基于图像分析的超塑性自由胀形实验测量与力学解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是我的导师宋玉泉教授关于超塑性力学解析理论和成形规律研究的组成部分。由于超塑性自由胀形的真实轮廓为轴对称旋转曲面,随着对超塑胀形力学研究的不断深入,以往建立在球面假设条件下的力学解析已不能真实反映胀形过程。因此,要想得出精确的定量解析结果,就必须准确测量出旋转曲面胀形件轮廓的几何形状以及胀形过程中轮廓上各点的变形情况。基于此,本文通过对球面假设条件下、以及非球面真实情况下的力学解析基本理论的介绍,分析了轴对称旋转曲面的主曲率半径和弧长等基本特性。采用图像测量方法对实验过程中胀形件几何参量和变形进行测量,并对超塑胀形实验实验装置的加热、加载以及控制系统等进行改造设计。选择典型超塑性材料ZnAl22自由胀形进行测量实验,介绍了几何参量和胀形变形测算的基本方法。根据对非球面胀形几何形状数学模型的分析,建立胀形件几何参数测量公式和厚度分布模型,以及应用图像测量建立胀形基本力学方程的方法。本文的研究内容为进行超塑性非球面自由胀形理论和实验研究提供了方法和手段,对进一步深入研究超塑性胀形力学规律有着重要的意义。
Superplasticity is a brach of materials science frontiers, and superplastic forming has become an important method in the field of the modern forming technology.The development of metal superplastic experiences the stages, composed by the observation of some superplasticity phenomenon, further research on the mechanical properties and deformation mechanism, with its application. Today, more and more applications of the thoery on superplastic forming have put into reality in the fields of aerospace, construction, transportation and electronics, especially indispensable metal processing method in the aerospace. Put forword by the development of modern aerospace industrial, research and development with experiment validations after years, the technology of superplastic forming (SPF) and diffusion bonding (DB) has been an important advanced manufacturing technology. It promotes the developments of modern aerospace structural design concepts and breaks throught the tranditional sheet metal forming methods. The development and application level of this technology has been the sympol on measuring the capacity and potential on aerospace of a country in recent years.
     With the research and development of a variety of new materials and technics, there comes out a series of questions in the industrial applications, which need common answers and the guidance of regularity based on mechanical thorey. That is the further process to superplastic technology. Researchers have paid close attention to analyze on Superplasticity Mechanics. Superplastic bulging is a typical one of superplastic forming technics, which plays an important role in the aspect of experiment measurements and mechanical analysis on superplastic. An experiment is the basis of theoretical analysis and the important method of science research.
     Scholars drew a series of important conclusions about superplastic free bulging based on the sphere assumptions. Under the assumptions, any point on the surface is in the state of equivalentdouble tensile stress, which makes the analysis and solution simplified. Generally, it is the height of the pole of the bulging sample that a researcher only measured in the experiments and catched the ralationship about time and height. Then the basic analysis mechanical equations of superplastic bulging were established based on it.
     It has been proved that the profile of the bulding sample is axisymmetric rotating surfaces, the points on the sample, except the pole, are not in the state of equal pairs of tensile stress, with the principal strain not equle along the radial and latitudinal. As further research on mechanics of superplastic bulging going on, the theory of spherical assumption can not reflect the process of bulging, and can not catch the precise quantitative analysis results. It ought to measure the geometrical shape and the deformation of the point on the profile of the sample precisely, that is a means to esteblish the geometric equation of the profile. My tutor brings forward the method, which is to watch the real-time process of bulging by a digital camera, measure and calculate the geometry parameters by image processing techniques. The thesis creates the mathematic model of non-spherical geometry shapes of the bulging sample, used the above method, builds the basic mechanical equations, and catches the model of thickness changing rules. The main are as follows:
     Firstly, to analyze the basical mechanics in the circumstance of both sphere assumption and aspheric, and create the computing formula of the meridional curvature radius ,ρr, and the circumferential curvature radius ,ρθ, in the axisymmetric rotating surface, based on the defitination and feature analysis of the surface in the differential geometry about surface theory.
