材料力学测试技术中的理论方法与实验应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、高速铁路、化工、反应堆工程等的飞速发展,材料断裂性能的工程需求在新世纪迅速扩大。然而,传统断裂力学测试在载荷分离法、柔度法、测试标准的有效应用等方面仍存在一系列问题,一些问题仍具有突出的理论研究与工程应用价值。单轴应力应变曲线的便携测量对于实现工程构件材料力学性能的在役检测意义深远,基于硬度技术的压入法在该领域显示了良好的应用前景,但是现有方法尚不成熟,需要进一步完善。本文对材料断裂测试中的载荷分离法、柔度法以及基于压入技术的单轴应力应变曲线获取方法进行了深入系统的研究,重点完成了如下工作:
     1.基于相似理论提出了无量纲化载荷分离理论,解决了现行载荷分离理论的量纲不对等问题。基于无量纲化载荷分离理论,发展了改进的分离参数Spb法,新方法有效消除了参考钝裂纹和标定点选择对试样裂纹长度预测的影响。应用新方法完成了Cr2Ni2MoV钢、A508-Ⅲ钢以及输气管道球阀焊接接头等工程材料的JIC、CTOD和CTOA测定,新方法的有效性和实用性得到了验证。根据对ASTM现行规范中载荷分离法的深入研究与创新进展,为金属材料准静态断裂韧度统一试验国家标准新版修订提出了增订的载荷分离法附录草案。
     2.对柔度测试中现行转动修正方法存在的问题进行了细致研究,基于刚性铰链假设和功等效原理提出了适用于CT、SEB和SET三类试样的柔度转动修正方法。研究结果表明,由弹塑性有限元分析提出的三类试样转动半径计算公式比现行规范公式更为合理和有效;刚性转动对试样裂纹长度的柔度计算不产生附加影响,但对J积分计算结果的影响显著;对于在加载点测量位移的SEB试样无需进行柔度转动修正;在采用柔度法完成JIC测试时,合理的做法是仅对载荷-位移测量曲线进行柔度转动修正,无需对预测裂纹长度的测量柔度进行转动修正。对SEB试样和直通型CT试样提出了裂纹嘴张开位移同加载点(加载线)位移的弹塑性换算公式,使得从裂纹嘴张开位移测量中获得材料断裂韧性JIC有效可行,进而确保了现行材料断裂韧性测试标准在该技术领域的完整性。
     3.对SEB试样和CT试样提出了测算裂纹长度和等效弹性模量的统一简化公式;修正了柔度法中塑性J积分增量迭代算式的不合理内容;为方便焊缝、复合材料等特殊分层材料的断裂性能测试,基于有限元分析提出了分层结构CT试样的柔度方法;提出了用于断裂性能测试的点触式高温柔度法,拓展了柔度法在高温测试环境中的应用;对不同版本的JIC和CTOD现行断裂测试标准进行了详细的差异比较,选取典型材料研究了不同测试标准对材料断裂性能评价的影响;基于柔度法的系统创新进展,提出了金属材料准静态断裂韧度统一试验国家标准新一轮修订版本中关于柔度法的推荐附录草案。
     4.基于压入试验技术,发展了直接从球形压头载荷-压入深度曲线中获得材料单轴应力应变曲线的方法;根据A533-B钢、C40钢、316L不锈钢、退火Cu、0Cr18NiTi不锈钢和A105钢等材料的压入试验结果,新方法的有效性得到了验证。
With rapid development of aviation, high-speed railway, chemical engineering and reactor engineering, the engineering demand for the fracture properties of materials has been evidently expanded in the new century. However, there still exist a series of problems of load separation method, unloading compliance method, and the effective application of fracture test standards in the traditional fracture mechanics testing. Some issues still have highlighted the value of theoretical research and engineering application. Portable measurements of uniaxial stress versus strain curves have significant impact on the inservice inspection of engineering components. Fortunately, the indentation technique on the basis of hardness testing presents good prospects in this field. However, some improvements are needed for this method because of less effective applications in the existing researches. This thesis systematically carried out researches on the load separation method, unloading compliance method, the determination of uniaxial stress-strain curves by spherical indentation technique. The main works are introduced as follows:
     1. Based on similarity theory, a nondimensional load separation principle is proposed, so the dimensionless asymmetry problem in the current load separation principle has been solved. Correspondingly, a modified load separation parameter Spb method is developed according to the nondimensional load separation principle. This new method diminishes the effect of the reference blunt crack specimen and the choice of calibration points on the crack length determination of sharp crack specimen. Experiments on the determination of JIc for Cr2Ni2MoV and A508-Ⅲsteel, the estimation of CTOD for welded joints of certain gas pipeline ball valve and the estimation of CTOA for A508-Ⅲsteel are completed by use of the modified load separation parameter Spb method, and the validity of this method is successfully certified. According to researches on load separation method, a draft of corresponding appendix for the new national and unified test standard for quasistatic fracture toughness is given.
