基于DSP的波控CO_2弧焊电源数字控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机技术及DSP在焊接领域的应用不断深入,采用精细控制尤其是波控技术应用于CO_2焊接电源是当今解决CO_2焊飞溅问题的一大方向。本课题以波控技术为基本指导思想,应用DSP,将CO_2焊短路过渡过程细分为七个阶段。在短路初期以低电压低电流促进溶池形成稳固的短路桥;然后提高电流上升速度,促进颈缩形成;在短路过渡后期降低电流,使液桥在低能量下爆断,依靠表面张力完成熔滴过渡,实现小飞溅甚至无飞溅的短路过渡。专门设计短路信号检测电路判断焊接短路开始与结束,颈缩检测电路检测短路中期du/dt设定值,同时通过实时电流/电压采样电路,把状态信号输送到DSP,由DSP的EVA(事件管理器模块)输出占空比可变的PWM波来控制短路过渡各段的电流电压波形。
     本文精确分析CO_2焊飞溅产生机理,在此基础上探讨了短路过渡过程的控制策略。采用抗不平衡能力强的半桥逆变式主电路,精心设计的硬件电路实时、准确地检测CO_2短路始末状态、液桥颈缩爆断时刻以及各细分阶段的电弧参数值,并利用DSP控制的快速性和准确性的特点,根据PWM原理输出不同占空比的信号来驱动主回路中的两个大功率开关器件(IGBT)处于交替开关状态,得到符合CO_2焊短路过渡细分各阶段的电源外特性的电压/电流波形。
     数字控制系统选用美国TI公司的TMS320LF2407 DSP作为控制CPU,利用DSP特有资源,如XINT1,XINT2外部中断入口,PDPINTA及PDPINTB功率驱动保护中断输入引脚,A/D转换模块,PWM输出EVA(事件管理器模块)等。另设有驱动电路,键盘和显示接口电路,保护报警电路等,保证系统正常运行。软件设计采用模块技术,除主程序外,引入中断向量表,各功能都编有相应子程序,中断时直接跳到相应子程序。此外,硬件设计采用Multisim 8进行模拟仿真,减少损失,节约时间,优化了电路功能;同时系统在软硬件方面都采用了抗于扰措施,有力地保证了系统稳定。
     经示波器实测的各波形结果及后续分析,证明该焊机主电路响应速度快,硬件电路简单可靠,系统软件高效稳定。该CO_2弧焊电源数字控制系统是可行的。
With the further application of microcomputer and DSP in the weldingfield, the precise control especially the wave controlled technic in newwelding machine exploits a mainstream method. In this paper, the new powersource for short circuiting transfer was researched and based on the technologyof DSP and wave control. In terms of the character of short circuit transfer ofCO_2 welding, the process was divided into seven subsections. At the beginninglower electric current with low voltage promoting dissolving pool forms thefirm short circuit bridge; then rising the current velocity cause the neck ofmetal coming into being. Then, the welding current is detracted, so as to makethe bridge braking at the low energy and finish the transfer without splash. Theshort circuit signal detecting circuit specially designed for judging the start andend of welding short circuit, and neck forming detecting circuit especiallydesigned for detecting setting value of du/dt, During the process, the real timecurrent and voltage values information are obtained with sensor and sent to theDSP for processing, then the wave of current and voltage was controlled bythe PWM of DSP'S EVA.
     This paper, based on analyzing of the reasons for splashing of CO_2welding, made discussing about short circuiting transfer controlling strategy.The semi bridge inverter IGBT type main circuit which have ability resistingno-balance was applied. Well designed hardware circuit can obtain all phase'sarc parameter of CO_2 welding process. According to PWM principle, IGBT ismade to works in a on-off statue with the high-speed and precise controlling ofDSP, out character voltage and current wave of the power source that comesup to every subsection of short circuit transfer of CO_2 welding was obtained.
     The digital control system takes TI company's TMS320LF2407 as thecontrolling CPU, some DSP'S special port and module such as XINT1,XINT2, PDPINTA and PDPINTB also including A/D,EVA module are used. Inorder to keep system's normal working, driving circuit, keyboard and displaycircuit,protecting and alarm circuit etc are all designed. Applying themoduling skills in software designing, except the main program, the interrupting vector table introduced,every function has its subprogram, so thehappening of interrupt will swift to corresponding subprogram. The hardwaredesign adopts Multisim 8 for circuit's simulating,this process can reduce thelose and save the time as well as optimize circuit function. In order to improvethe system stability, hardware and software synthesis measures are adopted forthe disturbance problem.
     After the analysis of every wave detected by oscilloscope, It can beconcluded that the project is workable for main circuit responding quickly,hardware are simple and stable,software with great stability and efficiency.
引文
[1] 高玉奎,王建国.半导体变流技术.北京:兵器工业出版社,1997
    [2] 王其隆.弧焊过程质量实时传感与控制.北京:机械工业出版社,2000
    [3] 中国机械工程学会焊接学会编.焊接手册(第一卷焊接方法及设备).北京:机械工业出版社,1992
    [4] 张根元,李婧,吴冬春,等.基于DSP的数字化焊机.电焊机。2006,36(8)18-21
    [5] 王伟,曹阳,朱六妹.焊短路过渡过程控制策略及实施方案探析(一).电焊机,31(3):8-12
    [6] Johnson. Process Control of GMAW Sensing of Metal Transfer Mode.WeldingJournal,Vol.70, 1999(4): 91-99
    [7] Shu Huailin Pi Youguo The analysis of PID neurons and PID neural networks[C].Proceedings of 98 Chinese control conference, 1998,9:607-613.