     Secondly, to measure the realtime contour shape and deformation of the bulging sample by the non-contact monocular two-dimensional image measurement system. It introduces the hardware components of the image measurement system, with the basic method and process of the image measurement, deduces the error correction formula using monocular image system to measure the rotating surface, provides a means to camera calibration, including pose adjustment of the camera, experimental measurement and caculation of the camera intrinsic parameters, measurement of distance between the optical centre and measured surface, and etc. In order to keep real-time with bulging, there are two steps of image measurement.
     The first is to foucs on the height of the pole on the profile and save the image data during bulging in scheduled way before experiment.
     The second is to process the digital image data, such as to measure the profile and deformation, and to analyze. The measurement of the profile is to do edge detection of the sample image directly. The measurement of the space between the deformation is get in another way. The sample is signed with a group of the concentric circles which have the same centre, the pole, before bulging. After found the angular points, which are the intersections of the profile edge and the concentric circles in the images, the degree of the deformation is defined by the changes of distances between the neighbour angular points. The feather of the sample shape must be taken into account while image processing algorithms composing. The corner detection relies on the changes of grey scale along the symmetry axis combined with edge detection, which is depending on Canny operator. In order to improve the measurement precision, sub-pixel algorithm is used to locate the edge and corners precisely.
     Thirdly, to renovate the experimental apparatus for superplastic bulging according to the exist questions.
     First, the heating-up system renavation improves the temperature control accuracy, makes the thermal insulation properties better, expands the flat-temperature zone, and prolongs the life of heating-ware extent mainly on the aspects of loading and controlling system.
     Second, the loading system improves the precision and sensitivity of loading controllment, achieves loading pressure jump, and redesign the control systems.
     Third, the control system consists of the main control PC, as the host computer, and SCM system, as Lower machine. An operator implements system calibration and system test, sets parameters, and selects loading mode through the human-computer interaction interface on the main control PC. It controls not only the image measurement system to collect and process the image data, but also the SCM controlling system to gather the pressure signals. SCM controlling system selects the high-performance microcontroller,C8051F120, as the core, combining with the software programming, which controls the loading paths for bulging experiment. It improves the experimental apparatus on the aspects of both the measuring accuracy and performance.
     Forthly, to select the typical superplastic materials, ZnAl22, for bulging experiment in constant pressure, do curve fitting about the profile coordinate from the experiment by Polynomial fitting and custom functions fitting respectively, and contrast the results of the two.
     Fively, to measure and calculate some geometric parameters, such as meridional curvature radius ,ρr, circumferential curvature radius,ρθ,and flattening , N ,based on the curve fitting. It also measures and caculates circumferential strainεθ, meridional strainεs and thick strainεt, after measured the deformation.
     The last, to create geometry model for non-spherical free bulging, estabilsh the two sets of principal curvature radius formula about any point on the curve and arc length formula for points along meridional line, analyze the rules of the thinkness while bulging, and create the basic mechanical equation based on the experiment.
     It is significant to measure the geometry shape of bulging sample, and caculate the geometric parameters and mechanical parameters based on it. It is the need to do further more research on the analysis relationships between the material mechanical parameters which include strain rate sensitivity exponent,m, and Strain hardening exponent n, and geometric parameters, also the mechanical quantity fields. The method to measure the geometric parameters and deformation using the image measuring has the advantage of non-contact, high speed and rich information, and so on. It can measure the real-time deformation of the sample online., and catch geometric parameters in any height by only one sample. It not only saves experimental materials, but also improves the operability and precision.The calculation accuracy is also improved by the method of polynomial fitting. Though the experiment data, geometric parameters and mathematical model are related with the material, the typical superplastic material, ZnAl22, it bas the common sense on ideas and methods. The thesis provides a new experiment method for the research on Superplastic non-spherical free bulge forming, which is important to the research on the rules of superplastic bulging mechanics.