     2. Detailed investigation on the problems of current rotation correction method for CT specimen is conducted, then new reasonable rotation correction methods for CT, SEB and SET specimens are developed on the basis of rigid hinge hypothesis and work equivalence principle. The results show that, the rotational radiuses of the three types of specimens obtained by elastic-plastic finite element analysis are more reasonable than the current results. The rigid rotation has little effect on the measurement of crack length, but the J-integral computation is seriously affected. For SEB specimen, the rotation effect can be ignored when the displacement is measured at the load point. When using unloading compliance method to determine JIC, a reasonable approach is to correct the measured load versus displacement records firstly, but not correct the measured compliance directly. Based on the new rotation correction method, elastic-plastic transforming formulas between crack mouth opening displacement and load point/load line displacement for SEB specimen and straight-notch CT specimen are proposed, respectively. These formulas are feasible for the JIC determination on the basis of crack mouth opening displacement measurements, and the defect of current fracture testing standards in this field has been made up.
     3. In unloading compliance method, unified and simplified formulas for the crack length measurement for both SEB and CT specimens are proposed when the displacements are measured at different location of specimens, and thus simplified formulas for effective elastic modulus are deduced correspondingly. An unreasonable expression for the incremental iteration of plastic J-integral is corrected. Based on finite element analysis, a compliance method for a CT specimen with layered structure is developed, which is benefit to the fracture test for some special materials such as welded joint. In order to expand the application of compliance method in high-temperature fracture testing, a point-touch high-temperature compliance method is developed. The differences for various versions of JIC and CTOD test standards are discussed in detail, and some typical metallic materials are employed to investigate the influence of different test standards on the evaluation of fracture toughness. According to researches on unloading compliance method, a draft of corresponding appendix for the new national and unified test standard for quasistatic fracture toughness is given.
     4. Based on spherical indentation technology, a direct method to estimate the uniaxial stress-strain curves from the load versus indentation depth records is developed. Consequently, the validity of this method is successfully certificated by some indentation tests for A533-B steel, C40 steel,361L stainless steel, annealed Cu, OCr18NilOTi stainless steel, and A105 steel.
引文
[1]Griffith A A. The phenomena of rupture and flow in solids [C]. Philosophical Transactions of the Royal Society of London A,1921,221:163-198.
    [2]Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal of Applied Mechanics,1957,24:361-364.
    [3]Rice J R. A path independent integral and the approximate analysis of concentration by notches and cracks [J]. Journal of Applied Mechanics,1968,35:386-397.
    [4]Hutchinson J W. Singular behavior at the end of a tensile crack in a hardening material [J]. Journal of the Mechanics and Physics of Solids,1968,16:13-31.
    [5]Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material [J]. Journal of the Mechanics and Physics of Solids,1968,16:1-12.
    [6]Begley J A, Landes J D. The J-integral as a fracture criterion [A]. ASTM STP 514,1972: 1-20.
    [7]Betegon C, Hancock J W. Two parameter characterization of elastic-plastic crack-tip fields [J]. Journal of Applied Mechanics,1991,58:104-110.
    [8]O'Dowd N P, Shih C F. Two-parameter fracture mechanics:theory and application [A]. Fracture Mechanics, ASTM STP 1207,1999,24.
    [9]Yang S, Chao Y J, Sutton M A. Higher order asymptotic crack fields in a power-law hardening material [J]. Engineering Fracture Mechanics,1993,45:1-20.
    [10]Chao Y J, Yang S, Sutton M A. On the fracture of solids characterized by one or two parameters:theory and practice [J]. Journal of the Mechanics of Physics and Solids,1994, 42:629-647.
    [11]Chao Y J, Zhang X H. Constraint effect in brittle fracture [J]. Fatigue and Fracture Mechanics,1997,1296(27):41-60.
    [12]邬佑靖,徐泽亮.全焊接阀体管线球阀焊接接头的安全评估[J].阀门,2009,2:17-21
    [13]苗张木,陶德馨,杨荣英等.焊接接头韧度CTOD评定的适用性与允许值研究[J].机械强度,2006,28(1):150-154.
    [14]苗张木,王振宇.厚钢板焊接接头韧性CTOD试验评定技术及应用[J].宽厚板,2006,12(6):23-28.
    [15]苗张木,吴卫国,陶德馨等.厚钢板焊接接头CTOD断裂韧度的温度影响[J].重庆大学学报(自然科学版),2006,29(6):38-41.
    [16]Newman Jr J C, James M A, Zerbst U. A review of the CTOA/CTOD fracture criterion [J]. Engineering Fracture Mechanics,2003,70:371-385.
    [17]冯耀荣,庄茁,庄传晶等.裂纹尖端张开角在输气管线止裂预测中的应用[J].石油学报,2003,24(4):99-107.
    [18]帅健,张宏,王永岗等.输气管道裂纹动态扩展及止裂技术研究进展[J].石油大学学报,2004,28(3):129-135.
    [19]Rudland D L, Wilkowski G M, Feng Z, et al. Experimental incestigation of CTOA in Iinepipe steels [J]. Engineering Fracture Mechanics,2003,70:567-577.
    [20]Hyungyil L, David M, Parks. Line spring finite element for fully plastic crack growth-Ⅰ. Formulation and one dimensional results [J]. International Journal of Solids Structures, 1998,35:5115-5138.
    [21]Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics [J]. Journal of the Mechanics and Physics of Solids,1992,40:739-765.
    [22]Chen Y H, Lu T J. Cracks and fracture in piezoelectric materials [J]. Advances in Applied Mechanics,2002,39:121-215.
