多元关系及其在知识系统建模中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
知识系统是具有高度复杂性和抽象性的系统。对知识系统建立模型是研究此类系统的有效方法。对系统建模的一般思路是研究组成系统的要素,以及要素之间的关系。按照关系所包含的域划分,可以分为二元关系和多元关系。当前研究中,能够反映知识系统二元关系特征的相关理论和方法被广泛的进行了研究,例如建模中的复杂网络模型,形式化语言中的OWL, RDF等。
     但是在实际知识系统建模中经常需要反映系统的多元关系特征,例如在建立科研合作模型中,需要描述某篇著作的研究者不仅只有两位;又如在知识的形式化表示中,需要描述“某件事情在某时某地发生”。这方面的相关研究显得相对不足。所以研究能够反映知识系统多元关系特征的相关理论方法在知识系统建模中是有意义的。
     本文在对相关研究进行综述的基础上,对知识系统建模中所涉及到的多元关系问题进行了分析,重点讨论了网络模型和语义模型在知识系统建模中可能遇到的多元关系问题。从研究整体思路来看,本文从理论研究入手,然后把相关理论方法应用于实际的知识系统建模中去。主要包括两个方面的内容。第一,重点研究在基于关系多边形的OWL中的多元关系表示问题,并把相关的理论方法应用到了应急预案语义模型中去。第二,从YAGO语言的多元关系表示问题入手,重点研究了面向维基百科内容的超网络模型构建的问题。
     具体的本文完成了如下工作:
     1.在说明了形式化语言的多元关系表示问题基础上,主要讨论了OWL的多元关系表示问题。不能直接表示多元关系是OWL的一个重要缺陷。在OWL中,具体化是表示多元关系的一般方法。具体化结构往往需要定义额外的概念和复杂的结构,容易造成错误。并不是所有多元关系都需要复杂的具体化结构。本章中,首先研究了一类特殊多元关系,即准多元关系的具体化方法。证明了准多元关系不需要额外定义概念和复杂的结构就可以进行具体化;进一步的,本文给出了识别准多元关系的方法,并且证明了准多元关系具体化结构的唯一性。然后把上面的相关理论扩展到一般的多元关系表示中去。在上述理论的基础上,最后讨论了检索问题,以及基于具体化的时间关系推理。
     2. Wiki作为一个巨大的知识库是知识共享的重要平台,从宏观角度研究Wiki中文章的知识属性和发展趋势,有利于了解科学技术和人文社会的发展方向。Wiki中文章的标签和概要信息栏中的信息相结合可以有效地概况这篇文章的主要知识,而Wiki内容本体可以形式化描述这些语义知识。我们通过研究发现Wiki内容本体有两个重要特点,存在多元关系和本体的规模不断增长。复杂网络模型无法建立上市模型。根据以上两个特点,在讨论了YAGO语言的多元关系表示问题的基础上,本文提出以超网络模型描述Wiki内容本体,进而研究这个超网络模型的演化模式。通过本章的研究探讨了多元关系在知识系统宏观属性和演化规律研究上的应用。
     3.为不同的应急主体,提供在不同状态下,应该进行的应急工作,是预案内容的重要组成部分。为了能利用计算机方便而快速得到上述类型信息,并且把众多的应急工作有序的组织起来,本文提出基于顶层本体的预案形式化模型。建立这个模型必须解决基于OWL多元关系表示,检索,时间关系推理等问题。依据上文所提出的相关理论,本章讨论了面向主体的应急预案语义模型。
Knowledge system is a highly complex and abstract system. Constructing models for this kind of system is a effective way to study it. Generally, modeling system needs study elements and relation of it. If this relation links two elements, it is called binary relation. If more than two are linked, it is called n-ary relation. The theories which can reflect the binary relations properties of systems are widely talked in recently years. The example is complex networks, OWL (Web Ontology Language), RDF (Resource Describe Framework) and so on.
     However, the n-ary relation is one of important properties of knowledge systems. The ex-ample is that in research corporation network model the number of authors in one works may be more than two. Another example is that "one thing happened in sometime" needs ternary relations for representing. The studies in n-ary field are not enough. The purpose of this article is to fill this gap.
