蜂窝夹层梁结构在低速冲击下的动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的发展,材料、结构、力学等领域的研究不断加深,蜂窝夹层结构作为一种新型结构出现在人们面前。这种新型结构具有质量轻、强度高、吸能和隔音效果好等优点。蜂窝夹层结构具有的这些优势使其被广泛应用航空航天、汽车工业、建筑以及包装工程等领域。因此,对蜂窝夹层结构的力学性能的研究受到了工程与学术领域的广泛关注。
     蜂窝夹层结构在受到动态冲击荷载时表现出了良好的吸能特性,本文首先通过蜂窝结构的准静态面外压缩实验,了解了蜂窝结构的力学特性,然后又从实验和有限元数值分析两方面对蜂窝夹层梁结构在低速冲击下的动态响应问题进行了研究,主要工作和结果如下:
     1.蜂窝结构的准静态压缩实验。实验中对不同尺寸不同基体材料的蜂窝结构进行了静态压缩实验,研究了蜂窝结构的塑性变形模式和吸能效果。结果表明:蜂窝尺寸的不同影响着蜂窝结构的整体承压性能,对于大尺寸的蜂窝,其在荷载作用下的变形具有阶段性,蜂窝首先在中上部发生屈曲,屈曲荷载较为平稳。对于小尺寸蜂窝,荷载作用下呈现整体性破坏。
     2.蜂窝夹层梁结构的低度冲击实验。本实验通过DHR-9401落锤式冲击加载试验机来实现,实验主要分析了在不同跌落高度冲击下,蜂窝夹层梁结构的变形与失效机制。实验结果表明:在冲击荷载作用下,蜂窝结构的塑性变形比蒙皮的塑性变形更加显著,随着跌落高度的增加,蜂窝夹层梁结构的破坏发生扩散,蒙皮的塑性变形主要是沿着面内方向发展,而蜂窝结构的塑性变形主要是沿着蜂窝面外方向发展。
     3.结合ANSYS有限元软件的数值分析。模拟的变形模态与低速冲击实验的结果基本吻合,模拟结果中蒙皮和蜂窝结构的von-mises应力的分布规律以及结构的变形特征也验证了实验所分析的蜂窝夹层梁结构的动态响应规律。
With the development of the science and technology, analysis in material、structure and mechanics is becoming deeper,and honeycomb sandwich strcuture has come into our lives as a new developing structure.This new structure has many advantages such as lighter quality、higher strength、higher energy absorption and so on.As it's excellent performance,honecomb sandwich structure is widely used in aircraft industry、automobile industry、civil engineering and packaging engineering.Research of the mechanical proprties of the honeycomb sandwich structure received wide concern.
     Honecomb sandwich beam perform well in energy absorption under low-velocity impacting load.In this paper, mechanical proprties of honeycomb structure were first analysised,according to Quasi-static compression experiment And then we analysised the honeycomb sandwich beam's dynamic response under low-velocity impact.This part is processed on both experiment and finite element modelling sides.The important results are summarized from the following several aspects:
     1.Quasi-static compression experiment on honeycomb structure.According to the experiment we have tested honeycomb structure with different sizes and different materials,and the abilities of plastic deformation and energy absorption were also analysised.The result shows that overall compression performance is influenced by the size of the honeycomb structure.The deformation of the larger test specimen under load can be divided into three stages,the buckling first appears at the top of the structure and the yeild load is stable.The smaller test specimen turns to be intergrity damage under the load.
     2. Low-velocity impact experiment on honeycomb sandwich beam.this experiment is completed by the DHR-9401 Impulsion loading DWTT type tester.The deformation and failure mode of the honeycomb sandwich beam were analysised.Result shows that:under the impact load,the deformation of the honeycomb is much sharper than the skin's.With higher drop height,the damage of the structure spreads.The plastic deformation of the skin spreads in in-plane direction while the plastic deformation of the honeycomb structure spreads in the height direction.
     3.Numerical analysis combined with the finite element softwear.The deformation of the simulation can fit with the result of the experiment.The von-mises stress distribution and deformation characteristic under the simulation can also prove the dynamic response analysis given by the experiment.
引文
[1]王志华,朱峰,赵隆茂.多空金属夹芯层结构动力学行为及其应用[M].北京:兵器工业出版社,2010:1-2.
    [2]王正忠.轻质蜂窝夹层结构复合隔声材料[J].噪声与振动控制,1993,(3):23-25.
    [3]张月星.纸质蜂窝夹层结构复合板材[J].江苏建材,1995,(1):21-22.
    [4]张平,周丽,邱涛.一种新的柔性蜂窝结构及其在变体飞机中的应用[J].航空学报,2011,32(1):156-163.
    [5]罗业,李岩.天然纤维增强复合材料吸声性能研究[J].材料工程,2010,(4):51-54.
    [6]季铁正,蓝立文.蜂窝夹层板的结构与应用[J].新型建筑材料,1995,(2):31-33.
    [7]吴林志,泮世东.夹芯结构的设计及制备现状[J].中国材料进展,2009,28(4):40-45.