    [23]陈增涛,余寿文.压电介质损伤断裂力学研究的现状[J].力学进展,1999,29:187-196.
    [24]刘彬.铁电晶体断裂与疲劳研究[D].清华大学博士学位论文,2000.
    [25]Meinhard Kuna. Fracture mechanics of piezoelectric materials-Where are we right now? [J] Engineering Fracture Mechanics,2009.
    [26]Lubos N, Lucie S, Pavel H. Estimation of apparent fracture toughness of ceramic laminates [J]. Computational Material Science,2009,46:614-620.
    [27]李海军,刘峰,王自强.PZT-4紧凑拉伸试样的断裂分析[J].力学学报,2008,40(5):701-706.
    [28]黄海友,褚武扬,宿彦京等.电场对不同极化状态PZT-5H铁电陶瓷断裂韧性的影响[J].硅酸盐学报,2006,34(3):299-302.
    [29]Sih G C, Jones R. Crack size and speed interaction characteristics at micro-, meso-and macro-scale [J]. Theoretical and Applied Fracture Mechanics,2003,39:127-136.
    [30]Sih G C, Tang X S. Dual scaling damage model associated with weak singularity for macroscopic crack possessing a micro/mesoscopic notch tip [J]. Theoretical and Applied Fracture Mechanics,2004,42:1-24.
    [31]Sih G C, Tang X S. Simultaneous occurrence of double micro/macro stress singularities for multiscale crack model [J]. Theoretical and Applied Fracture Mechanics,2006,46: 87-104.
    [32]徐云,陈军,蔚喜军.多尺度材料模拟的自适应有限元方法研究[J].力学学报,2009,41(5):722-729.
    [33]唐雪松,薛昌明.宏观面内剪切作用下多尺度裂纹模型的耦合闭合解[J].长沙理工大学学报(自然科学版),2007,4(3):58-64.
    [34]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indention experiments [J]. Journal of Materials Research,1992,7:1564-1583.
    [35]Sneddon I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile [J]. International Engineering Science,1965,3: 47-57.
    [36]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展,2002,32(3):349-364.
    [37]Liu Dong-xu, Zhang Tai-hua. An new area function for sharp indenter tips in nanoindentation [J]. Chinese Journal of Aeronautics,2004,17(3):159-164.
    [38]张泰华.影响纳米压入测试结果的因素[J].实验力学,2004,19(4):437-442.
    [39]刘东旭,张泰华,郇勇.宏观深度测量压入仪器的研制[J].力学学报,2007,39(3):350-355.
    [40]Gong J H, Miao H Z, Peng Z J, Qi L H. Effect of peak load on the determination of hardness and Young's modulus of hot-pressed Si3N4 by nanoindentation [J]. Materials Science and Engineering,2003, A354:140-145.
    [41]Chen Z, He M, Bavani B, Chan C C. Elasticity modulus, hardness and fracture toughness of Ni3Sn4 intermetallic thin films [J]. Materials Science and Engineering,2006, A423:107-110.
    [42]Jiang X, Philip J, Zhang W J, et al. Hardness and Young's modulus of high-quality cubic boron nitride films grown by chemical vapor deposition [J]. Journal of Applied Physics, 2003,93(3):1515-1519.
    [43]Stauss S, Schwaller P, Bucaille J L, et al. Determining the stress-strain behavior of small devices by nanoindentation in combination with inverse methods [J]. Microelectronic Engineering,2003,67-68:818-825.
    [44]Cao Y P, Lu J. A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve [J]. Acta Materialia,2004,52: 4023-4032.
    [45]Zhao M H, Ogasawara N, Chiba N, Chen X. A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation [J]. Acta Materialia, 2006,54:23-32.
    [46]Ogasawara N, Chiba N, Chen X. Measuring the plastic properties of bulk materials by single indentation test [J]. Scripta Materialia,2006,54:65-70.
    [47]Dao M, Chollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Materialia,2001,49: 3899-3918.
    [48]Tabor D. The hardness of metals [M]. Oxford University Press, New York,1951.
    [49]Balasubramanian J. Mechanical property measurement by indentation techniques [D]. Master thesis, Madurai Kamaraj University of India,2004.
    [50]Mencik J. Determination of mechanical properties by instrumented indentation [J]. Meccanica,2007,42:19-29.
    [51]Clough R B, Webb S C, Armstrong R W. Dynamic hardness measurements using dropped ball [J]. Materials Science and Engineering,2003, A 360:396-407.
    [52]Schindler H J. Abschatzung der wahren spannungs-dehnungskurve mit instrumentierten kugeleindruck versuchen [R]. In:Werkstoffprufung, VDEh, Bad Neuenahr,2003.
    [53]Schindler H J. On quasi-non-destructive strength and toughness testing of elastic-plastic materials [J]. International Journal of Solids and Structures,2005,42:717-725.
    [54]姜鹏,张泰华,杨荣,梁乃刚.基于球形压入法提取材料的塑性力学参数[J].力学学报,2009,41(5):730-738.
    [55]GB/T4161-2007.金属材料-平面应变断裂韧度KIC试验方法[S].北京:中国标准出版社,2007.
    [56]GB/T21143-2007.金属材料准静态断裂韧度的统一试验方法[S].北京:中国标准出版社,2007.
