偏头痛与丛集性头痛的疼痛发生机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.观察大鼠皮层扩布性抑制(CSD)前、中、后三叉神经脊束核尾侧亚核(TNC)神经元放电频率的变化,以及盐酸氟桂利嗪对其的影响,以了解CSD与三叉神经血管反射中枢之间的联系。
     2.建立大鼠CSD模型,观察血浆和三叉神经节CGRP、SP的变化以及盐酸氟桂利嗪对此的影响,进一步了解CSD与三叉神经血管反射周围机制之间的联系。
     3.利用静息态fMRI技术分析丛集性头痛患者丛集期内头痛自发发作时脑活动的变化以及全脑与感兴趣区之间的功能联系,以了解丛集性头痛的疼痛发生机制。
     方法
     1.大鼠分为对照组、同侧TNC组、对侧TNC组、氟桂利嗪组,对照组用生理盐水刺激,其余三组用氯化钾刺激建立CSD模型,刺激前5分钟静脉给予盐酸氟桂利嗪。利用玻璃微电极同时记录CSD和同侧或对侧TNC神经元单细胞放电胞外记录,采用PowerLab计算机数据采集系统及Chart5.0 for Windows分析软件进行数据采集并分析CSD前、中、后TNC神经元的放电频率。
     2.大鼠随机分为对照组、CSD组、氟桂利嗪组,用氯化钾刺激建立CSD模型,对照组用生理盐水刺激,刺激前5分钟静脉给予盐酸氟桂利嗪。利用放射免疫技术测定大鼠血浆以及双侧三叉神经节中的CGRP、SP水平;利用免疫组化技术检测大鼠双侧三叉神经节中CGRP、SP免疫反应阳性情况。
     3.20例男性丛集性头痛患者,分为右侧头痛组(12例)、左侧头痛组(8例),头痛自发发作期间以及头痛缓解期分别接受静息态fMRI扫描,利用局部一致性(ReHo)分析和功能连接分析方法处理所得数据。
     结果
     1.对照组未发现CSD;同侧TNC放电频率,CSD中>CSD后>CSD前(P<0.05);对侧TNC放电频率,CSD前、中、后无统计学差异(P>0.05);氟桂利嗪组同侧TNC放电频率,CSD前>CSD中(P<0.05),CSD前与CSD后及CSD中与CSD后之间无统计学差异(P>0.05)。
     2.1)关于放免测定,各组血浆CGRP、SP水平有统计学差异(P<0.05),CSD组高于对照组(P<0.05),CSD组与氟桂利嗪组、对照组与氟桂利嗪组之间均无统计学差异(P>0.05);各组之间同侧三叉神经节中CGRP、SP水平未见变化(P>0.05)。
     2)关于免疫组化研究,右侧三叉神经节CGRP、SP免疫阳性细胞数三组之间有统计学差异(P<0.05),多重两两比较结果CSD组大于对照组(P<0.05),CSD组与氟桂利嗪组之间、对照组与氟桂利嗪组之间无统计学差异(P>0.05);左侧三叉神经节CGRP、SP免疫阳性细胞数三组之间无统计学差异(P>0.05);CSD组中右侧三叉神经节CGRP、SP免疫反应阳性细胞数大于左侧(P<0.05)。
     3.1)局部一致性分析发现两组患者头痛疼痛状态较非疼痛状态脑活动发生变化的脑区有同侧脑桥以及其他疼痛相关脑区如基底节区、丘脑、扣带回、前额叶皮层等(P<0.05,蒙特卡罗模拟校正)。
     2)功能连接分析发现疼痛状态与非疼痛状态下主要疼痛相关脑区均与同侧脑桥有功能联系(P<0.05,false discovery rate,FDR校正);疼痛状态与非疼痛状态比较,同侧前额叶皮层、对侧胼胝下回等疼痛相关脑区与同侧脑桥之间功能联系增强(P<0.05,蒙特卡罗模拟校正)。
     结论
     1.CSD使同侧TNC神经元放电频率增加,盐酸氟桂利嗪干预后,同侧TNC神经元放电频率于CSD发生期间下降,说明CSD可能通过一定的机制激活三叉神经血管反射中枢,盐酸氟桂利嗪可能通过抑制这一过程来有效预防偏头痛。
     2.CSD使血浆CGRP、SP水平增加,使同侧三叉神经节CGRP、SP免疫阳性细胞数增加,说明CSD可能通过一定的机制激活了三叉神经血管反射的周围机制。
     3.同侧脑桥活动增强可能通过三叉神经副交感反射参与了丛集性头痛的疼痛发生机制,其他疼痛相关脑区如扣带回和前额叶皮层等可能也参与了其疼痛发生机制。
Objective
     1.To observe the effect of cortical spreading depression(CSD) on firing rate of trigeminal nucleus caudalis(TNC) neurons in rats so as to determine the correlation between CSD and central trigeminovascular neurons.