     After reviewing of relate works, the issues about n-ary in knowledge system model will be analyzed. The network models and semantic models willed discussed in this article. From the point of the research process, this article obtains from the theoretical research, and the related theory and method is applied to the actual knowledge system modeling. In this article, two problems are discussed. One is that the reification in OWL based on relation polygon is studies at first. The related theory is applied in the semantic model of emergency plans of China. The other is that the n-ary relation representing of YAGO is discussed. The hyper network of wiki article is constructed with the YAGO.
     The main contents of the paper are shown as follows.
     1. Reification is a universal method for describing n-ary relations in OWL. But the struc-tures of reified the n-ary relations need extra classes, predicates, individuals and axioms, which will make it quite unreadable and inconsistency in ontologies. The aim of our paper is to simplify the reification. A concept model called relation triangle is proposed firstly to find Apical Con-cept (AC for short) in ternary relations. Then, this method is extended to n-ary relations (n>3). The n-ary relation with AC can be reified by the combination of the n-1binary relation with-out defining new concept. And the results will not lose any information. Moreover, the Apical Concept Set can simplify reifications also. Our methods can reduce codifications in ontologies, save concept for reification and keep more semantic information in original statement. More importantly, our theories can guide domain experts in the reification of n-ary relations.
     2. Wikipedia as a largest knowledge base is an important platform for sharing knowledge in the world. It can help understand the developing trend in the field of science, technology and society through the macro-level statistical properties of the knowledge and their evolution regularities. The semantic information of the article in Wiki can be gotten from the labels and the infobox in the pages, which can be formally represented by ontology. Two important characters of Wiki ontology are proposed. One is there are n-ary relations in it. The other is the size of this ontology is enlarging. Moreover, we propose the evolution mechanism of the ontology of Wiki.
     3. An important part of Chinese disaster plans is to provide useful information for different emergency responders, which tells them what should be done in a certain kind of scenario. A formal model can help responders get these kinds of information from internet. In this chapter, we proposed a formal model based on upper ontology. The jobs are listed as follows:1) A domain ontology of Chinese plans is constructed.2) N-ary relations can be represented in our model.3) The users can retrieval the useful information from our model.4) Temporal reasoning can help to link the rescue works which scatter in different chapters and sections.
引文
[1]WEN K, ZENG Y, LI R, et al. Modeling semantic information in engineering applications:a review[J]. ARTIFICIAL INTELLIGENCE REVIEW,2012,37(2):97-117.
    [2]GALLUPE B. Knowledge management systems:surveying the landscape[J]. International Journal of Management Review,2001,3:61-77.
    [3]王君,樊治平.一种基于web的企业知识管理系统的模型框架[J].东北大学学报(自然科学版),2003,2:182-185.
    [4]GRAY P H. The effects of knowledge management systems on emergent teams:towards a research model[J]. Journal of Strategic Information Systems,2000,9:175-191.
    [5]丁蔚,倪波..知识管理系统与企业电子商务[J].图书情报知识,2001,1:7-9.
    [6]M. ASHBURNER C A B, ETC. Gene ontology:tool for the unification of biology, the gene ontology consortium.[J]. Nat Genet,2000,25:1061-4036.
    [7]M. ASHBURNER C J M, LEWIS S E. Ontologies for biologists:a community model for the annotation of genomic data.[J]. Cold Spring Harb Symp QuantBiol,2003,68:227-35.
    [8]EKSERDJIAN S P, D. Ontology of altarpieces[R]. University of Leicester,2009.
    [9]CLARKA M F, K.L. Ontology schema for an agent belief store[J]. Int. J. Human-Computer Studies, 2007,65:625-643.
    [10]BITTNER T. Logical properties of foundational mereogeometrical relations in bio-ontologies[J]. Ap-plied Ontology,2009,4(2):109-138.
    [11]TRIPATHI B H, A. Developing a modular hydrogeology ontology by extending the sweet upper-level ontologies[J]. Computers & Geosciences,2008,34(9):1022-1033.