    [57]ASTM E399-09. Standard test methods for linear-elastic plane-strain fracture toughness KIC of metallic materials [S]. Annual Book of ASTM Standards:Vol.3.01. Philadelphia, PA:American Society for Testing and Materials,2009.
    [58]ASTM E1820-09. Standard test methods for measurement of fracture toughness [S]. Annual Book of ASTM Standards:Vol.3.01. Philadelphia, PA:American Society for Testing and Materials,2009.
    [59]ISO 12737-2005. Metallic materials-determination of plane-strain fracture toughness [S]. International Standards. Switzerland,2005.
    [60]ISO 12135-2002(E). Metallic materials-unified method of test for the determination of quasistatic fracture toughness [S]. International Standards. Switzerland,2002.
    [61]BS 7448-1:1991. Fracture mechanics toughness tests-Part 1:Method for determination of KIC, critical CTOD and critical J values of metallic materials [S]. Annual Book of British Standards. Technical Committee ISM/NFM/4,1991.
    [62]BS 7448-2:1997. Fracture mechanics toughness tests-Part 2:Method for determination of KIC, critical CTOD and critical J values of welds in metallic materials [S]. Annual Book of British Standards. Technical Committee ISM/NFM/4,1991.
    [63]GB 2038-1980.利用JR阻力曲线确定金属材料延性断裂韧度的试验方法[S].北京:中国标准出版社,1980.
    [64]Neale B K, Curry D A, and Green G, et al. A procedure for the determination of the fracture resistance of ductile steels [J]. International Journal of Pressure Vessels and Piping,20(3):155-179.
    [65]Voss B. On the problem of negative crack growth and load relaxation in single specimen partial unloading compliance tests [A], CSNI Workshop on Ductile Fracture Test Methods, Paris,1983:210-219.
    [66]Hellmanh D, Rohwerder G, and Schwalbe K H. Development of a test set up for measuring the deflection of single-edge notch bend (SENB) specimens [J]. Journal of Testing and Evaluation,1984,12:42-44.
    [67]Gordon J R. The Welding Institute procedure for an assessment of the accuracy of the unloading compliance method for measuring crack growth resistance curves [R], Report No.325/1986,1986.
    [68]Steenkamp PAJM. J-R curve testing of three point bend specimens by the unloading compliance method [C]. Presented at 18th National Symposium of Fracture Mechanics, Boulder, CO, USA, June 25-27 1985.
    [69]Futato R J, Aadland J D, Vander Slys W A, and Lowe A L. A sensitivity study of the unloading compliance single specimen J-test technique [A]. Elastic-Plastic Fracture Test Methods:The User's Experience, ASTM STP 856,1985:84-103.
    [70]Hollstein T, Blauel J G, and Voss B. On the determination of elastic-plastic fracture material parameters:a comparison of different test methods [A]. Elastic-Plastic Fracture Test Methods:The User's Experience,1985:104-116.
    [71]Schwalbe K H, Hellmann D. Application of the electrical potential method to crack length measurements using Johnson's formula [J]. Journal of Testing and Evaluation, 1981,9:218-221.
    [72]Dietzel W, Schwalbe K H. Monitoring stable crack growth using a combined AC/DC potential drop technique [J]. Matieralprufung,1986,28:368-372.
    [73]Johnson H H. Calibrating the electric potential method for the studying slow crack growth [J]. Materials Research and Standards,1965,5:442-445.
    [74]Wilkowski G M. Elastic plastic fracture studies using the DC-EP method [A]. In: Ductile Fracture Tests Methods, Proceedings of a CSNI Workshop, OECD, Paris, December 1-3 1982.
    [75]Prantl G. Assessment of crack extension by different methods [A]. In:Ductile Fracture Tests Methods, Proceedings of a CSNI Workshop, OECD, Paris, December 1-3 1982.
    [76]Berger C, Vahle F. Application of the DC potential method to prediction of crack initiation [A]. In:Ductile Fracture Tests Methods, Proceedings of a CSNI Workshop, OECD, Paris, December 1-3 1982.
    [77]Debel C P, Adrian F. Experience with ductile crack growth measurements applying the DC-PD technique to compact tension fracture specimens [A]. In:Ductile Fracture Tests Methods, Proceedings of a CSNI Workshop, OECD, Paris, December 1-3 1982.
    [78]Landes J D. The blunting line in elastic-plastic fracture [J]. Fatigue & Fracture of Engineering Materials & Structures.1995,18(11):1289-1297
    [79]Dawes M G. Elastic-plastic fracture toughness concepts based on the COD and J-integral concepts [A]. Elastic-plastic Fracture, ASTM STP 668, Philadelphia, PA: American Society for Testing and materials,1970:307-333.
    [80]陈篪,姚蘅,邓枝生,等.论J积分和裂纹顶端张开位移间的关系[C].陈篪编著,金属断裂研究文集,北京:冶金工业出版社,1978:64-76.
    [81]De Vries M I, Schaap B. Experimental observations of ductile crack growth in type 304 stainless steel [A]. Elastic-plastic Fracture Test Methods:The User's Experience, ASTM STP 856, Philadelphia, PA:American Society for Testing and Materials,1985:183-195.
    [82]Cao W D, et al. On the relationship between the geometry of deformed crack tip and crack parameters [J]. International Journal of Fracture.1984, v25:33-52.
