柔性旋转梁动力学特性理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性旋转梁结构被广泛地应用于旋转机械和空间结构中。近年来,旋转梁结构越来越柔,越来越细长,转速越来越高,对旋转梁的研究提出了一系列新的研究课题。开展柔性旋转梁动态性能研究需要综合考虑梁理论、转子动力学、陀螺力学、非线性动力学等多门学科。
     针对旋转梁线性动力学中普遍忽略离心力效应的现状,本文提出离心力效应也是陀螺效应中一种表现形式,推导了含有离心力效应项的旋转梁控制方程,并分析了旋转梁动力学分析中考虑离心力效应的必要性。通过解析法和有限单元法研究了旋转角速度、陀螺效应、转动惯量、长细比和重力等因素对旋转梁动态性能的影响。
     针对von Karman非线性假设无法准确地描述柔性旋转梁振动过程中的大挠度变形这一问题,本文基于局部位移、Jaumann应力和应变度量,根据完全拉格朗日格式,建立了柔性旋转梁大挠度振动的几何非线性理论,实现了对柔性旋转梁大位移和大旋转的准确预测。通过对不同工况下柔性旋转梁的几何变形情况的数值模拟分析,证明该非线性模型具有良好的可适应性。通过理论预测结果和实验结果对比,验证了本文提出的非线性模型的准确性。
     本文建立了用于结构大挠度振动测量的非接触式动态摄像测量理论。该测量方法通过静态标定和动态标定相结合的方法确定并优化系统参数。重点提出了对摄像测量系统精度影响较大的几个因素,如标定设备精度、摄像机排布以及数值计算中的奇异点问题等。借助于自行设计的小型圆柱形标靶,联合动态摄像测量系统,实现了对柔性旋转梁大挠度振动的准确测量。根据实验结果,发现随着激励速度增加,旋转梁运动过程存在着阶段性规律,可分为稳态运动阶段、混沌振荡阶段和成型阶段。
     针对经验模态分解(EMD)法过程中产生的模态混叠现象,本文提出了一种半经验的信号补偿法对经验模态分解法进行了改进。改进后的经验模态分解法可以有效地抑制模态混叠问题的产生,且兼具噪音滤波的功能。基于改进后的经验模态分解法,分别采用希尔伯特-黄变换(HHT)和共轭对分解(CPD)法研究了柔性旋转梁实验振动信号的瞬时频率和瞬时振幅,进一步分析了柔性旋转梁的振动特性。
     本文关于柔性旋转梁的研究,丰富并完善了旋转梁结构动力学的理论和实验研究,对旋转结构的设计和分析提供了一定的理论依据。
Flexible spinning beam-like structures are widely used in rotating machinary and space structures. Recently, spinning beams become more and more flexible and slender. And the spinning speed also increases rapidly. All of these changes bring new challenges to researchers. The researches on dynamics characteristics of flexible spinning beams synthetically involve several cross subjects: beam theory, rotor dynamics, gyro dynamics, nonlinear dynamics and geometrical nonlinearity. Hence, the studies on dynamics characteristics of flexible spinning beams are considerably important both in theoretical study and engineering application.
     An important gyroscopic term due to centrifugal forces is missing in many reports in the spinning beam literature. In this thesis, the term due to centrifugal force is considered to belong to gyroscopic effects, and also proved to be indispensable for correct modeling and analysis of spinning beams. The influences of rotary inertia, spinning speed, gyroscopic effects, slenderness, and gravity on dynamic characteristics are investigated in detail using analytical and finite-element methods.
     Geometrically nonlinear models of spinning beams usually only include von Karman or cubic nonlinearity in the literature. Base on local displacements, Jaumann stress and strain measures, and an exact coordinate transformation, a total Lagrangian geometrically exact nonlinear theory of spinning beams undergoing large deflection vibration is derived. The new geometrically exact theory can account for large displaces and large rotations of spinning beams. By analyzing the deformed geometries of flexible spinning beams under different working conditions using numerical methods, the nonlinear model is verified to be of powerful adaptability. The model is proved to be correct by comparing the numerical and experimental results.