    [12]RASKIN P M, R.G. Knowledge representation in the semantic web for earth and environmental termi-nology (sweet)[J]. Computers & Geosciences,2005,31(9):1119-1125.
    [13]HERRE H B B P, H. General formal ontology (gfo):A foundational ontology integrating objects and processes.[R]. Univ. of Leipzig,2006.
    [14]JESUS R, SCHWARTZ M, LEHMANN S. Bipartite networks of wikipedia's articles and authors:a meso-level approach[C]//Proceedings of the 5th International Symposium on Wikis and Open Collab-oration. ACM.2009:5.
    [15]ZLATIC V, BOZICEVIC M, STEFANCIC H, et al. Wikipedias:Collaborative web-based encyclope-dias as complex networks[J]. Physical Review E,2006,74(1):016115.
    [16]CAPOCCIA C F, SERVEDIO V. Preferential attachment in the growth of social networks:the case of wikipedia[J]. Physical Review E,2006,74(3):036111-036116.
    [17]闪淳昌,薛澜.应急管理:理论与实践[M].高等教育出版社,2012.
    [18]李红臣,邓云峰,刘艳军.应急预案的形式化描述[J].中国安全生产科学技术,2006,02(04):29-35.
    [19]王志兵.津滨轻轨应急预案数字化研究及应用[D]. Master's thesis天津大学,2008.
    [20]ADRIAAN TER MORS J V, WITTEVEEN C. An event-based task framework for disaster planning and decision support[C]//the 2nd International ISCRAM Conference.2005:151-153.
    [21]M. HOOGENDOORN V P A S E, C. M. JONKER. Formal modelling and comparing of disaster plans[C]//2nd International ISCRAM Conference.2005:97-107.
    [22]BAADER W, FRANZ NUTT. Basic description logics[G]//The description logic handbook. New York, NY, USA:Cambridge University Press,2003:43-95. http://dl.acm.org/citation.cfm? id=885746.885749.
    [23]M. GRATHWOHL F R, F. DE B. DE BEUVRON. A new application for description logics:disaster management.[C]//the International Workshop on Description Logics'99.1999.
    [24]GRUBER T. A translation approach to portable ontology specifications[J]. Knowledge Systems Lab-oratory-Stanford University,1992.
    [25]GUARINO N, GIARETTA P. Towards Very Large Knowledge Bases:Knowledge Building and Knowledge Sharing[M].1995:25-32.
    [26]FENSEL D. Ontologies:a silver bullet for knowledge management and electronic commerce[M]. Springer-Verlag Berlin and Heidelberg GmbH & Co. K,2001.
    [27]MCGUINNESS D L, VAN HARMELEN F. Owl web ontology language overview 2006. http:// www. w3.org/TR/owl-features/.
    [28]BAADER C D M D, F., SO ON. The Description Logic Handbook[M]. Cambridge University Press, 2003:43-95.
    [29]W3C.ORG. Owl 2 web ontology language new features and rationale 2009. http://www.w3.org/TR/ owl2-new-features/.
    [30]QUILLIAN M R. Word concepts:A theory and simulation of some basic semantic capabilities[J]. Behavioral Science,1967,12(5):410-430. http://dx.doi.org/10.1002/bs.3830120511.
    [31]MINSKY M. A framework for representing knowledge[R]. Cambridge, MA, USA:1974.
    [32]HAYES P. The logic of frames[G]//. Morgan Kaufmann Pub,1979:287-295.
    [33]BORGIDA A. On the relative expressiveness of description logics and predicate logics[J]. Artif. Intell, 1996,82:353-367.
    [34]CALVANESE G G L M, D. Description logics for information integration[J]. Computational Logic: From Logic Programming into the Future (In honour of Bob Kowalski),2002,2408:41-60.
    [35]SMOLKA G. A feature logic with subsorts[R]. IBM Deutschland,1988.
    [36]SCHMIDT-SCHAUBBM, SMOLKA G. Attributive concept descriptions with complements[J]. Artif. Intell.,1991,48(1):1-26. http://dx.doi.org/10.1016/0004-3702(91)90078-X.