    [83]Hopkins P, Jolley G. The significance of crack tip blunting (stretch zones) in fracture toughness specimens [C]. The Proceedings of the 4th European Conference on Fracture held in Leoben.1982:3-10.
    [84]Willoughby A A, et al. The meaning of elastic-plastic fracture criteria during slow crack growth [J]. International Journal of Fracture.1981,17(5):449-466.
    [85]Shih C F. Relationships between the J-integral and the crack opening displacement for stationary and extending cracks [J]. Journal of the Mechanics and Physics of Solids.1981, 29(4):305-326.
    [86]Paranjpe S A, et al. Interrelation of crack opening displacement and J-integral [J]. Engineering Fracture Mechanics.1979,11:43-45.
    [87]Schindler H J. On the relationship between J-integral and crack opening displacement [J]. Engineering Fracture Mechanics.1984,20(2):281-287.
    [88]Schwalbe K H, Heerens J. Suggestions for a modification of ASTM E813 [A]. Elastic-plastic Fracture Test Methods:The User's Experience. ASTM STP856, Philadelphia, PA:American Society for Testing and Materials,1985:411-416.
    [89]Heerens J, Schwalbe K H, et al. Modifications of ASTM E813-81 standard test method for an improved definition of JIC using new blunting-line equation [A]. Fracture Mechanics:Eighteen Symposium. ASTM STP945, Philadelphia, PA:American Society for Testing and Materials,1988:374-389.
    [90]ESIS P2-92. ESIS procedure for determining the fracture behaviour of materials [S]. European Structural Integrity Society. Delft, The Netherlands.
    [91]Tosal L, Rodriguez D, Belzunce F J, Betegon C. A crack tip blunting analysis in the ductile-to-brittle transition of a structural steel [J]. Fatigue & Fracture of Engineering Materials & Structures.2000,23(4):365-369.
    [92]Kobayashi H., Nakamura H., et al. Comparison of JIC test methods recommended by ASTM and JSME [A]. Elastic-plastic Fracture Test Methods:The User's Experience. ASTM STP856, Philadelphia, PA:American Society for Testing and Materials,1985: 3-22.
    [93]Wells A A. Application of fracture mechanics at/and beyond general yielding [J]. British Welding Journal,1963,10:563-570.
    [94]Yin Jian-cheng, Liu Rui-tang, Yang Zhuo-qing. Analysis of the blunting line in ductile fracture toughness JIC test method [J]. Journal of Harbin institute of Technology,2007, v14(4):524-527.
    [95]刘瑞堂,杨卓青,方华,尹建成.对JIC测试标准的部分修订内容的合理性讨论[J].机械强度,2006,28(6):944-947.
    [96]王俊,刘瑞堂,杨卓青,王玉玲.对J积分测试方法中几个问题的讨论[J].机械强度,2004,26(6):696-700.
    [97]王俊,刘瑞堂.对J积分测试中钝化线形式的探讨[J].理化检验-物理分册,2004, 40(1):26-28.
    [98]尹建成,刘瑞堂,杨卓青,周欣萍.延性断裂韧度JIC测试中的钝化线方程[J].机械强度,2006,28(4):566-569.
    [99]杨卓青,刘瑞堂,尹建成,张学义.一种新的钝化线形式[J].理化检验-物理分册,2005,41(2):72-75.
    [100]尹建成.JIC测试方法研究与某船体钢焊接结构的失效评定[D].哈尔滨工程大学博士研究生学位论文,2005.
    [101]GB/T 2358-1994.金属材料裂纹尖端张开位移试验方法[S].北京:中国标准出版社,1994.
    [102]ASTM E1290-09. Standard test methods for crack-tip opening displacement (CTOD) fracture toughness measurement [S]. Annual Book of ASTM Standards:Vol.3.01. Philadelphia, PA:American Society for Testing and Materials,2009.
    [103]Sreenivasan P R, Ray S K, Vaidyanathan S, Rodriguez P. Measurement of stretch zone height and its relationship to crack tip opening displacement and initiation J-value in an AISAI 316 stainless steel [J]. Fatigue & Fracture of Engineering Materials & Structures.1996,19(7):855-868.
    [104]Pandey R K, Sundaram P, Kumar A N. A stretched zone method for CTOD evaluation [J]. International Journal of Fracture.1991,47:R29-R32.
    [105]Prantl G. Equations for COD blunting lines [J]. International Journal of fracture. 1986,32(1):7-10.
    [106]杨宗法,陈正新等.JIC测试中伸张区的测定[J].清华大学学报,1983,23(1):39-47.
    [107]苗张木,陶德馨,杨荣英等.焊接接头韧度CTOD评定的适用性与允许值研究[J].机械强度,2006,28(1):150-154.
    [108]苗张木,王振宇.厚钢板焊接接头韧性CTOD试验评定技术及应用[J].宽厚板,2006,12(6):23-28.
    [109]苗张木,吴卫国,陶德馨等.厚钢板焊接接头CTOD断裂韧度的温度影响[J].重庆大学学报(自然科学版),2006,29(6):38-41.
    [110]苗张木,唐小兵,陶德馨等.金属焊缝CTOD试样疲劳裂纹前沿平直度研究[J].武汉理工大学学报,2002,24(12):54-57.