    [8]杨小俊,兰青山.新型纸蜂窝夹芯结构复合板及其应用前景[J].包装工程,2010,31(19):121-123.
    [9]孙德强,刘志鹏.包装中蜂窝纸板的应用[J].中国包装工业,2000,(71):39-41.
    [10]李凌.复合材料夹芯结构的主要应用领域[EB/OL]. http://www.frponline.com.cn,2010-7-26/2011-3-22.
    [11]Yamashita, Gotoh. Impact Behavior of Honeycomb Structures with Various Cell Specifications Numerical Simulation and Experiment[J]. Internat-ional Journal of Impact Engineering,2005,32(1-4):618-630.
    [12]Foo. Low-velocity impact failure of aluminium honeycomb sandwich panels[J]. Composite Structures,2008,85(1):20-28.
    [13]Foo. Quasi-static and low-velocity impact failure of aluminium honeycomb
    sandwich panels [J]. Material:Design and Applications,2006,220:53-66.
    [14]Herup, Palazotto. Low-velocity Impact Damage Initiation in Graphite/Epoxy/Nomex Honeycomb-sandwich Plates[J]. Composites science and technology,1998,57(12):1581-1598.
    [15]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击损伤研究[J].复合材料
    学报,1998,15(3):124-128.
    [16]王闯,刘荣强,邓宗全.蜂窝结构的冲击力学性能的试验及数值研究[J].振动与冲击,2008,27(11):56-61.
    [17]Gibson, Ashby. Cellular Solids Structure and Properties[M]. Cambridge: Cambridge University Press,1997:93-173.
    [18]郭彦峰.蜂窝纸板结构平压性能有限元分析[J].包装工程,2009,30(1):34-40.
    [19]李鹏芳.蜂窝纸板静态压缩实验研究及其模拟分析[J].包装工程,2010,31(1):34-37.
    [20]王博,张雄,徐胜利.2D周期蜂窝结构面内静动态压缩力学行为研究[J].力学学报,2009,41(2):274-280.
    [21]刘鸿文.材料力学[M].北京:高等教育出版社,2004.
    [22]Hong, Pan, Tyan. Quasi-static Crush Behavior of Aluminum Honeycomb Specimens under Compression Dominant Combined Loads[J]. International Journal of Plasticity,2006,22(1):73-109
    [23]雷建平,张善元.落锤冲击加载实验装置及结构耐撞性实验研究[J].力学与实践,18(5):51-53.
    [24]吴昊,郑靖.SHPB实验中应变片的应用和标定[J].舰船电子工程,2010,30(5):172-174.
    [25]尹福炎.电阻应变片与应变传递原理研究[J].科技应用,2010,39(2):1-8.
    [26]蔡应春,徐明亮,杨欣.应变测量技术在机械设计中的应用[J].广西农业机械化,2010,(6):14-16.
    [27]张旭红,王志华,赵隆茂.爆炸荷载作用下铝蜂窝夹芯板的动力响应[J].爆炸与冲击,2009,29(4):356-360.
    [28]张旭红.爆炸荷载作用下蜂窝铝夹芯板动态力学行为的研究[D].太原:太原理工大学,2010
    [29]S.-T. Hong, J. Pan, T. Tyan, etc. Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads[J]. International Journal of Plasticity,2006 (22):73-109.
    [30]M. Zarei Mahmoudabadia, M. Sadighib. A theoretical and experimental study on metal hexagonal honeycomb crushing under quasi-static and low velocity impact loading[J]. Materials Science & Engineering A,2011,3,2:1-48.
    [31]王飞,李剑荣,虞吉林.铝蜂窝结构单向压缩、失稳和破坏机制研究[J].力学学报,2001,33(6):741-748.
    [32]M. Meo, A. J. Morris, R. Vignjevic, etc. Numerical simulations of low-velocity impact on an aircraft sandwich panel [J]. Composite Structures, 2003,62:353-360.
    [33]Sun Deqiang, Zhang Weihong, Wei Yanbin. Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings [J]. Composite Structures,2010,92:2609-2621.
    [34]M. Yamashita, M. Gotoh. Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment[J]. International Journal of Impact Engineering,2005,32:618-630.
    [35]ENBOA WU, WU-SHUNG JIANG. Axial Crush of Metallic honeycombs[J]. International Journal of Impact Engineering,1997,19(5):439-456.
    [36]B. Castanie, C. Bouveta, Y. Aminandab, etc. Modelling of low-energy/ low-velocity impact on NOMEX honeycomb sandwich structures with metallic skins [J]. International Journal of Impact Engineering,2008,35:620-634.
    [37]S. Heimbs, J. Cichosz, M. Klaus b, etc. Sandwich structures with textile-reinforced composite foldcores under impact loads[J]. Composite Structures 2010,92:1485-1497.
    [38]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩[J].北京航空航天大学学报,1998,24(5):551-554.
    [39]徐永君,李敏,战颂等.蜂窝结构抗剪性能实验研究及其数值模拟[J].实验室研究与探索,
    [40]张朝晖.ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.
    [41]吴家龙.弹性力学[M].上海:同济大学出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700