    [37]CALVANESE G G L M, D. Conjunctive query containment in description logics with n-ary relation-s[C]//In Proc. of the 1997 Description Logic Workshop (DL'97).1997:5-9.
    [38]N. NOY A R. Defining n-ary relations on the semantic web. Web 2006. http://www.w3.org/TR/ swbp-n-aryRelations.
    [39]BORGIDA A. B R. The Description Logic Handbook[M].2002:359-381.
    [40]PAULA SEVERI D E, JOSE FIADEIRO. Guiding the representation of n-ary relations in ontologies through aggregation, generalisation and participation[J]. Web Semantics:Science, Services and Agents on the World Wide Web,2011,9:83-98.
    [41]CALVANESE G G, D. The Description Logic Handbook[M].2002:193-236.
    [42]王众托.知识系统工程与现代科学技术体系[J].上海理工大学学报,2011,(06):613-630+508.
    [43]王众托.系统工程引论[M].第三版th ed电子工业出版社,2006.
    [44]BECKMANN M J. Economic models of knowledge networks[G]//Networks in Action. Springer, 1995:159-174.
    [45]席运江,党延忠,廖开际.组织知识系统的知识超网络模型及应用[J].管理科学学报,2009,(03):12-21.
    [46]CHRISTOPHER F. Networks of innovators:a synthesis of research issues[J]. Research policy,1991, 20(5):499-514.
    [47]裘江南,念闯玲,徐雨森.创新超网络模型及应用分析[J].情报杂志,2011,(10):139-144.
    [48]ET AL复杂产品系统中跨组织知识超网络模型研究[J].科研管理,2013,(02):128-135.
    [49]SCHUSTER E, BROCK D, ALLEN S, et al. Semantic modeling:a new direction for knowledge management[J]. Cutter IT Journal,2004,17(12):19-24.
    [50]WIKIPEDIA. Conceptual model. Web 2013. http://en.wikipedia.org/wiki/Conceptual_model.
    [51]YUCONG DUAN C C. Formalizing semantic of natural language through conceptualization from existence[J]. International Journal of Innovation, Management and Technology,2011,2(1):37-42.
    [52]GEMINO A, WAND Y. Evaluating modeling techniques based on models of learning[J]. Commun. ACM,2003,46(10):79-84. http://doi.acm.org/10.1145/944217.944243.
    [53]PP C. The entity-relationship model-toward a unified view of data[J]. ACM Trans Database Syst,1976, 1:9-36.
    [54]P.P. C. English, chinese, and er diagrams[J]. Data Knowledge Engineer,1997,23:5-16.
    [55]SL S H. English sentence structures and eer modeling[C]//Proceedings of the fourth Asia-Pacific conference on conceptual modelling.2007:27-35.
    [56]NOVAK J D. The theory underlying concept maps and how to construct them[R]. Institute for Human and Machine Cognition,2006.
    [57]GASSO WILSON MWALUSEKE P B, PROFESSOR JONATHAN. Uml formalisation literature sur-vey. http://citeseerx. ist.psu.edu/viewdoc/summary?doi= 10.1.1.119.9075.
    [58]W3C.ORG. Resource description framework (rdf):concepts and abstract syntax, web 2004. http:// www.w3.org/TR/rdf-concepts/.
    [59]W3C.ORG. Owl web ontology language overview. Web 2004. http://www.w3.org/TR/owl-features/.
    [60]PEASE A. Owl 2 overview. Unpublished manual 2009.
    [61]WIKIPEDIA. Semantics. Web 2013. http://en.wikipedia.org/wiki/Semantics.
    [62]SANCHEZ-CUADRADO S, MORATO-LARA J, PALACIOS-MADRID V, et al. And suddenly, ev-erybody is talking about ontologies?[J]. El Profesional de la Informacion,2007,16:562-8.
    [63]JIANG P. R F, WANG F. Semi-automatic complex emotion categorization and ontology construction from chinese knowledge[J]. China Communications,2012,3:29-37.