    [111]DNV-OS-C401-2004. Fabrication and testing of offshore structure [S]. Det Norske Veritas,2004.
    [112]API 1104-2005. Welding of pipeline and related facilities [S]. American Petroleum Institute,2005.
    [113]Lloyd W R, McClintock F A. Microtopography for ductile fracture process characterization-Part 2:application for CTOA analysis [J]. Engineering Fracture Mechanics,2003,70:403-415.
    [114]Dawicke D S. Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material [A]. In:Reuter Walter G, et al. editors, Fracture Mechanics:26th volume, ASTM STP 1256. Philadelphia:American Society for Testing and Materials, 1999.
    [115]Newman J C, James M A, Zerbst U. A review of the CTOA/CTOD fracture criterion [J]. Engineering Fracture Mechanics,2003,70:371-385.
    [116]James M A, Newman J C. The effect of crack tunneling on crack growth: experiments and CTOA analyses [J]. Engineering Fracture Mechanics,2003,70:457-468.
    [117]ASTM E2472-06. Standard test method for determination of resistance to stable crack extension under low-constraint conditions [S]. Annual Book of ASTM Standards, Philadelphia, PA:American Society for Testing and Materials,2006.
    [118]ISO 22889-2007. Metallic materials-method of test for the determination of resistance to stable crack extension using specimens of low constraint [S]. International Standards. Switzerland,2007.
    [119]Lloyd W R. Microtopography for ductile fracture process characterization Part 1: theory and methodology [J]. Engineering Fracture Mechanics,2003,70:387-401.
    [120]Samer Mahmoud, Kevin Lease. Two-dimensional and three-dimensional finite element analysis of critical crack-tip-opening angle in 2024-T351 aluminum alloy at four thicknesses [J]. Engineering Fracture Mechanics,2004,71:1379-1391.
    [121]Heerens J, Schodel M. On the determination of crack tip opening angle CTOA using light microscopy and 85 measurement technique [J]. Engineering Fracture Mechanics, 2003,70:417-426.
    [122]Xu S, Bouchard R, Tyson W R. Simplified single-specimen method for evaluating CTOA [J]. Engineering Fracture Mechanics,2007,74:2459-2464.
    [123]Xu S, Petri N, Tyson W R. Evaluation of CTOA from load vs. load-line displacement for C(T) specimen [J]. Engineering Fracture Mechanics,2009,76: 2126-2134
    [124]金蕾.基于数值分析的金属材料断裂力学柔度测试方法研究[D].西南交通大 学硕士学位论文,2009.
    [125]Zhixiong Qian, Shigeo Takezono, Katsumi Tao. A nonlocal damagge mechanics approach to high temperature fatigue crack growth [J]. Engineering Fracture Mechanics. 1996,55(4):535-543.
    [126]Zhixiong Qian, Shigeo Takezono, Katsumi Tao. Effect of loading frequency on fatigue crack growth under high temperature [J]. International Journal Solids Structures. 1996,33(24):3601-3610.
    [127]Keiro Tokaji, Hirohisa Shiota, Masashi Nemura. Fatigue crack propagation at elevated temperatures in titanium aluminide intermetallic [J]. Materials Science and Engingeering.1999,A268:63-69.
    [128]欧梅桂,梁益龙.高温疲劳裂纹扩展规律的研究[J].贵州工业大学学报.2004,33(1):18-22.
    [129]王红缨,王建国,王连庆等.高温疲劳裂纹扩展速率试验技术初探[J].北京科学大学学报.2004,26:213-217.
    [130]丁传富,王亮,刘建中.直流电位法检测高温疲劳裂纹长度的研究及应用[J].实验室研究与探索.2007,26(10):267-269.
    [131]方钦志,张石山,赵明嗥.疲劳裂纹扩展柔度法测量系统研究[J].实验力学,2000,v15(1):110-114.
    [132]张芳.典型钢种高温疲劳裂纹扩展规律的试验研究与计算机模拟[J].浙江工业大学,2004.
    [133]张淑佳,卢炎麟,任立义.加载速率对20g钢高温断裂韧性的影响[J].金属学报,2002,v38(7):720-722.
    [134]余圣甫,徐济民,沈观林,来可宜.高温低周疲劳裂纹扩展速率试验技术研究[J].华中理工大学学报,v24(4):75-77.
    [135]Tomas Mansson, Jan Skantz, Fred Nilsson. High temperature fatigue crack growth in two metals under constant and variable amplitude loading [J]. International Journal of Fatigue,2002,v24(11):1159-1168.
    [136]唐国金,宋先村,袁杰红.一种表面裂纹高温断裂韧性测试方法[J].实验力学,v13(4):526-531.
    [137]Mykolas Daunys, Romualdas Dundulis, Albertas Grybenas and Povilas Krasauskas. Hydrogen influence on mechanical and fracture mechanics characteristics of zirconium Zr-2.5Nb alloy at ambient and elevated temperatures [J]. Nuclear Engineering and Design,2008, v238(10):2536-2545.
    [138]Ernst H A, Paris P C, Rossow M, Hutchinson J W. Anslysis of load-displacement relationships to determine J-R curve and tearing instability material properties [A]. Fracture Mechanics, ASTM STP 677, American Society for Testing and Materials,1979: 581-599.