     2.To investigate the effect of CSD on CGRP and SP levels in serum and trigeminal ganglia in rats so as to determine the correlation between CSD and peripheral trigeminovascular neurons.
     3.To examine the changes of brain activity and functional correlations during spontaneous cluster headache attack as compared with during remission in the cluster period of patients with cluster headache by using resting-state functional magnetic resonance imaging(fMRI).
     Methods
     1.The rats were divided into four goups,including control group,ipsilateral TNC group,contralateral TNC group,and flunarizine group.The CSD waves were evoked by application of potassium chloride on brain surface with filter paper.For control group,saline,instead of potassium chloride,was used for stimulation on brain surface with filter paper.For flunarizine group, funarizine hydrochloride was intravenously administered to rats five minutes prior to application of potassium chloride.CSD waves and extracellular single-unit recordings in the site of TNC were simultaneously recorded by glass microelectrodes.The data of CSD and firing rates of TNC neurons were collected by PowerLab system and analysed by Chart5.0 for Windows software.
     2.The rats were randomly divided into three goups,including control group, CSD group,and flunarizine group.The levels of CGRP and SP in plasma and trigeminal ganglia were measured by radioimmunity assay.The neurons with positive CGRP and SP immunoreactivity in trigeminal ganglia were identified by immunohistochemistry technique.
     3.Twenty male patients with episodic cluster headache were divided into two groups including right-sided headache group and left-sided headache group. Two resting-fMRI scans were successfully acquired respectively during the acute spontaneous attack and again during headache remission.The changes of brain activity and functional correlations between the whole brain and region of interest(ROI) were respectively analysed by the regional homogeneity(ReHo) method and functional connectivity method.
     Results
     1.There was no CSD wave in control group.The firing rates in the site of ipsilateral TNC neuron during CSD were higher as compared with during post-CSD,and the later were higher as compared with during pre-CSD(P<0.05).There were no significant differences for the firing rates in the site of contralateral TNC neurons among during pre-CSD,CSD,and post-CSD (P>0.05).For flunarizine group,the firing rates in the site of ipsilateral TNC neurons during pre-CSD were higher as compared with during CSD(P<0.05).
     2.1) There were statistical differences on palasma levels of CGRP and SP among the three groups(P<0.05).The levels of CGRP and SP in CSD group were higher than control group(P<0.05).No significant differences on the levels of CGRP and SP in ipsilateral trigeminal ganglia were found among the three groups(P>0.05).
     2) The number of neurons with positive CGRP and SP immunoreactivity was statistically different in right-sided trigeminal ganglia among the three groups (P<0.05).The number in fight-sided trigeminal ganglia in CSD group was higher as compared with control group(P<0.05).The number in right-sided trigeminal ganglia was statistically higher than that in left-sided trigeminal ganglion in CSD group(P<0.05).
     3.1) Altered ReHo in ipsilateral pons and other brain regions response to pain such as basal nuclei,thalamus,cingulated gyms and prefrontal cortex was detected during the acute spontaneous attack as compared with during headache remission(P<0.05,corrected by Monte Carlo simulation). 2) Positive functional connectivity was detected between ipsilateral pons and other brain regions related to pain within pain state and within non-pain state (P<0.05,corrected by false discovery rate,FDR).Increased functional correlation between ipsilateral pons and other pain-related brain regions such as ipsilateral prefrontal cortex and contralateral subcallosal gyrus was detected during the acute spontaneous attack as compared with during headache remission(P<0.05,corrected by Monte Carlo simulation).
     Conclusion
     1.The firing rates in the site of ipsilateral TNC neurons are increased by CSD, and decreased after intravenous administration of flunarizine hydrochloride.It is inferred that CSD may activate central trigeminovascular neuron through certain mechanism,and flunarizine hydrochloride may prevent migraine by inhibiting the process.