引文
[1]吴诗惇.金属超塑性变形理论[M].北京:国防工业出版社,1997.
    [2]华南工学院金属材料研究室.金属材料超塑性研究综述[J].广东机械,1981(1):53-68.
    [3] Pearson C.E. The properties of Lead-Tin and Bismuth-Tin. J. Inst. Metals [J] ,1934, 54(1): 111-124.
    [4]季霍诺夫A.C.金属与合金的超塑性效应[M].刘春林译,北京:科学技术出版社,1983.
    [5] Underwood E. E.. Review of Superplasticity[J]. J. Metals,1962,14(3):414-419.
    [6] Backofen W. A. , Turner J. R. ,.Avery D.H, Superplasticity in an Al-Zn Alloy[J]. Trans. ASME, 1964, 57(6): 980-990.
    [7]卡依勃舍夫O.A.金属的塑性和超塑性[M].王燕文译.北京:机械工业出版社, 1982:1-329.
    [8]曾立英,赵永庆,李丹柯,等.超塑性钛合金的研究进展[J].金属热处理, 2005, 30(5): 28-33.
    [9]李旭红,刘兴秋,刘庆,等.温轧态Al-Mg-Zr合金超塑变形过程中力学行为和微观组织相关性研究[J].材料研究学报, 1995, 9 (1): 25-28.
    [10]刘润广,蒋浩民,姜勇,等. 2214铝合金超塑变形机制[J].金属学报, 1996, 32 (12) :1244-1247.
    [11]刘志义,崔建忠,白光润.脉冲电流对2091Al-Li合金超塑性及断裂行为的影响[J].金属学报, 1993(02): 90-92.
    [12]吴诗惇,李淼泉. L Y12CZ铝合金超塑变形时的电场效应[J].金属学报, 1995, 31 (6) : A272 -275.
    [13]李锋,林立,刘正,等.镁合金及其复合材料超塑性的研究现状[J].铸造, 2003, (07): 7-14.
    [14]尉胤红,王渠东,刘满平,等.镁合金超塑性的研究现状及发展趋势[J].材料导报, 2002, 16 (9): 20-23.
    [15]吴德忠,张凯锋,吴为. OCr21Ni5Ti双相不锈钢超塑成形研究[J].哈尔滨工业大学学报,1999,31(3):62-64.
    [16]张沛学,任学平,谢建新等.双相不锈钢的低温超塑性研究[J].塑性工程学报,2003,10(2):51-55.
    [17]张沛学,任学平,谢建新等.双相不锈钢超塑性变形机理[J].北京科技大学学报,2005,27(1):68-71.
    [18] Pickard S M,Derby B. The influence of microst ructure on internal stress superplasticity in polycrystalline zinc[J]. Scripta Metall Mater,1991,25: 467-472.
    [19] Dunand D C,Bedekk C M. Transformation 2mixmatch superplasticity in reinforced and unreinforced titanium[J]. Acta Mater , 1996 , 44 : 1063-1076.
    [20] Schuh C,Dunand D C. Transformation superplasiticity of superα-titanium aluminide [J] . Acta Mater , 1998,46 (6) : 5663-5675.
    [21]郭建亭,周文龙.金属间合物超塑性的研究进展[J].材料导报,2000,14(5):18-20.
    [22]宋玉泉.铝系结构金属间化合物及其塑性和超塑性[J].航空制造技术, 2003, (07): 17-22.
    [23]宋玉泉,徐进,胡萍,杨正海.结构陶瓷的超塑性[J].吉林大学学报(工学版), 2005, (03): 225-242.
    [24] R. M. Imayev, G. A. Salishchev, O. N. Senkov,et al. Low-temperature superplasticity of titanium aluminides[J]. Materials Science and Engineering A, 2001, 300(1-2): 263-277.