     A camera-based noncontact measurement theory for dynamic testing of structures that undergo large deflection is derived in this thesis. Static calibration is used to estimate system parameters at first. Then dynamic calibration is performed for refinement of estimated system parameters and establishment of a lens distortion model. Some key issues that are essential for measure accuracy are discussed, such as key devices, experimental set-up and singularity problem. The thesis also makes a preliminary study of using just one camera for accurate dynamic measurement. The small-sized cylindrical makers which are self-designed, combined with the camera-based measurement system, are used to realize the accurate measurement of large deflection vibration of flexible spinning beam. The paper also analyses the evolution mechanism.
     A experience-based signal compensation method (SCM) is presented to reduce the mode mixing phenomenon. The empirical mode decomposition (EMD), combined with SCM, is proposed to avoid the mode mixing phenomenon. Furthermore, this method could also be used to do noise filtering effectively. Based on the new technique, the conjugate-pair decomposition (CPD) and Hilbert-Huang transform (HHT) are used to investigate the experimental vibration signal in order to obtain time-varying frequencies and amplitudes to reveal nonlinear dynamic characteristics of a spinning beam.
     In this paper, the research on flexible spinning beams enriches the structure dynamics of spinning beams both theoretically and experimentally, and also provides theoretical basis for design and analysis of spinning structures.
引文
[1] Mourelatos Z P. A crankshaft system model for structural dynamic analysis of internal combustion engines. Computers & Structures. 2001, 79(20-21):2009-2027.
    [2] Buchman S,Everitt C W F,Parkinson B, et al. Cryogenic gyroscopes for the relativity mission. Physica B: Condensed Matter. 2000, 280(1-4):497-498.
    [3] Dimentberg F M. Flexural Vibrations of Rotating Shafts. Butterworth, London, 1961.
    [4] Rankine W J M. On the centrifugal force of rotating shafts. Engineer. 1869, 27:249.
    [5] Jeffcott H H. The lateral vibration of loaded shafts in the neighbourhood of a whirling speed—The effect of want of balance. Philosophical Magazine Series 6. 1919, 37(219):304-314.
    [6] Foppl A. Das problem der lavalschen turbinenwelle. Der Civilingenieur. 1895, 41:335-342.
    [7] Hoshi H,Shinshi T,Takatani S. Third-generation Blood Pumps With Mechanical Noncontact Magnetic Bearings. Artificial Organs. 2006, 30(5):324-338.
    [8] Rice S,Lin A W,Safer D, et al. A structural change in the kinesin motor protein that drives motility. Nature. 1999, 402:778-784.
    [9] Tobias I,Swigon D,Coleman B. Elastic stability of DNA configurations. I. General theory. Physical Review E. 2000, 61(1):747-758.
    [10] Yamamoto T,Ishida Y. Linear and nonlinear rotordynamics: a modern treatment with applications. Wiley, 2001.
    [11] Lee C W. Vibration Analysis of Rotors. Kluwer Academic Publications, 1993.
    [12] Han S M,Benaroya H,Wei T. Dynamics of transversely vibrating beams using four engineering theories. Journal of Sound and Vibration. 1999, 225(5):935-988.
    [13] Pai P F. Highly flexible structures: modeling, computation, and experimentation. AIAA, 2007.
    [14] Shames I H,Dym C L. Energy and finite element methods in structural mechanics. McGraw-Hill, 1985.
    [15] Banerjee J R,Su H. Dynamic stiffness formulation and free vibration analysis of a spinning composite beam. Computers & Structures. 2006,84(19-20):1208-1214.
    [16] Bauer H F. Vibration of a rotating uniform beam, part I: Orientation in the axis of rotation. Journal of Sound and Vibration. 1980, 72(2):177-189.
    [17] Sheu G J,Yang S M. Dynamic analysis of a spinning Rayleigh beam International Journal of Mechanical Sciences. 2005, 47(2):157-169.
    [18] Sheu G J. On the hollowness ratio effect on the dynamics of a spinning Rayleigh beam. International Journal of Mechanical Sciences. 2007, 49(4):414-422.
    [19] Lee C W,Katz R,Ulsoy A G, et al. Modal analysis of a distributed parameter rotating shaft. Journal of Sound and Vibration. 1988, 122(1):119-130.
    [20] Sturla F A,Argento A. Free and forced vibrations of a spinning viscoelastic beam. Journal of Vibration and Acoustics. 1996, 118(3):463-468.