     2.CSD increases the serum level of CGRP and SP and the number of CGRP and SP positive immunoreactivity neurons in ipsilateral trigemnal ganglia.It is implicated that CSD may activate peripheral trigeminovascular reflex.
     3.Our findings suggest that increased brain activity in ipsilateral pons involved in trigeminal vascular reflex may be related to the pathogenesis of pain in cluster headache.Other brain regions known to be response to pain,such as cingulated gyrus and prefrontal cortex might be also involved in CH attack processing.
引文
[1]Hamada J.Pathophysiology of migraine-migraine generator.Rinsho Shinkeigaku,2008,48:857-60.
    [2]Bussone G.Cluster headache:from treatment to pathophysiology.Neurol Sci,2008,29:Sl-6.
    [3]Leonardi M,Steiner TJ,Scher AT,et al.The global burden of migraine:measuring disability in headache disorders with WHO's Classification of Functioning,Disability and Health (ICF).J Headache Pain,2005,6:429-40.
    [4]Torelli P,Beghi E,Manzoni GC.Cluster headache prevalence in the Italian general population.Neurology,2005,64:469-74.
    [5]Schumacher GA,Wolff HG.A.Contrast of histamine headache with the headache of migraine and that associated with hypertension.B.Contrast of vascular mechanisms in preheadache and in headache phenomena of migraine.Arch Neurol Psychiatry,1941,45:199-214.
    [6]Marcussen RM,Wolff HG.1.Effects of carbon dioxide-oxygen mixtures given during preheadache phase of the migraine attack.2.Further analysis of the pain mechanisms in headache.Arch Neurol Psychiatry,1950,63:42-51.
    [7]Leao AAP,Morrison RS.Propagation of spreading cortical depression.J Neurophysiol,1945,8:33-45.
    [8]Olesen J,Larsen B,Lauritzen M.Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine.Ann Neurol,1981,9:344-52.
    [9]Olesen J,Friberg L,Olsen TS,et al.Timing and topography of cerebral blood flow,aura,and headache during migraine attacks.Ann Neurol,1990,28:791-98.
    [10]Hadjikhani N,Sanchez del Rio M,Wu O,et al.Mechanisms of migraine aura revealed by fMRI in human visual cortex.Proc Natl Acad Sci USA,2001,98:4687-92.
    [11]Graham JR,Wolff HG.Mechanism of migraine headache and action of ergotamine tartrate.Arch Neurol Psychiatry,1938,39:737-63.
    [12]Chapman LF,Ramos AO,Goodell H,et al.A humoral agent implicated in vascular headache of the migraine type.Arch Neurol,1960,3:223-9.
    [13]Moskowitz MA.Neurogenic inflammation in the pathophysiology and treatment of migraine.Neurology,1993,43:S 16-20.
    [14]Buzzi MG,Bonamini M,Moskowitz MA.Neurogenic model of migraine.Cephalalgia,1995,15:277-80.
    [15]Williamson DJ,Hargreaves RJ.Neurogenic inflammation in the context of migraine.Microsc Res Tech,2001,53:167-78.
    [16]Gorji A.Spreading depression:a review of the clinical relevance.Brain Research Reviews,2001,38:33-60.
    [17]DaSilva AFM,Goadsby PJ,and Borsook D.Cluster Headache:A Review of Neuroimaging Findings.Current Pain and Headache Reports,2007,11:131-6.
    [18]He Y,Wang L,Zang Y,et al.Regional coherence changes in the early stages of Alzheimer's disease:A combined structural and resting-state functional MRI study.Neuroimage,2007,35:488-500.
    [19]Wang K,Liang M,Wang L,et al.Altered functional connectivity in early Alzheimer's disease:a resting-state fMRI study.Human Brain Mapping,2007,28:967-78.
    [20]Wu T,Long X,Zang Y,et al.Regional homogeneity changes in patients with Parkinson's disease.Human Brain Mapping,2009,30:1502-10.
    [21]Zhu C,Zang Y,Cao Q,et al.Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder.Neuroimage,2008,40:110-20.
    [22]Tian L,Jiang T,Wang Y,et al.Altered resting-state functional connectivity patterns of anterior cingulated cortex in adolescent with attention deficit hyperactivity disorder.Neuroscience Letters,2006,400:39-43.
    [23]Yao Z,Wang L,Lu Q,et al.Regional homogeneity in depression and its relationship with separate depressive symptom clusters:A resting-state fMRI study.J Affect Disord,2009,115:430-8.