    [25]曾立英,赵永庆,李倩.钛合金低温超塑性的研究进展[J].热加工工艺(热处理版), 2006, (11): 28-33.
    [26] H. Watanabe, T. Mukai, K. Ishikawa,et al. Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy[J]. Materials Science and Engineering A, 2001, 307(1-2): 119-128.
    [27]张诗昌,宗钦.高应变速率超塑性变形理论的研究进展[J]. 2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集, 2007.
    [28]丁桦,张凯锋.材料超塑性研究的现状与发展[J].中国有色金属学报, 2004, 14(7): 1059-1067.
    [29] Z. Li, H. Guo. Application of superplastic forming and diffusion bonding in the aerospace industry[A]. PRICM 5: The Fifth Pacific Rim International Conference onAdvanced Materials and Processing, Nov 2-5 2004[C]. Beijing, China: Trans Tech Publications Ltd, Zurich-Ueticon, CH-8707, Switzerland, 2005. 3037-3042.
    [30] Gershon, I. Eldror. Research and application of superplastic forming titanium Alloys for commercial Aircraft parts[A]. PRICM 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing, Nov 2-5 2004[C]. Beijing, China: Trans Tech Publications Ltd, Zurich-Ueticon, CH-8707, Switzerland, 2005: 3047-3050.
    [31] P. A. Friedman, S. G. Luckey. On the expanded usage of superplastic forming of aluminium sheet for automotive applications[A]. ICSAM 2003, Oxford, United Kingdom: Trans Tech Publications Ltd, Zurich-Ueticon, Switzerland, 2004. 199-204.
    [32] J. Barnes. Industrial applications of superplastic forming: Trends and prospects[A]. Superplasticity in advanced materials (ICSAM-2000), Aug 1-4 2000[C]. Orlando, FL: Trans Tech Publications Ltd, 2001: 3-16.
    [33]丁桦,张凯锋.材料超塑性研究的现状与发展[J].中国有色金属学报, 2004, (07): 1059-1067.
    [34] K. Higashi. Recent advances and future directions in superplasticity[A]. Superplasticity in Advanced Materials (ICSAM-2000), Aug 1-4 2000[C]. Orlando, FL: Trans Tech Publications Ltd, 2001. 345-356.
    [35]李志强,郭和平.超塑成形/扩散连接技术在航空航天工业中的应用[J].锻压技术, 2005, (01): 79-81.
    [36]管志平.超塑性拉伸变形定量力学解析[D].吉林:吉林大学超塑性与塑性研究所,2002.
    [37] H. Hollomon. The effect heat treatment and carbon content on the work hardening characteristics of several steels[J]. Transactions of ASM, 1944, 32: 123-133.
    [38] Avery. D.H. Backofen,W.A., A structural basis for superplasticity[J]. ASM Trans. Quart, 1965, 59: 551-558.
    [39] Packer.C.M., Sherby.C.D, An interpratation of the superplasticity phenomenon in two-phase alloy[J]. Tans.ASM.,1967,60:21-28.
    [40] Packer.C.M., Superplasticity in metals. Ph.D.dissertation, Standford University, Dec.1967.
    [41] N.Paton, A Constitutive equation for greep based on dialovation Climb[J]. J. of Eng. Materials & Tech ., Trans. ASME, Series H, 1975(12):212-218.
    [42] N.F.Ashby, R.A.Verrall. Diffusion accommodated flow and superplasticity. Acta Met.,1975,21:149-156.
    [43] C.Rossard. Formation de la striction dans la déformation a chaud par traction[J]. Rev. Met., 1966, 63(3): 225-231.
    [44] N. Chandra. Constitutive behavior of superplastic materials[J]. International Journal of Non-Linear Mechanics. 2002, 37 (3): 461-484.
    [45] C.H.Cacerces, Scripta. Metall., 1984,32:415-416.
    [46] G. S. Murty, S. Banerjee. Evaluation of threshold stress from the stress - strain rate data of superplastic materials[J]. Scripta Metallurgica et Materialia, 1994, 31(6): 707-712.