    [64]SANCHEZ M A, D. Learning non-taxonomic relationships from web documents for domain ontology construction[J]. Data and Knowledge Engineering,2008,64:600-623.
    [65]GRENON P. Knowledge management from the ontological standpoint[C]//Proceedings of the WM2003 Workshop on Knowledge Management and Philosophy.2003.
    [66]杨青,乔志刚.动态联盟中企业建模的meta-model[J]管理科学学报,2001,06:31-38.
    [67]CAPOCCI A C G E, RAO F. Taxonomy and clustering in collaborative systems:the case of the online encyclopedia wikipedia[J]. EPL,2008,81:28-38.
    [68]G. Y U. A mathematical theory of evolution, based on the conclusions of dr. j. c. willis[J]. F.R.S,1925, 213(3):21-87.
    [69]MUCHNIK L S S E, ROYI I. Self-emergence of knowledge trees:extraction of the wikipedia hierar-chies[J]. Physical Review E,2007,76(15):16-106.
    [70]RODRIGO B. E, BARZAN M. On the evolution of wikipedia[C]//ICWSM. Colorado:USA.2007: 1-8.
    [71]I. H. Analyzing the conceptual coherence of computing applications through ontological excavation[D]. Master's thesis. Atlanta:Georgia Institute of Techonlogy,2004.
    [72]C. M. Increased complexity in the go. Web 2005. http://www.fruitfly.org/cjm/obol/doc/gocomplexi- ty.htm.
    [73]超网络初探.超网络初探[J].管理学报,2008,5(1):1-8.
    [74]PIERRE G. Temporal qualification and change with first-order binary predicates[C]//In International Conference on Formal Ontology in Information Systems (FOIS 2006). Baltimore, Maryland (USA): 2006:345-367.
    [75]STUART J. RUSSELL P N. Artificial Intelligence:A Modern Approach[M]. Prentice Hall,2009.
    [76]SMITH S D, J. Database abstractions:aggregation[J]. Communications of the ACM,1977,20(6):405-413.
    [77]SEVERI F J E D, P. Guiding reification in owl through aggregation[C]//In Proc.23 rd Int. Workshop on Description Logics (DL2010).2010.
    [78]GIRJU R. Out-of-context noun phrase semantic interpretation with cross-linguistic evidence[C]//Pro-ceedings of the 15th ACM international conference on Information and knowledge management. ACM 2006.
    [79]FABIAN M.S. S W G, KASNECI. Yago:A large ontology from wikipedia and wordnet[J]. Web Semantics:Science, Services and Agents on the World Wide Web,2008,6(3):203-217.
    [80]SUEHANEK F E, KASNEE M. Yago:a core of semantic knowledge[C]//In Proeess of 16th WWW Conference.2007.
    [81]AUER S E, BIZER C. Dbpedia:A nucleus for a web of open data[C]//In Proeeedings of the 6th International Semantic Web Conference and 2nd Asian Semantie Web Conferenee(ISWC/ASWC2007). vol 4825.2007:715 -728.
    [82]NASTASE V S M. Decoding wikipedia categories for a kownledge acquisition[C]//In Procees of the AAAI'08 Conferenee.2008.
    [83]BARABASI A L A R. Emergence of scaling in random networks[J]. Science,1999,286:509.
    [84]WATTS D. J. S S H. Collective dynamics of "small world" networks[J]. Nature,1998,393:440-442.
    [85]WANG J. W. E, RONG L. L. Evolving hypernetwork model[J]. Eur. Phys. J. B.,2010,77:493-498.
    [86]V. ZLATIC G C, G. GHOSHAL. Hypergraph topological quantities for tagged social networks[J]. Physical Review E,2009,80(3):036118.
    [87]ZHANG B. T. K J K. Dna hypernetworks for information storage and retrieval[C]//Lecture Notes in Computer Science, DNA12.2006:298-307.
    [88]李志宏,王海燕,周广刚.基于超网络理论的突发性公共危机知识管理研究[J].计算机应用研究,2010,27(4):1319-1322.