    [24]Liu H,Liu Z,Liang M,et al.Decreased regional homogeneity in schizophrenia:a resting-state functional magnetic resonance imaging study.Neuroreport,2006,17:19-22.
    [25]Zhou Y,Liang M,Jiang T,et al.Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI.Neuroscience Letters,2007,417:297-302.
    [26]徐卫东,刘乡,朱兵,等.电针对三叉神经脊束尾侧核会聚神经元镇痛作用的穴位特异性和广泛性.针刺研究,1995,20:24-30.
    [27]Burstein R,Yamamura H,Malick A,et al.Chemical Stimulation of the Intracranial Dura Induces Enhanced Responses to Facial Stimulation in Brain Stem Trigeminal Neurons.J Neurophysiol,1998,79:964-82.
    [28]包新民,舒斯云.大鼠脑立体定位图谱.北京:人民卫生出版社,1991.
    [29]Le(?)o AAE Spreading depression of activity in the cerebral cortex.J Neurophysiol,1944,7:359-90.
    [30]Buresova O,Bures J.The use of partial functional decortication in the study of the localization of conditioned reflexes.Physiol Bohemoslov,1960,9:210-18.
    [31]James MF,Smith MI,Bockhorst KHJ,et al.Cortical spreading depression in the gyrencephalic feline brain studied by magnetic resonance imaging.Journal of Physiology,1999,519:415-25.
    [32]Cao Y,Welch KMA,Aurora S,et al.Functional MRI-BOLD of visually triggered headache in patients with migraine.Arch Neurol,1999,56:548-54.
    [33]Cao Y,Aurora SK,Nagesh V,et al.Functional MRI-BOLD of brainstem structures during visually triggered migraine.Neurology,2002,59:72-8.
    [34]Malick A and Burstein R.Peripheral and central sensitization during migraine.Funct Neurol,2000,15:S28-35.
    [35]Panteleev SS,Sokolov AY,Kartus DE,et al.Responses of Neurons in the Spinal Nucleus of the Trigeminal Nerve to Electrical Stimulation of the Dura Mater of the Rat Brain.Neuroscience and Behavioral Physiology,2005,35:555-9.
    [36]Goadsby PJ,Zagami AS,Lambert GA.Neural Processing of Craniovascular Pain:A Synthesis of the Central Structures Involved in Migraine.Headache,1991,31:365-71.
    [37]Moskowitz MA.The visceral organ brain:implications for the pathophysiology of vascular head pain,Neurology,1991,41:182-6.
    [38]Ebersberger A,Ringkamp M,Reeh PW,et al.Recordings from Brain Stem Neurons Responding to Chemical Stimulation of the Subarachnoid Space.J Neurophysio,1997,177:3122-33.
    [39]Levy D,Jakubowski M,Burstein R.Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT_(1B/1d) receptor agonists.PNAS,2004,101:4274-9.
    [40]Moskowitz MA,Nozaki K,Kraig RP.Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms,J Neurosci,1993,13:1167-77.
    [41]Lambert GA,Michalicek J.Cortical spreading depression reduces dural blood flow:possible mechanism for migraine pain? Cephalalgia,1994,14:430-6.
    [42]Gorji A,Zahn PK,Pogatzki EM,et al.Spinal and cortical spreading depression enhance spinal cord activity.Neurobiol Dis,2004,15:70-9.
    [43]Supang M,Juntima P,Suthiluk P,et al.Cortical spreading depression,meningeal inflammation and trigeminal nociception.Neuroreport,2004,15:1623-7.
    [44]Ingvardsen BK,Laursen H,Olsen UB,et al.Possible mechanism of c-fos expression in trigeminal nucleus caudalis following cortical spreading depression.Pain,1997,72:407-15.
    [45]Ebersberger A,Schaible HG,Averbeck B,et al.Is there a correlation between spreading depression,neurogenic inflammation,and nociception that might cause migraine headache? Ann Neurol,2001,49:7-13.
    [46]Lambert GA,Michalicek J,Storer RJ,et al.Effect of cortical spreading depression on activity of trigeminovascular sensory neurons.Cephalalgia,1999,19:631-8.
    [47]Goadsby PJ.Migraine,aura,and cortical spreading depression why are we still talking about it? Ann Neurol,2001,49:4-6.
