梅,廖强华.蜂窝纸板静态压缩力学性能建模研究.包装工程[J], 2006年,第27卷,第4期: 129-132
    [24]谢勇,宋宝丰.粘弹性包装材料缓冲特性的理论研究.包装工程[J], 1999年,第20卷,第3期: 9-12
    [25]高德,奚德昌等.瓦楞纸板的静态压缩非线性模型.包装工程[J]. 1995, 16(4): 6-8
    [26]刘晔,王振林等.三重组合瓦楞纸板静态平压性能的理论建模.包装工程[J]. 2004, 25(5): 162-164
    [27]明星,赵燕等.基于静态压缩试验的缓冲包装材料性能对比分析.包装工程[J]. 2006, 27(2): 59-61
    [28]唐志祥,郭钟宁.缓冲材料的流变模型.包装工程[J]. 1994, 15(4): 149-153
    [29] T J Urbanik. Linear and nonlinear material effects on postbuckling strength of corrugated containers. Mechanics of Cellulosic Materials. ASME (1997) 221: 93-99
    [30] Thomas J. Urbanik, Edmond P. Saliklis. Comparison of Postbuckling Model and Finite Element Model with Compression Strength of Corrugated Boxes. Paper Physics Seminar (2002) 2, 1-4
    [31] A C Gilchrist, J C Suhling, T J Urbanik. Nonlinear finite element modeling of corrugated board. ASME (1999) 231: 101-106
    [32] T J URBANIK. A More Mechanistic Model of the Compression Strain-Load Response of Paper. JOURNAL OF PULP AND PAPER SCIENCE (2002) , 28 (6): 211-216
    [33] Michael A Sek, Jim Kirkpatrick. Prediction of the Cushioning Properties of Corrugated Fibreboard from Static and Quasi-dynamic Compression Data. PACKAGING TECHNOLOGY AND SCIENCE (1997), 10: 87-94
    [34]王志伟,胡长鹰.非线性缓冲包装系统的跌落冲击响应.包装工程[J]. 1996, 12: 151-156
    [35]武冬雁,王志伟.矩形波脉冲激励下正切型非线性包装系统的跌落冲击响应.包装工程[J]. 1999, 18(3): 49-52
    [36]武冬雁,王志伟.后峰锯齿波脉冲激励下正切型非线性包装系统的跌落冲击响应.包装工程[J]. 1999, 20(1): 5-7
    [37]王志伟,武冬雁.前峰锯齿波脉冲激励下正切型非线性包装系统的冲击响应.包装工程[J]. 1999, 20(4): 1-3
    [38]姜久红,王志伟.缓冲包装系统的简化对加速度响应影响分析.包装工程[J]. 2005, 20(5): 56-59
    [39]谢涛.关键部件跌落冲击响应研究.包装工程[J]. 2005, 26(2): 77-79
    [40]于治会.包装产品的动态响应.包装工程[J]. 1991, 12(3): 117-125
    [41]宋宝丰.包装件在重复冲击下响应加速度计算.包装工程[J]. 2000, 21(4): 1-12
    [42]胡长鹰.缓冲包装系统跌落破损边界曲线研究.包装工程[J]. 2001, 22(6): 4-7
    [43]吴浩然,王振林,奚德昌等.半正弦波冲击时立方非线性产品包装损坏边界曲线.包装工程[J]. 1996, 17(4): 5-8
    [44]奚雯,吴常富,王振林.后峰锯齿波冲击时立方非线性包装系统的产品损坏边界.包装工程[J]. 1997, 18(2, 3): 40-42, 63
    [45]王振林,肖艳萍,毛谦敏等.矩形波冲击时双线性包装系统的产品损坏边界.包装工程[J]. 1997, 18(2, 3): 37-39
    [46]董静,高德.半正弦波冲击时瓦楞纸板破损边界研究.哈尔滨商业大学学报(自然科学版) [J]. 2005, 21(2): 209-211
    [47]李萌萌,孙智慧,高德.矩形波冲击时发泡聚苯乙烯衬垫破损边界研究.哈尔滨商业大学学报(自然科学版) [J]. 2004, 20(2): 180-182
    [48]王磊.半正弦波冲击时发泡聚苯乙烯衬垫破损边界曲线的研究.包装工程[J]. 2004, 25(5): 167-169
    [49] M A Rao, J F Steffe. Viscoelastic properties of foods[M], London: Elsevier Applied Science, 1987
    [50]应铁进.果蔬贮运学[M].浙江大学出版社. 2001
    [51]卢立新.果蔬及其制品包装[M].北京:化学工业出版社. 2005
    [52]牛润新.番茄贮运振动力学模型与模态分析[D].安徽:安徽农业大学
    [53] [美]M F Ashby.材料问题物理模型的建立[J].力学进展,1993,23(4)
    [54]吕锡慈.高分子材料的强度与破坏[M].成都:四川教育出版社,1988
    [55] Brilliantov. The collision of particles in granular systems[J]. 1996a. Physica A, 231,417-424
    [56] Michael VAN. The discrete Element Method to Simulate Fruit Impact Damage during Transport and Handling. 2005.4
    [57] U. G. A. Anazodo, S C Chikwendu. Possion’s Ratio and Elastic Modulus of Radially Compressed Biomaterials-Small Deformation Approximation. [J]. Trans of the ASAE, 1982, 26(3), 923-929
    [58]中华人民共和国标准(鲜梨)[M].北京:中国标准出版社, 1991
    [59]唐志祥,郭钟宁等.缓冲材料的流变模型.包装工程[J]. 1994, 15(4): 149-153
    [60]凌建明,吴征,叶定威,钱志斌.压缩条件下发泡聚苯乙烯的本构关系和疲劳特性.同济大学学报[J]. 2003, 31(1): 21-25
    [61]包装用缓冲材料静态压缩试验方法.中华人民共和国国家标准[M].国家标准局发布. 1987
    [62]应铁进.果蔬贮运学[M].浙江:浙江大学出版社, 2001. 209
    [63]商业部济南果实研究所. GB/T 13607-1992.苹果、柑桔包装.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700