    [139]田泽,孙学伟.求解予裂试件实时裂纹长度的一种新的直接法[J].实验力学,1995,10(4):377-383.
    [140]孙佐,孙学伟,崔丽等.主导曲线法测定J阻力曲线的研究[J].实验力学,1997,12(3):.442-448.
    [141]Landes J D, Herrera R. A new look at J-R curve analysis [J]. International Journal of Fracture,1988,36:R9-R14.
    [142]Herrera R, Landes J D. A direct J-R curve analysis of fracture toughness tests [J]. Journal of Testing and Evaluation,1988,16(5):427-449.
    [143]Landes J D, Zhou Z, Lee K, Herrera R. Normalization method for developing J-R curves with the LMN function [J]. Journal of Testing and Evaluation,1991,19(4): 305-311.
    [144]Landes J D, et al. Application of load separation and normalization methods for polycarbonate materials [J]. International Journal of Fracture,1993,63:383-393.
    [145]Van Der Sluys W A, Young B A. A sensitivity study on a normalization procedure [A]. Fatigue and Fracture Mechanics, ASTM STP 1406, American Society for Testing and Materials,2001:37-48.
    [146]Dubey J S, Wadekar S L, Singh R N, Sinha T K, Chakravartty J K. Assessment of hydrogen embrittlement of Zircaloy-2 pressure tubes using unloading compliance and load normalization techniques for determining J-R curves [J]. Journal of Nuclear Materials,1999,264:20-28.
    [147]Cassanelli A N, Ortiz H, Wainstein J E, deVedia L A. Separability property and load normalization in AA 6061-T6 Aluminum alloy [A]. Fatigue and Fracture Mechanics, ASTM STP 1406, American Society for Testing and Materials,2001:49-72.
    [148]Baldi F, Ricco T. High-rate J-testing of toughened polyamide 6/6:applicability of the load separation criterion and the normalization method [J]. Engineering Fracture Mechanics,2005,72:2218-2231.
    [149]Varadarajan R, Dapp E K, Rimnac C M. Static fracture resistance of ultra high molecular weight polyethylene using the single specimen normalization method [J]. Ploymer Testing,2008,27:260-268.
    [150]Morhain C, Velasco J I. Determination of J-R curve of polypropylene copolymers using the normalization method [J]. Journal of Materials Science,2001,36:1487-1499.
    [151]Dzugan J, Viehrig H W. Application of the normalization method for the determination of J-R curves [J]. Materials Science and Engineering,2004, A387-389: 307-311.
    [152]Zhu X K, Joyce J A. J-resistance curve testing of HY80 steel using SE(B) specimens and normalization method [J]. Engineering Fracture Mechanics,2007,74: 2263-2281.
    [153]Christopher D W, Prabhu M. Plastic J-integral calculations using the load separation method for the center cracked tension specimen [J]. Engineering Fracture Mechanics, 2002,69:887-898.
    [154]Christopher D W, Prabhu M. Plastic J-integral calculations using the load separation method for the double edge notch tension specimen [J]. Engineering Fracture Mechanics, 2008.
    [155]Scibetta M, Lucon E, Schuurmans J, van Walle E. Numerical simulations to support the normalization data reduction technique [J]. Engineering Fracture Mechanics,2006,73: 524-534.
    [156]Wainstain J, Vedia L A, Cassanelli A N. A study to estimate crack length using the separability parameter Spb in steels [J]. Engineering Fracture Mechanics,2003,70: 2489-2496.
    [157]Wainstain J, Frontini P M, Cassanelli A N. J-R curve determination using the load separation parameter Spb method for ductile polymers [J]. Polymer Test,2004,23:591.
    [158]Salazar A, Rodriguez J. The use of the load separation parameter Spb method to determine the J-R curves of polypropylenes [J]. Polymer Testing,2008:1-8.
    [159]Ostojic P, Mcpherson R. A review of indentation fracture theory:its development, principles and limitations [J]. International Journal of Fracture,1987,33:297-312.
    [160]Pharr G M. Measurement of mechanical properties by ultra-low load indentation [J]. Materials Science and Engineering,1998, A253:151-159.
    [161]Harding D S, Oliver W C, Pharr G M. Cracking during nanoindentation and its use in the determination of fracture toughness [C]. Materials Research Society Symposium Product,1995,356:663.
    [162]Pharr G M, Harding D S, Oliver W C. in:Nastasi M, Parkin D M, Gleiter H (Editors), Mechanical properties and deformation behavior of materials having ultra-fine microstructures [A], Kluwer Academic Publishers, Netherlands,1993:449.
    [163]Hong L, Daniel G, Leon S, et al. Indentation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.%TiO2 coatings [J]. Materials Science and Engineering, 2003, A 346(1-2):237-245.
    [164]Ralf L, Gyeong M K, Goerg H M, et al. Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites [J]. Macromolecular Materials and Engineering,2006,291(3):263-271.
    [165]Rice J R. Mathematical analysis in the mechanics of fracture [A]. Fracture, Acedemic Press, New York,1968:191-311.
    [166]Clarke G A, Andrews W R, Paris P C, et al. Single specimen tests for JIC determination [A]. Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials,1976:27-42.
    [167]Hutchinson J W and Paris P C. Stability analysis of J-controlled crack growth [A]. Elastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, 1979:37-64.