    [48]Louis P.A double-blind placebo-controlled prophylactic study of flunarizine (Sibelium) in migraine,Headache,1981,21:235-9.
    [49]Wauquier A,Ashton D,Marrannes R.The effects of flunarizine in experimental models related to the pathogenesis of migraine.Cephalalgia,1985,5:S119-23.
    [50]Shimazawa M,Hara H,Watano T,et al.Effects of Ca2+ channel blockers on cortical hypoperfusion and expression of c-Fos-like immunoreactivity after cortical spreading depression in rats.British Journal of Pharmacology,1995,115:1359-68.
    [51]Rosenfeld MG,Mermod JJ,Amara SG,et al.Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.Nature,1983,304:129-35.
    [52]Levy D,Burstein R,Strassman AM.Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors:implications for the pathophysiology of migraine.Ann Neurol,2005,58:698-705.
    [53]Durham PL.Calcitonin gene-related peptide (CGRP) and migraine.Headache,2006,46:S3-8.
    [54]Goadsby PJ,Edvinsson L.The trigeminovascular system and migraine:studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats.Ann Neurol,1993,33:48-56.
    [55]Goadsby PJ,Edvinsson L.Sumatriptan reverses the changes in calcitonin gene-related peptide seen in the headache phase of migraine.Cephalalgia,1991,11:S3-4.
    [56]Lassen LH,Haderslev PA,Jacobsen VB,et al.CGRP may play a causative role in migraine.Cephalalgia,2002,22:54-61.
    [57]Doods H,Hallermaer G,Wu D,et al.Pharmacological profile of BIBN4096BS,the first selective small molecule CGRP antagonist.Br J Pharmacol,2000,129:420-3.
    [58]Olesen J,Diener HC,Husstedt IW,et al.Calcitonin gene-related peptide receptor antagonist BIBN4096BS for the acute treatment of migraine.N Engl J Med,2004,350:1104-10.
    [59]Otsuka M,Yoshioka K.Neurotransmitter function of mammalian tachykinins.Physiol Res,1993,73:229-308.
    [60]Edvinsson L,Rosendal-Helgesen S,Uddman R.Substance P:localization,concentration and release in cerebral arteries,choroids plexus and dura matter.Cell Tissue Res,1983,234:1-7.
    [61]O'Connor TP,Van Der Kooy D.Enrichment of vasoactive neuropeptide (calcitonin gene-related peptide) in the trigeminal sensory projection to the intracranial arteries.J Neurosci,1988,8:2468-76.
    [62]Mayberg MR,Zervas NT,Moskowitz MA.Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry.J Comp Neurol,1984,223:46-56.
    [63]Theoharides TC,Donelan J,Kandere-Grzybowska K,et al.The role of mast cells in migraine pathophysiology.Brain Res Brain Res Rev,2005,49:65-76.
    [64]Fusayasu E,Kowa H,Takeshima T,et al.Increased plasma substance P and CGRP levels,and high ACE activity in migraineurs during headache-free periods.Pain,2007,128:209-14.
    [65]Wahl M,Schilling L,Parsons AA,et al.Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression.Brain Res,1994,637:204-10.
    [66]Colonna DM,Meng W,Deal DD,et al.Calcitonin gene-related peptide promotes cerebrovascular dilation during cortical spreading depression in rabbits.Am J Physiol,1994,266:H 1095-102.
    [67]Piper RD,Edvinsson L,Ekman R,et al.Cortical spreading depression does not result in the release of calcitonin gene-related peptide into the external jugular vein of the cat:relevance to human migraine.Cephalalgia,1993,13:180-3.
    [68]Kraig RP,Nicholson C.Extracellular ionic variations during spreading depression.Neuroscience,1978,3:1045-59.
    [69]Headache Classification Committee of the International Headache Society.The International Classification of Headache Disorders,2nd edn.Cephalalgia,2004,24:S1-160.
    [70]Liang M,Zhou Y,Jiang TZ,et al.Widespread functional disconnectivity in schizophrenia with resting-state fMRI.Neuroreport,2006,17:209-13.
    [71]Zang Y,Jiang T,Lu Y,et al.Regional homogeneity approach to fMRI data analysis.Neuroimage,2004,22:394-400.
    [72]Wang L,Zang Y,He Y,et al.Changes in hippocampal connectivity in the early stages of Alzheimer's disease:evidence from resting state fMRI.Neuroimage,2006,31:496-504.