    [47] F. Garofalo. Fundamentals of creep and creep rupture in metals[J]. Mac Millan, N. Y., 1965.
    [48] M. Zhou, F. Dunne. Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy[J]. The Journal of Strain Analysis for Engineering Design, 1996, 31(3): 187-196.
    [49] W. R. Kerr. Flow stress, strain rate, strain relationships in superplastic deformation[J]. Journal of Materials Science, 1980, 15(12): 3104-3108.
    [50] R. H. Wagoner. Technique for measuring strain-rate sensitivity[J]. Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1981, 12A(1): 71-75.
    [51] K. Mukherjee, J. E. Bird, J. E. Dorn. Trans. Am. Soc. Metals, 1969, 62: 155-179.
    [52]宋玉泉.超塑性均匀大变形动态过程的力学分析——提出一个新的超塑性本构方程[J].吉林工业大学学报, 1985, (1): 13-21.
    [53] F.K.G. Odqvist. Mathematical Theory of Creep and Creep Rupture[J]. Oxford University Press, 1966.
    [54] S.Tang. Steady Extusion of Superplastic Metallic Alloy[J]. J.of Basic Eng., 1971(4):657-661.
    [55] Jovane F. An Approximate Analysis of the Superplastic Forming of a Thin Circular Diaphram[J]: Theory and Experiment. Int. J. Mech. Sci.., 1968, 10:403-424.
    [56]刘渭贤,莫江晓.中国机械学会锻压分会第四届学术年会论文集[J]. 1987. 6: 456-460.
    [57] Holt D.L. An Analysis of the Bulging of a Superplastic Sheet By Literal Pressure[J]. Int. J. Mech. Sci, 1970, 12:491-497.
    [58] Cornfield G. C, Johnson R.H. The Forming of Superplastic Sheet Materials[J]. Int. J. Mech. Sci, 1970,12:479-490
    [59]本田美智晴,小林滕.第二十三回塑性加工联合讲演会[J].1972年11月,249-252.
    [60] Tang S, Robbins T. L., Bulging Rupture of a Superplastic Sheet[J]. J. Eng. Mater. and Tech. Trans. ASME. Series H, 1979,6(1):77-79.
    [61] Packer C.M, Sherby.O.D. An Interpretation of the Superplastic Phenomenon in Two-phase Alloy[J]. Trans. ASME. ,1967,60:21-26.
    [62] Ragab A.R. Analysis of Rate-Dependent Bulging of Superplastic Tubes, Current Advance in Mechanical Design and Production, Ed.G.Shouki and S.Metwalli, Oxford. Pergamon, 1980,247-255.
    [63] R. Ragab. Thermoforming of Superplastic Sheet in Shaped Dies[J], Met. Tech., 1983, 10(9):340-348.
    [64] Inglbrecht C.D., Prediction of the Optimum Pressure Cycle for the Superplastic Forming of hemisphere from Ti-6Al-4V Sheet[J], J. of. Mat. Sci. Letters,1985, 4:1021-1025.
    [65]罗子键,郭乃成,龚泉源.考虑加工硬化的胀形过程的一个近似分析方法[J].西北工业大学学报,1985,3(4):419-427.
    [66]罗子键,郭乃成,龚泉源.粘塑性材料胀形过程的理论分析和实验研究[J].西北工业大学学报, 1987, 5(1):43-56.
    [67]罗子键,郭乃成,龚泉源.超塑板材气压成形V型槽过程的一般解析方法[J].锻压技术,1987(2):47-51.
    [68]罗子键,郭乃成,龚泉源.平面应变条件下粘塑性板材气压成形过程的一般分析方法[J].西北工业大学学报,1987, 5(4):481-489.
    [69] F. U. Enikeev. A. A. Kruglov. An analysis of the superplastic forming of a thin circular diaphragm[J]. Int. J. Mech. Sci. , 1995, 37(5): 473-483.