    [8] Shu Huailin Pi Youguo PID neural networks for time-delay systems [J] Computers and Chemical Engineering 2000 (24):859-861
    [9] BapindtrN S Kukrer0, YakupM.DSP based PLL controlled 50-100 kHz 20 kW high frequency induction heating system for surface hardening and welding applications[J] IEE Proc-ElectricPowerAppl, 2003,150 5).365-371.
    [10] D. Rehfeldt, Thomas Schmitz. Assessment of the Characteristics of Power Sources for Metal-active Gas Welding. Welding and Cutting, 1996(5): 84-87
    [11] Kang M J, Rhea S. The Statistical Models for Estimating the Amount of Spatter in the Short Circuit Transfer Mode of GMAW. Welding Journal, 2001,80(1): 1-8
    [12] TMS320f/24x DSP controllers CPU and Instruction Set[Z]. Texas Instruments, 1999.
    [13] TMS320f/24x DSP controllers System and peripherals[Z]. Texas Instruments, 1999.
    [14] Yokuji Maruyama. Current Waveform Control in Gas Shielded Arc Welding for Robotic System. Welding Research Abroad, Vol.42, 1996(4): 16-23
    [15] Claus Thoomy, Thomas Seefeld. Application of Fiber Lasers to Pipeline Girth Welding [J].Welding Joural,2006(7):54-58.
    [16] RELIANCE EWP 100-P30-J00-505[S].Specification for Pipeline Welding.
    [17] API 1104-2005 [S].Welding of Pipelines and Related Facilities.
    [18] Ginadalia Feedback M,Gailli G,Merello A.A New Half-Bridge High Voltage Monolithic IGBT Gate Driver with Full Protection and Diagnostic[D]. PCIM Europe, 2003.
    [19] Espinoza, Jose. DSP Implementation of Output Voltage Reconstruction in CSI-based Converters. IEEE Transactions on Industrial Electronics. Vol.45, 1998(6): 895-904
    [20] Moon, Myung S. DSP Control of UPS Inverter Over-current Limit Using Droop Method. IEEE Annual Power Electronics Specialists Conference. SC, USA,1999:552-557
    [21] Dorin O Neacsu.Active Gate Drivers for Motor Cotrol Applications[R]. PESC Vancouver, Canada,2001:1-71
    [22] 华祥惠.国外焊接技术及其最新开发动向.焊接技术.1994(2):45-46
    [23] 戴忠达.自动控制理论基础.北京:清华大学出版社,2003
    [24] 黄石生.新型弧焊电源及其智能控制.北京:机械工业出版社,2000
    [25] 黄伟.基于DSP控制的CO2焊IGBT逆变电源系统研究[硕士学位论文] 天津天津工业大学2006
    [26] 李鹤岐,高思林,王睿,等.数字化控制逆变焊接电源系统研究.电焊机,2004,34(12):11-14
    [27] 刘嘉,卢振洋,殷树言,等.电焊机的数字化.焊接学报,2002,23(1):88-92
    [28] 殷树言,冯雷,卢振洋.短路过渡C02焊过程中能量分配的研究.材料科学与工艺,1999,7(2):11-14
    [29] 李婧.基于DSP的软开关逆变CO2焊机的研究[硕士学位论文] 南京 河海大学2006
    [30] 田松亚,李婧,龙火军.气体保护焊飞溅问题的研究.电焊机,2005(35)10:30-33
    [31] 喻繁辉.基于DSP控制的三电平弧焊逆变电源的研究[硕士学位论文] 吉林 吉林大学 2006
    [32] 张雄伟 陈亮 徐光辉.DSP芯片的原理与开发应用.北京:电子工业出版社2005
    [33] 郭建江.基于神经网络控制的电阻缝焊控制系统研究 [硕士学位论文]武汉 武汉理工大学 2004
    [34] 张军红,黄石生.熔滴短路过渡动态过程的数学建模与仿真.焊接学报,2001,22(4):81-83
    [35] 李桓,杨立军,李俊岳.CO2气体保护焊短路过渡过程与电参数的关系.天津大学学报,2001,34(3):360-363
    [36] 张秀兰,马红艳,徐绪炯.数字化焊接电源的发展.电焊机,2003,33(2):9-10
    [37] 郭海云,谷宝峰.林肯焊机IHNVERTECTMV300-Ⅰ的故障修复.电焊机,1995,(4):19
    [38] 刘拥军.半桥式IGBT 250A逆变CO2焊主电源的研究及应用 [硕士学位论文] 重庆 重庆大学 2005
    [39] 黄鹏飞,殷树言,段红海,等.新型逆变CO2焊机的控制原理与特点.焊接学报,2003,24(3):31-34
    [40] 殷树言,张九海.气体保护焊工艺.哈尔滨:哈尔滨工业大学出版社,1989.
    [41] 殷树言,张九海,姜伟雁,等.从不同的控制方式中探索短路过渡CO2焊接的飞溅问题.焊接学报,1986,7(4):187-194.
    [42] 于成奎.基于DSP的晶闸管弧焊电源控制系统研究[硕士学位论文] 武汉 武汉理工大学 2006
    [43] 田坤.波形控制CO2逆变焊机系统设计[硕士学位论文] 兰州 兰州理工大学 2004
    [44] 顾公兵.波形控制CO2逆变焊接电源的研制[硕士学位论文] 南京 河海大学 2004
    [45] 李文杰.波形控制的CO2弧焊申:源微机控制系统的研究[硕士学位论文] 武汉 武汉理工大学 2004
    [46] 龙火军.波形控制逆变CO2:焊机的研制 [硕士学位论文] 南京 河海大学2005
    [47] 王珩.基于DSP CO2焊接数字控制系统的研究[硕士学位论文] 天津 天津大学 2005
    [48] 陈明清.基于波控技术CO2焊电源的研究 [硕士学位论文] 武汉 武汉理工大学 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700