    [21] Han R P S,Zu J W. Analytical dynamics of a spinning Timoshenko beam subjected to a moving load. Journal of Franklin Institute. 1993, 330(1):113-129.
    [22] Zu J W Z,Han R P S. Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam with General Boundary Conditions. ASME Journal of Applied Mechanics. 1992, 59:S197-S204.
    [23] Zu J W Z,Han R P S. Closure to“Discussion of `Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam With General Boundary Conditions'”. ASME Journal of Applied Mechanics. 1992, 59(4):1046-1047.
    [24] Grybos R. The effect of shear and rotary inertia of a rotor at its critical speeds. Archive of Applied Mechanics. 1991, 61(2):104-109.
    [25] Choi S T,Wu J D,Chou Y T. Dynamic analysis of a spinning Timoshenko beam by the differential quadrature method. AIAA Journal 2000, 38(5):851-856.
    [26] Eshleman R L,Eubanks R A. On the critical speeds of a continuous rotor. ASME Journal of Engineering for Industry. 1969, 91(4):1180-1188.
    [27] Katz R,Lee C W,Ulsoy A G, et al. The dynamic response of a rotating shaft subject to a moving load. Journal of Sound and Vibration. 1988, 122(1):134-148.
    [28] Katz R. The dynamic response of a rotating shaft subject to an axially moving and rotating load. Journal of Sound and Vibration. 2001, 246(5):757-775.
    [29] Ouyang H,Wang M. A dynamic model for a rotating beam subjected to axially moving forces. Journal of Sound and Vibration. 2007, 308:674-682.
    [30] Argento A. A spinning beam subjected to a moving deflection dependent load. Part I: response and resonance. Journal of Sound and Vibration. 1995,182(4):595-613.
    [31] Chen L W,Ku D M. Dynamic stability of a cantilever shaft-disk system. Journal of Vibration and Acoustics. 1992, 181:326-329.
    [32] Jr A J M,Argento A,Scott R A. Dynamic stability of a rotating shaft driven through a universal joint. Journal of Sound and Vibration. 1999, 222(1):19-47.
    [33]闻邦椿,顾家柳,夏松波,等.高等转子动力学:理论,技术及应用.机械工业出版社, 1999.
    [34] Rao J S. History of rotating machinery dynamics. Springer, 2011.
    [35] Leung A Y T. Dynamic Stiffness Method and Sunstructures. Springer, 1993.
    [36]王勖成.有限单元法.清华大学出版社, 2003.
    [37] Bolotin V V. The Dynamic Stability of Elastic Systems. Holden-Day, 1964.
    [38] Mitropolskii Y A. Problems of the asymptotic theory of nonstationary vibrations. Israel Prog. for Scientific Trans., 1965.
    [39] Shaw S W. Chaotic dynamics of a slender beam rotating about its longitudinal axis. Journal of Sound and Vibration. 1988, 124(2):329-343.
    [40] Shaw J,Shaw S W. Instabilities and bifurcations in a rotating shaft. Journal of Sound and Vibration. 1989, 132(2):227-244.
    [41] Chang C O,Cheng J W. Non-linear dynamics and instability of a rotating shaft-disk system. Journal of Sound and Vibration. 1993, 160(3):433-454.
    [42] Hosseini S A A,Khadem S E. Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia Mechanism and Machine Theory. 2009, 44(1):272-288
    [43] Luczko J. A geometrically non-linear model of rotating shafts with internal resonance and self-excited vibration. Journal of Sound and Vibration. 2002, 255(3):433-456.
    [44] Reissner E. On finite deformations of space-curved beams. Journal of Applied Mathematics and Physics. 1981, 32(6):734-744.
    [45] Simo J C,Vu-Quoc L. A three-dimensional finite-strain rod model. Part II: Computational aspects. Computer Methods in Applied Mechanics and Engineering. 1986, 58(1):79-116.
    [46] Sinou J J,Villa C V S,Thouverez F, et al. Experimental Analysis of the Dynamical Response of a Flexible Rotor Including the Effects of External Damping. Journal of Engineering and Applied Sciences. 2006, 1(4):483-490.