    [168]Ernst H A, and Paris P C. Techniques of analysis of load-displacement records by J-integral methods [R]. Nuclear Regulatory Commission, NUREG/CR-1222,1980.
    [169]Joyce JA, Ernst H, Paris P C. Direct evaluation of J-resistance curves from load displacement records [A]. Fracture Mechanics, ASTM STP 700, American Society for Testing and Materials,1980:222-236.
    [170]Rice J R, Paris P C, Merkle J G. Some further results of J-integral analysis and estimates [A]. Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, American Society for Testing and Materials,1973:231-245.
    [171]Sumpter J D G, Turner C E. Method for laboratory determination of Jc [A]. Cracks and Fracture. ASTM STP 601, American Society for Testing and Materials,1976:3-18.
    [172]Ernst H A, Paris P C, Landes J D. Estimations on J-integral and tearing modulus T from a single specimen test record [A]. Fracture Mechanics, ASTM STP 743, American Society for Testing and Materials,1981:476-502.
    [173]Landes J D, Walker H, Clarke G A. Evaluation of estimation procedures used in J-integral testing [A].Elastic-Plastic Fracture. ASTM STP 668, American Society for Testing and Materials,1979:266-287.
    [174]Sharobeam M H, Landes J D. The load separation criterion and methodology in ductile fracture mechanics [J]. International Journal of Fracture,47,1991:81-104.
    [175]Paris P C, Ernst H, Turner C E. A J-integral approach to development of η-factors [A]. Fracture Mechanics:Twelfth Conference. ASTM STP 700,1980:476-502.
    [176]Bernal C, Cassanelli A, Frontini P. On the applicability of the load separation criterion to acrylonitrile/butadiene/styrene terpolymer resins [J]. Ploymer,1996,37(18): 4033-4039.
    [177]Sharobeam M H, Landes J D, Herrera R. Development of eta factors in elastic-plastic fracture testing using a load separation technique [A]. Elastic-Plastic Fracture Test Methods, ASTM STP 1114, American Society for Testing and Materials, 1991:114-132.
    [178]Sharobeam M H, Landes J D. The load separation and ηp1 development in precracked specimen test records [J]. International Journal of Fracture,1992,59:213-226.
    [179]Xuewei Sun, Zuo Sun, et al. A novel method for the measurement of J resistance curves [J]. Engineering Fracture Mechanics,1995,52(5):901-905.
    [180]Herrera R, Landes J D. Direct J-R curve analysis:a guide to the methodology [A]. Fracture Mechanics, ASTM STP 1074, American Society for Testing and Materials,1990: 24-43.
    [181]Orange T W. Methods and models for R-curve instability calculations [A]. Fracture Mechanics, ASTM STP 1074, American Society for Testing and Materials,1990: 545-559.
    [182]Landes J D, Begley J A. Test results from J-integral studies:an attempt to establish a JIC testing procedure [A]. Fracture Analysis, ASTM STP 560, American Society for Testing and Materials,1975:170-186.
    [183]Buckingham E. On physically similar system:illustrations of the use of dimensional analysis [J]. Physical Review,1914,4(4):345-376.
    [184]Gray R A, Loss F J, Menke B H. Development of J-R curve procedures [R]. NRL-EPRI RP 886.2,1979.
    [185]Loss F J. Structural integrity of water reactor pressure boundary components [R]. NRL-Memo-4112,1979.
    [186]Joyce J A, Link R E. Effects of constraint on upper shelf fracture toughness [A]. ASTM Special Technical Publication,1995,1256:142-177.
    [187]Joyce J A, Link R E. Effects of tensile loading on upper shelf fracture toughness [R]. AD-A284 364,1994.
    [188]Cravero S, Ruggieri C. Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance [J]. Engineering Fracture Mechanics, 2007 (74):2735-2757.
    [189]Shang-xian Wu, Brian Cotterell, Tiu-wing Mai. Slip-line field solutions for three-point notch-bend specimens [J]. International Journal of Fracture,1988,37:13-29.
    [190]Garwood S J, Willoughby A A. Fracture toughness measurements on materials exhibiting stable ductile crack extension [C]. Proceedings of the International Conference on Fracture Toughness Testing-Methods. Interpretation and Application. The Welding Institute, London,1982.
    [191]Gordon J R. The welding institute procedure for the determination of the fracture resistance of fully ductile metals [R]. Report No.275/1985,1985.
    [192]Dawes M G. Knife-edge (2) corrections for CMOD in fracture mechanics tests [A]. TWI Technical Note,1996.
    [193]Hill R, Storakers B, Zdunek A B. A theoretical study of the Brinell hardness test [A]. Proceedings of the Royal Society of London,1989, A 423:301-330.
    [194]Taljat B, Zacharia T, Kosel F. New analytical procedure to determine stress-strain curve from spherical indentation data [J]. International Journal of Solids and Structures, 1998,35(33):4411-4426.
    [195]Herbert E G, Pharr G M, Oliver W C, et al. On the measurements of stress-strain curves by spherical indentation [J]. Thin solid Films,2001,398-399:331-335.
    [196]Beghini M, Bertini L, Fontanari V. Evaluation of the stress-strain curve of metallic materials by spherical indentation [J]. International Journal of Solids and Structures,2006, 43:2441-2459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700