    [70] Jung-Ho Cheng. The determination of material parameters from superplastic inflation tests[J]. Journal of Materials Processing Technology, 1996,58(2-3):233-246.
    [71] J.J.V.Jeyasingh, B.NageswaraRao. On the thinning variation of asuperplastically formed titanium alloy sphericaldomes[J]. Journal of Materials Processing Technology, 2005, 160: 370-373.
    [72]宋玉泉,赵军.超塑胀形解析理论[J].吉林工业大学学报, 1985, 3:245-255.
    [73]宋玉泉,赵军.变m值本构方程[J].金属科学与工艺,1984, 3(3):1-13.
    [74]宋玉泉,赵军.超塑胀形动态过程的新的流变方程[J].吉林工业大学学报,1985, 3:256-261.
    [75]宋玉泉,赵军.超塑性金属薄板自由胀形极限分析及其最佳加压规律[J].吉林工业大学学报,1985, 3:262-268.
    [76] Song Yuquan, Zhao Jun. A Mechanical Analysis of the Superplastic Free Bulging of Metal Sheet[J]. Mater. Sci. Eng, 1986, 84:111-125.
    [77] Song Yuquan. Technological Analysis of the Superplastic Bulging of a Metal Sheet[J]. Mater. Sci.. Eng., 1987, 86:179-189.
    [78]宋玉泉.金属薄板超塑胀形极限系数[J].机械工程学报, 1989, 25(1):80-86
    [79]宋玉泉,连书君.超塑胀形的变m值本构方程[J].中国科学A辑,1990,4:440-447.
    [80] Brandon J.F., Lecoanet H. and Oytana C. A New Formulation for the Bulging of Viscous Sheet Metals[J]. Int.J.Mech.Sci.,1979, 21(7A):379-386.
    [81] Yang H.S. and Mukhjee, A.K. An Analysis of the Superplastic Forming of a Circular Sheet Diaphragm[J]. Int. J. Mech. Sci, 1992,34:283-297.
    [82] Song Yuquan, Zuo Wanyong. Models of Geometric Profile For Non- sphere Superplastic Free Bulging (I) [J]. Sci. in China., Series A , 1992, 35 (2):247-256.
    [83] Song Yuquan, Zuo Wanyong. Mathematical Models of Thinning Pattern for Non-sphere Superplastic Free Bulging (II) [J], Sci. in China., Series A,1992,35(1):122-128.
    [84] Song Yuquan, Zuo Wanyong. The Mechanical Fields for Superplastic Free Bulging(Ⅲ) [J]. Sci. in China ,Series A,1992,35(11):1388-1401.
    [85] Hsu T.C, Shang H.M., Lee T.C,etc. Flow Stresses in Sheet Material Formed intoNearly Spherical Shapes[J]. Trans. ASME ., series H ,1975 ,97(1):57-65.
    [86] Hsu T.C, Bidhendi M. A Study of Strain and Strain-Rate Dependent Properties of Superplastic Zn-Al Alloy under Biaxial Stresses[J]. Trans. ASME., J. Eng. Mater. and Tech., 1982, 104:41-46.
    [87] Yong H. Kim, Proceeding of the Fourth International Conference on Technology of Plasticity. Beijing,1993.
    [88] Huang, M. J. Cardew-Hall. A. Lowe Sheet Thickness Optimization for Superplastic Forming of Engineering Structures[J]. Journal of Manufacturing Science and Engineering, 2000,122: 117-123.
    [89]王卫英,张中元,李靖谊.超塑成形薄壁构件壁厚分布的预测[J].锻压技术,1998(6):35-38.
    [90]王卫英,张中元,李靖谊等.板料气压成形过程的数值模拟和压力优化设计[J].航空工艺技术,1998(4):8-10
    [91] Da-Jun Zhou and Jianshe Lian, Numerical Analysis of Superplastic Bulging for Cavity-Sensitive Materials[J]. Int. J. Mech. Sci., 1987,29(8):565-576.