    [47]李科杰.新编传感器技术手册.国防工业出版社, 2002.
    [48]赵玉成,陈荣华,马占国.旋转机械动力辨识与故障诊断技术.中国矿业大学出版社, 2008:9-18.
    [49] Cooley J W,Tukey J W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19(90):297–301.
    [50] Gabor D. Theory of communication. J. Inst. Elec. Eng. 1946, 93:429-457.
    [51] Ville J. Theorie et applications de la notion de signal analytique. Cables et Transmission. 1948, 2(A):61-74.
    [52] Wigner E. On the quantum correction for thermodynamic equilibrium. Physical Review. 1932, 40(5):749-759.
    [53] Page C H. Instantaneous power spectra. Journal of Applied Physics. 1952, 23(1):103-106.
    [54] Jones D L,Parks T W. A resolution comparison of several time-frequency representations. IEEE Transactions on Signal Processing. 1992, 40(2):413-420.
    [55] Cohen L. Generalized phase-space distribution functions. Journal of Mathematical Physics. 1966, 7:781-787.
    [56] Morlet J,Arens G,Fourgeau E, et al. Wave propagation and sampling theory—Part II: Sampling theory and complex waves. Geophysics. 1982, 47(2):222-236.
    [57]杨福生.小波变换的工程分析与应用.科学出版社, 1999.
    [58] Huang N E,Attoh-Okine N O. The Hilbert-Huang transform in engineering. Taylor & Francis, 2005.
    [59] Huang N E,Long S R,Shen Z. The mechanism for frequency downshift in nonlinear wave evolution. Advances in applied mechanics. 1996, 32:59-117.
    [60] Huang N E,Shen S S. Hilbert-Huang transform and its applications. World Scientific, 2005.
    [61] Huang N E,Shen Z,Long S R. A new view of nonlinear water waves: The Hilbert Spectrum. Annual Review of Fluid Mechanics. 1999, 31(1):417-457.
    [62] Huang N E,Shen Z,Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A. 1998, 454:903-995.
    [63] Huang N E,Wu M L C,Long S R, et al. A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis Proc. R. Soc. Lond. A. 2003, 459(2037):2317-2345
    [64]钟佑明,秦树人,汤宝平. Hibert—Huang变换中的理论研究.振动与冲击. 2002, 21(4):13-17.
    [65] Pai P F,Palazotto A N. HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems. International Journal of Mechanical Sciences. 2008, 50:1619-1635.
    [66] Pai P F,Palazotto A N. Detection and identification of nonlinearities by amplitude and frequency modulation analysis. Mechanical Systems and Signal Processing. 2008, 22(5):1107-1132.
    [67] Poon C W,Chang C C. Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes. Smart Structures and Systems. 2007, 3(4):423-437.
    [68] Yu D,Cheng J,Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mechanical Systems and Signal Processing. 2005, 19(2):259-270.
    [69] Gai G. The processing of rotor startup signals based on empirical mode decomposition. Mechanical Systems and Signal Processing. 2006, 20(1):222-235.
    [70] Liu B,Riemenschneider S,Xu Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum. Mechanical Systems and Signal Processing. 2006, 20(3):718-734.
    [71] Loh C H,Wu T C,Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses. Bulletin of the Seismological Society of America. 2001, 91(5):1310-1338.
    [72] Hwang P A,Huang N E,Wang D W. A note on analyzing nonlinear and nonstationary ocean wave data. Applied Ocean Research. 2003, 25(4):187-193.
    [73]沈毅,沈志远.一种非线性非平稳自适应信号处理方法—希尔伯特-黄变换综述:发展与应用.自动化技术与应用. 2010, 29(5):1-5.
    [74]李力.机械信号处理及其应用.华中科技大学出版社, 2007.
    [75] Pai P F. Three-point Frequency Tracking Method. Structural Health Monitoring. 2009, 8(6):425-442.
    [76] Junkins J L,Kim Y. Introduction to dynamics and control of flexible structures. AIAA, 1993.
    [77] Yang S M,Sheu G J,Yang C D. Analytical solution of whirl speed and mode shape for rotating shafts. paper No. 96-GT-264, presented at ASME IGTI Turbo Expo’96 Conference, Birmingham, United Kingdom, 1996.