    [73]Friston KJ,Frith CD,Frackowiak RSJ.Time-dependent changes in effective connectivity measured with PET.Human Brain Mapping,1993,1:69-80.
    [74]Hampson M.,Peterson BS,Skudlarski P,et al.Detection of functional connectivity using temporal correlations in MR images.Human Brain Mapping,2002,15:247-62.
    [75]Greicius MD,Krasnow B,Reiss AL,et al.Functional connectivity in the resting brain:A network analysis of the default mode hypothesis.Proc Natl Acad Sci USA,2003,100:253-8.
    [76]Ogawa S,Lee TM,Kay AR,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proc Natl Acad Sci USA,1990,87:9868-72.
    [77]Fox PT,Raichle ME,Mintun MA,et al.Non-oxidative glucose consumption during focal physiologic neural activity.Science,1988,241:462-4.
    [78]Heeger DJ,Ress D.What does fMRI tell us about neuronal activity? Nat.Rev Neurosci,2002,3:142-51.
    [79]Raichle ME.Cognitive neuroscience:Bold insights.Nature,2001,412:128-30.
    [80]Logothetis NK,Pauls J,Augath M,et al.Neurophysiological investigation of the basis of the fMRI signal.Nature,2001,412:150-7.
    [81]Biswal B,Yetkin FZ,Haughton VM,et al.Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.Magn Reson Med,1995,34:537-41.
    [82]Xiong J,Parsons LM,Gao JH,et al.Interregional connectivity to primary motor cortex revealed using MRI resting state images.Human Brain Mapping,1999,8:151-6.
    [83]Lowe MJ,Mock BJ,Sorenson JA.Functional connectivity in single and multislice echoplanar imaging using resting state fluctuations.Neuroimage,1998,7:119-32.
    [84]Cordes D,Haughton VM,Arfanakis K,et al.Mapping functionally related regions of brain with functional connectivity MRI (fcMRI).Am J Neuroradiol,2000,21:1636-44.
    [85]Cordes D,Haughton V,Arfanakis K,et al.Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data.Am J Neuroradiol,2001,22:1326-33.
    [86]May A,Leone M,Boecker H,et al.Hypothalamic deep brain stimulation in positron emission tomography.J Neuroscience,2006,26:3589-93.
    [87]Matharu MS,Cohen AS,McGonnigle DJ,et al.Posterior hypothalamic and brainstem activation in hemicrania continua.Headache,2004,44:747-61.
    [88]Afridi SK,Giffin NJ,Kaube H,et al.A positron emission tomographic study in spontaneous migraine.Arch Neurol,2005,62:1270-5.
    [89]Afridi SK,Matharu MS,Lee L,et al.A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate.Brain,2005,128:932-9.
    [90]Chen LM.Imaging of Pain.International Anesthesiology Clinics,2007,45:39-57.
    [91]May A,Bahra A,Buchel C,et al.Hypothalamic activation in cluster headache attacks.Lancet,1998,352:275-8.
    [92]Sprenger T,Boecker H,Tolle TR,et al.Specific hypothalamus activation during a spontaneous cluster headache attack.Neurology,2004,62:516-7.
    [93]May A,Ashburner J,Buchel C,et al.Correlation between structural and functional changes in brain in idiopathic headache syndrome.Nature Med,1999,5:836-8.
    [94]Wang SJ,Lirng JF,Fuh JL,et al.Reduction in hypothalamic 1H-MRS metabolite ratios in patients with cluster headache.J Neurol Neurosurg Psychiatry,2006,77:622-5.
    [95]Lodi R,Pierangeli G,Tonon C,et al.Study of hypothalamic metabolism in cluster headache by proton MR spectroscopy.Neurology,2006,66:1264-6.
    [96]Leone M,Franzini A,Broggi G,et al.Long-term follow-up of bilateral hypothalamic stimulation for intractable cluster headache.Brain,2004,127:2259-64.
    [97]Leone M,Franzini A,Broggi G,et al.Hypothalamic deep brain stimulation for intractable chronic cluster headache:a 3-year follow-up.Neurol Sci, 2003,24:S143-5.
    [98]Morelli N,Cafforio G,Maluccio MR,et al.Functional magnetic resonance imaging in episodic cluster headache.J Headache Pain,2009,10:11-4.