    [89]FABIAN M S. Automated Construction and Growth of a Large Ontology[D]. PhD thesis. Faculties of Natural Sciences and Technology of Saarland University,2009.
    [90]史定华.网络度分布理论[M].高等教育出版社,2011.
    [91]LI L. D J C E A, ALDERSON D. Towards a theory of scale-free graphs:definitions, properties, and implications[J]. Internet Math,2005,2:431-523.
    [92]LI A E, L. Towards a theory of scale-free graphs:Definition, properties, and implications[J]. Internet Mathematics,2005,2(4):431-523.
    [93]DOROGOVTSEV S N E, MENDES J F F. Structure of growth networks with preferential linking[J]. Phys.Rev. Lett,2000,85(4633):33-45.
    [94]BRODER A, KUMAR R, MAGHOUL F, et al. Graph structure in the web[C]//In Proceedings of the 9th International World Wide Web conference on Computer Networks:The International Journal of Computer and Telecommunications Networking. North-Holland Publishing Co 2000:309-320.
    [95]KRAPIVSKY P L, REDNER S. Network growth by copying[J]. Phys. Rev. E,2005,71:036118. http:// link.aps.org/doi/10.1103/PhysRevE.71.036118.
    [96]刘铁民.突发事件应急预案体系概念设计研究[J].中国安全生产科学技术,2011,7(8):5-13.
    [97]刘功智,刘铁民.重大事故应急预案编制指南[J].劳动保护,2004,4:11-18.
    [98]颜丽.基于范畴论的应急预案语义模型研究[D]. Master's thesis南京邮电大学,2011.
    [99]F.M. SUCHANEK G W, G. IFRIM. Leila:Learning to extract information by linguistic analysis[C]// Workshop on Ontology Population at ACL/COLING.2006.
    [100]GRENON P. Spatio-temporality in basic formal ontology:Snap and span, upper-level ontology and framework for formalization[R]. Infomis,2003.
    [101]NILES P A, I. Toward a standard upper ontology[C]//SMITH B. Proc.2nd Intl. Conf. on Formal Ontology in Information Systems (FOIS),2001. C. Welty 2001:697-706.
    [102]GANGEMI M C O A, A., SO ON. Sweetening ontologies with dolce,[C]//Proc. Int'1 Conf. Knowledge Eng. and Knowledge Management (EKAW'02),.2002:166-181.
    [103]SMITH A M R C B J B W C W E,B. The obo foundry:Coordinated evolution of ontologies to support biomedical data integration.[J]. Nature Biotechnology,2007,25(11):1251-1255.
    [104]SMITH B, VARZI A C. Fiat and bona fide boundaries[J]. Philosophy and Phenomenological Research, 2000,60:2:401-420.
    [105]SMITH V A C, B. Fiat and bona fide boundaries[J]. Philosophy and Phenomenological Research, 2000,60:2:401-420.
    [106]GRENON S B G L, P. Biodynamic ontology:applying bfo in the biomedical domain[J]. Ontologies in Medicine,2004,20-38.
    [107]倪子建,荣莉莉,鲁荣辉.孕灾环境本体中基础逻辑关系属性研究[J].系统工程理论实践,2013,33(3):711-719.
    [108]SMITH B, GRENON P. The cornucopia of formal-ontological relations[J]. Dialectica,2004,58:279-296.
    [109]PRUD'HOMMEAUX S A, E. Sparql query language for rdf 2006. http://www.w3.org/TR/rdf-sparql-query/.
    [110]EVREN S, BIJAN P. Sparql-dl:Sparql query for owl-dl[C]//Proceedings of the Third International Workshop on OWL:Experiences and Directions, vol 258. Innsbruck, Austria:2007.
    [111]BAADER F, HANSCHKE P. A scheme for integrating concrete domains into concept languages[C]// The 12th International Joint Conference on Artificial Intelligence, (IJCAI 1991).1991:452-457.
    [112]PAN J Z, HORROCKS I. Reasoning in the shoq(dn) description logic[C]//In Proceedings of the Inter-national Workshop in Description Logics 2002.2002:53-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700