    [78] Yang S M,Sheu G J. Vibration control of a rotating shaft: An analytical solution. Journal of Applied Mechanics. 1999, 66(1):254-259
    [79] Genta G. Dynamics of rotating systems. Springer, 2005.
    [80] Nayfeh A H , Pai P F. Linear and nonlinear structural mechanics. Wiley-Interscience, 2004.
    [81] Nayfeh A H,Mook D T. Nonlinear oscillations. Wiley-Interscience, 1979.
    [82] Samantaray A K. Steady-state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dynamics. 2009, 56:443-451.
    [83] Muszynska A. Rotordynamics. CRC Taylor & Francis Group, 2005.
    [84] McMillan R B. Rotating machinery : practical solutions to unbalance and misalignment. Fairmont Press, 2004.
    [85] Ishida Y. Nonlinear vibrations and chaos in rotordynamics. JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing. 1994, 37(2):237-245.
    [86] Cveticanin L. Free vibration of a Jeffcott rotor with pure cubic non-linear elastic property of the shaft. Mechanism and Machine Theory. 2005, 40(12):1330-1344.
    [87] Cveticanin L. Free vibration of a Jeffcott rotor with pure cubic nonlinear elastic property of the shaft. Mechanism and Machine Theory. 2005, 40:1330-1344.
    [88] Pai P F,Nayfeh A H. Three-dimensional nonlinear vibrations of composite beams—I. Equations of motion. Nonlinear Dynamics. 1990, 1(6):477-502.
    [89] Pai P F,Schulz M J. Shear correction factors and an energy-consistent beam theory. International Journal of Solids and Structures. 1999, 36:1523-1540.
    [90] Timoshenko S P,Goodier J N. Theory of elasticity, 3rd Ed. McGraw-Hill, 1970.
    [91] Lalanne M,Ferraris G. Rotordynamics Prediction in Engineering. 2nd. John Wiley, 1998.
    [92] Ewins D J. Modal testing: theory, practice and application. 2nd edition. Research Studies Press, 2000.
    [93] Wempner G A. Discrete approximations related to nonlinear theories of solids. International Journal of Solids and Structures. 1971, 7(11):1581-1599.
    [94] Riks E. The application of Newton’s method to the problem of elastic stability. Journal of Applied Mechanics. 1972, 39:1060-1066.
    [95] Riks E. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures. 1979, 15(7):529-551.
    [96] Seydel R. From equilibrium to chaos: practical bifurcation and stability analysis. Elsevier, 1988.
    [97] Crisfield M A. A fast incremental/iterative solution procedure that handles. Computers & Structures. 1981, 13(1-3):55-62.
    [98] Crisfield M A. An arc-length method including line searches and accelerations. International Journal for Numerical Methods in Engineering.1983, 19(9):1269-1289.
    [99] Crisfield M A. Nonlinear finite element analysis of solids and structures. Volume 1: Essentials. John Wiley & Sons Ltd, 1991.
    [100] Schweizerhof K H,Wriggers P. Consistent linearization for path following methods in nonlinear FE analysis. Computer Methods in Applied Mechanics and Engineering. 1986, 59(3):261-279.
    [101] Forde B W R,Stiemer S F. Improved arc length orthogonality methods for nonlinear finite element analysis. Computers & Structures. 1987, 27(5):625-630.
    [102] Bellini P X,Chulya A. An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. Computers & Structures. 1987, 26(1-2):99-110.
    [103] Gierlinski J T,Smith T R. A variable load iteration procedure for thin-walled structures. Computers & Structures. 1985, 21(5):1085-1094.
    [104] Batoz J L,Dhatt G. Incremental displacement algorithms for nonlinear problems. International Journal for Numerical Methods in Engineering. 1979, 14(8):1262-1267.
    [105] Stoer J,Bulirsch R. Introduction to numerical analysis. 3rd ed. Springer, 2002.
    [106] Pai P F,Ramanathan S,Hu J, et al. Camera-based noncontact metrology for static/dynamic testing of flexible multibody systems. Measurement Science and Technology. 2010, 21:085302.
    [107] Legac A. Videogrammetry or digital photogrammetry: general remarks, methodology, applications. Proceedings of SPIE. 1994, 2350:16-21.