    [99]Sprenger T,Ruether KV,Boecker H,et al.Altered metabolism in frontal brain circuits in cluster headache.Cephalalgia,2007,27:1033-42.
    [100]Büchel C,Frackowiak RS,Goadsby PJ.PET and MRA findings in cluster headache and MRA in experimental pain.Neurology,2000,55:1328-35.
    [101]Raichle ME,Mintun MA.Brain Work and Brain Imaging.Annual Review of Neuroscience,2006,29:449-76.
    [102]Liu Y,Wang K,Yu C,et al.Regional homogeneity,functional connectivity and imaging markers of Alzheimer's disease:A review of resting-state fMRI studies.Neuropsychologic 2008,46:1648-56.
    [1]Le(?)o AAP.Spreading depression of activity in the cerebral cortex.J Neurophysiol,1944,7:359-90.
    [2]Bures J,Buresova O,Krivanek J.in:The Mechanisms and Applications of Leao's Spreading Depression of Electroencephalog raphic Activity,Academic Press,New York,1974.
    [3]Kraig RP,Nicholson C.Extracellular ionic variations during spreading depression.Neuroscience,1978,3:1045-59.
    [4]Nedergaard M.Direct signaling from astrocytes to neurons in cultures of mammalian brain cells.Science,1994,263:1768-71.
    [5]Mies G.,Paschen W.Regional changes of blood flow,glucose,and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex.Exp Neurol,1984,84:249-58.
    [6]Russell MB,Olesen J.A nosographic analysis of the migraine aura in a general population.Brain,1996,119:355-61.
    [7]Schott GD.Exploring the visual hallucinations of migraine aura:the tacit contribution of illustration.Brain,2007,130:1690-730.
    [8]Leao AAP,Morrison RS.Propagation of spreading cortical depression.J Neurophysiol,1945,8:33-45.
    [9]Buresova O,Bures J.The use of partial functional decortication in the study of the localization of conditioned reflexes.Physiol Bohemoslov,1960,9:210-18.
    [10]Duckrow RB.Regional cerebral blood flow during spreading cortical depression in conscious rats,J Cereb Blood Flow Metab,1991,11:150-4.
    [11]Olesen J,Larsen B,Lauritzen M.Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine.Ann Neurol,1981,9:344-52.
    [12]Olesen J,Friberg L,Olsen TS,et al.Timing and topography of cerebral blood flow,aura,and headache during migraine attacks.Ann Neurol,1990,28:791-98.
    [13]Ogawa S,Lee TM,Kay AR,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proc Natl Acad Sci USA,1990,87:9868-72.
    [14]James MF,Smith MI,Bockhorst KHJ,et al.Cortical spreading depression in the gyrencephalic feline brain studied by magnetic resonance imaging.Journal of Physiology,1999,519:415-25.
    [15]Cao Y,Welch KMA,Aurora S,et al.Functional MRI-BOLD of visually triggered headache in patients with migraine.Arch Neurol,1999,56:548-54.
    [16]Hadjikhani N,Sanchez del Rio M,Wu O,et al.Mechanisms of migraine aura revealed by fMRI in human visual cortex.Proc Natl Acad Sci USA,2001,98:4687-92.
    [17]Supang M,Juntima P,Suthiluk P,et al.Cortical spreading depression,meningeal inflammation and trigeminal nociception.Neuroreport,2004,15:1623-7.
    [18]Moskowitz MA,Nozaki K,Kraig RP.Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms,J Neurosci,1993,13:1167-77.
    [19]Gorji A,Zahn PK,Pogatzki EM,et al.Spinal and cortical spreading depression enhance spinal cord activity.Neurobiol Dis,2004,15:70-9.
    [20]Ferrari MD,Odink J,Tapparelli C,et al.Serotonin metabolism in migraine.Neurology,1989,39:1239-42.
    [21]Kovacs K,Herman F,Filep J,et al,Platelet aggregation of migraineurs during and between attacks.Cephalalgia,1990,10:161-5.
    [22]Mathew NT,Kailasam J,Meadors L.Early treatment of migraine with rizatriptan-a placebo controlled study.Headache,2004,44:669-73.
    [23]Gold L,Back T,Arnold G,et al.Cortical spreading depression-associated hyperemia in rats:involvement of serotonin.Brain Res,1998,783:188-93.
    [24]李凤鹏,于生元,管维平,等.苯甲酸利扎曲普坦对皮层扩布性抑制及中脑导水管周围灰质-Fos表达的影响.中华神经科杂志,2008,41:624-7.
    [25]Louis P.A double-blind placebo-controlled prophylactic study of flunarizine (Sibelium) in migraine,Headache,1981,21:235-9.
    [26]Shimazawa M,Hara H,Watano T,et al.Effects of Ca2+ channel blockers on cortical hypoperfusion and expression of c-Fos-like immunoreactivity after cortical spreading depression in rats.British Journal of Pharmacology,1995,115:1359-68.
    [27]Wahl M,Schilling L,Parsons AA,et al.Involvement of calcitonin gene-related peptide(CGRP) and nitric oxide(NO) in the pial artery dilatation elicited by cortical spreading depression.Brain Res,1994,637:204-10.
    [28]Ingvardsen BK,Laursen H,Olsen UB,et al.Possible mechanism of c-fos expression in trigeminal nucleus caudalis following cortical spreading depression.Pain,1997,72:407-15.
    [29]Ebersberger A,Schaible HG,Averbeck B,et al.Is there a correlation between spreading depression,neurogenic inflammation,and nociception that might cause migraine headache? Ann Neurol,2001,49:7-13.
    [1]Headache Classification Committee of the International Headache Society.The International Classification of Headache Disorders,2nd edn.Cephalalgia,2004,24:S1-160.
    [2]Hsieh JC,Hannerz J,Ingvar M.Right-lateralised central processing for pain of nitroglycerin-induced cluster headache.Pain,1996,67:59-68.
    [3]May A,Bahra A,Buchel C,et al.Hypothalamic activation in cluster headache attacks.Lancet,1998,352:275-8.
    [4]May A,Bahra A,Buchel C,et al.PET and MRA findings in cluster headache and MRA in experimental pain.Neurology,2000,55:1328-35.
    [5]Apkarian AV,Bushnell MC,Treede RD,et al.Human brain mechanisms of pain perception and regulation in health and disease.Eur J Pain,2005,9:463-84.
    [6]Sprenger T,Boecker H,Tolle TR,et al.Specific hypothalamic activation during a spontaneous cluster headache attack.Neurology,2004,62:516-7.
    [7]May A,Leone M,Boecker H,et al.Hypothalamic deep brain stimulation in positron emission tomography.J Neurosci,2006,26:3589-93.
    [8]Sprenger T,Willoch F,Miederer M,et al.Opioidergic changes in the pineal gland and hypothalamus in cluster headache:a ligand PET study.Neurology,2006,66:1108-10.
    [9]Peres MF,Rozen TD.Melatonin in the preventive treatment of chronic cluster headache.Cephalalgia,2001,21:993-5.
    [10]Sprenger T,Ruether KV,Boecker H,et al.Altered metabolism in frontal brain circuits in cluster headache.Cephalalgia,2007,27:1033-42.
    [11]May A,Ashburner J,Buchel C,et al.Correlation between structural and functional changes in brain in idiopathic headache syndrome.Nature Med,1999,5:836-8.
    [12]Wang SJ,Lirng JF,Fuh JL,et al.Reduction in hypothalamic 1H-MRS metabolite ratios in patients with cluster headache.J Neurol Neurosurg Psychiatry,2006,77:622-5.
    [13]Lodi R,Pierangeli G,Tonon C,et al.Study of hypothalamic metabolism in cluster headache by proton MR spectroscopy.Neurology,2006,66:1264-6.
    [14]Ogawa S,Lee TM,Kay AR,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proc Natl Acad Sci USA,1990,87:9868-72.
    [15]Morelli N,Cafforio G,Maluccio MR,et al.Functional magnetic resonance imaging in episodic cluster headache.J Headache Pain,2009,10:11-4.
    [16]Matharu MS,Cohen AS,Frackowiak RS,et al.Posterior hypothalamic activation in paroxysmal hemicrania.Ann Neurol,2006,59:535-45.
    [17]May A,Bahra A,Buchel C,et al.Functional magnetic resonance imaging in spontaneous attacks of SUNCT:short-lasting neuralgiform headache with conjunctival injection and tearing.Ann Neurol,1999,46:791-4.
    [18]Sprenger T,Valet M,Platzer S,et al.SUNCT:bilateral hypothalamic activation during headache attacks and resolving of symptoms after trigeminal decompression.Pain,2005,113:422-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700