    [108]于起峰,尚洋.摄像测量学原理与应用研究.科学出版社, 2009.
    [109]于起峰.基于图像的精密测量与运动测量.科学出版社, 2002.
    [110] Du J,Duffy V G. A methodology for assessing industrial workstations using optical motion capture integrated with digital human models. Occupational Ergonomics. 2007, 7(1):11-25.
    [111] Hewett T E,Myer G D,Ford K R, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. The American Journal of Sports Medicine. 2005, 33(4):492-501.
    [112] Hu J,Pai P F. Experimental Nonlinear Dynamics of a Suspended Cable Using a 3D Motion Analysis System. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, 2007.
    [113] Ramanathan S. Dynamics characterization of highly flexible beams using a 3D motion analysis system. University of Missouri - Columbia. 2004.
    [114] GREAVES J. EVaRT 4.6 User's Manual, Motion Analysis Corporation, Santa Rosa, CA, USA.
    [115] Mikhail E M , Bethel J S , McGlone J C. Introduction to modern photogrammetry. John Wiley & Sons Inc, 2001.
    [116] Brown D C. Decentering distortion of lenses. Photogramm. Eng. Remote Sensing. 1966, 32(3):444-462.
    [117] Atkinson K B. Close range photogrammetry and machine vision. Whittles Publishing, 1996.
    [118] Habib A , Morgan M. Stability analysis and geometric calibration of off-the-shelf digital cameras. Photogrammetric Engineering & Remote Sensing. 2005, 71(6):733-741.
    [119] Shortis M R,Robson S,Beyer H A. Principal point behaviour and calibration parameter models for Kodak DCS cameras. The Photogrammetric Record. 1998, 16(92):165-186.
    [120] Zhang Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis and Machine Intelligence. 2002, 22(11):1330-1334.
    [121] Hartley R I. Self-calibration of stationary cameras. International Journal of Computer Vision. 1997, 22(1):5-23.
    [122] Weng J,Cohen P,Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 14(10):965-980.
    [123] Shang Y,Yu Q,Zhang X. Analytical method for camera calibration from a single image with four coplanar control lines. Applied optics. 2004, 43(28):5364-5369.
    [124] Richardson M H. Is it a mode shape, or an operating deflection shape? Sound and vibration. 1997, 31(1):54-61.
    [125] Jin S,Pai P F. Locating structural defects using operational deflection shapes. Journal of Intelligent Material Systems and Structures. 2000, 11(8):613.
    [126] Moon F C. Chaotic vibrations: An introduction for applied scientists and engineers. Wiley-Interscience, 1987.
    [127] Kerschen G,Worden K,Vakakis A F, et al. Past, present and future of nonlinear system identification in structural dynamics. Mechanical Systems and Signal Processing. 2006, 20(3):505-592.
    [128] Mei C,Abdel-Motagaly K,Chen R. Review of nonlinear panel flutter at supersonic and hypersonic speeds. Applied Mechanics Reviews. 1999,52:321.
    [129] Brigham E O. The Fast Fourier Transform. Prentice-Hall, 1974.
    [130] Shi D F,Qu L S,Gindy N N. General interpolated fast Fourier transform: a new tool for diagnosing large rotating machinery. Journal of Vibration and Acoustics. 2005, 127:351-361.
    [131] Flandrin P. Time-frequency/time-scale analysis. Academic Press, 1999.
    [132] Daubechies I. Ten lectures on wavelets. CBMS-NSF Lecture Notes 61, SIAM, Philadelphia, 1992.
    [133] Hahn S. Hilbert Transforms in Signal Processing. Artech House, 1996.
    [134]张义平,李夕兵,赵国彦.基于HHT方法的爆破地震信号分析.工程爆破. 2005, 11(1):1-7.
    [135] Pai P F. Circular instantaneous frequency. Advances in Adaptive Data Analysis. 2009, 2(1):1–26.
    [136] Maragos P,Kaiser J F,Quatieri T F. Energy separation in signal modulations with application to speech analysis. IEEE Transactions on Signal Processing. 1993, 41(10):3024-3051.
    [137] Pai P F,Wu G. Damage inspection and health monitoring of dynamical systems by advanced time-frequency analysis. SPIE 17th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, Californi, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700