    [92] Du Zhixiao, Wu Shichun. A Kinetic Equation for Damage during Superplastic Deformation[J]. J Mater Proc Tech, 1995, 52 (2- 4) : 270~279.
    [93]向毅斌,陈敦军,吴诗惇.空洞敏感材料超塑胀形过程的压力-时间曲线优化设计[J].西北工业大学学报,2001,19(1)106-109
    [94]向毅斌,吴诗惇,陈敦军.超塑胀形过程中空洞损伤演变的数值模拟[J].兵器材料科学与工程,2001,24(2):16-19.
    [95]谭红,连建设,胡平.材料参数及静水压力对孔洞敏感材料超塑胀形影响的数值分析[J].宇航材料工艺,1997(5):43-45.
    [96] Charter E. and Neale K.W. Finite Plastic Deformation of Circular Membrane under Hydrostatic Pressure(I)[J]. Int. J.Mech.Sci.,1983, 25(4):219-233.
    [97] Charter E. and Neale K.W. Finite Plastic Deformation of Circular Membrane under Hydrostatic Pressure(Ⅱ) [J]. Int. J. Mech. Sci., 1983, 25(4):253-244.
    [98] N.Chandra, S.C.Rama. Application of Finite Element Method to the Design of Superplastic Forming Processes[J]. Transactions of the ASME: Journal of Engineering for Industry, 1992,114: 452-458.
    [99]李园春,李淼泉,吴诗惇.材料参数对超塑性恒压充模胀形过程影响的数值分析[J].航空学报,1997,18(2):183-188.
    [100]李园春,李淼泉等.变形-损伤耦合的超塑性恒压轴对称充模胀形的有限元模拟[J].固体力学学报,1997. 18(2): 120-125.
    [101]李园春,金箐,李森泉等.超塑性充模胀形的有限元模拟[J].材料研究学报,1997,11(4):375-380.
    [102]王国峰,赖小明等.控制厚度分布的正反向超塑胀形的有限元分析[J].材料科学与工艺,2004,12(3):282-286.
    [103]刘洁,何耀民.超塑性气压胀形有限元模拟[J].塑性工程学报,2008,15(3):56-60
    [104]蔡云,童国权,葛永成.铝合金超塑性气胀成形壁厚分布工艺研究[J]. 2009,35(3):23-26.
    [105]蔡云等,铝合金超塑性气胀成形壁厚分布工艺研究[J].模具工业,2009,35(3):23-26.
    [106]于彦东,陈昌平,吕新宇等.基于数值模拟的AZ31心形件超塑气胀成形规律分析[J].热加工工艺,2009,38(3):56-58.
    [107] R.A. Vasina,F.U. Enikeevb; M. Tokudac,etc. Mathematical modelling of the superplastic forming of a long rectangular sheet[J], International Journal of Non-Linear Mechanics, 2003 (38 ): 799– 807.
    [108] Mimaroglu, O.F. Yenihayat. Modelling the superplasticdeformation process of 2024 aluminium alloys under constant strain rate: use of finite element technique[J]. Materials and Design 2003 (24): 189–195.
    [109] M.H. Hojjati, M. Zoorabadi, S.J. Hosseinipour. Optimization of superplastic hydroforming process of Aluminium alloy 5083[J]. Journal of materials processing technology 2008 (205): 482-488.
    [110] Da2jun Zhou,Jianshe Lian. Numerical Analysis of Superplastic Buldging for Cavity-Sensitive Materials[J]. Int. J. Mech. Sci. ,1987.29(8):565-576.
    [111] M A Khaleel , K I Johnson, M T Smith. On the Thinning Profiles in Superplastic Forming of a Modified 5083 Aluminum Alloy[J]. Materials Science Forum. ,1997,243-245:739-744.
    [112] Thomsen T.H., Holt D.C, Backofen W.A. Forming Superplastic Sheet Metal in Bulging Dies[J]. Met.Engng art.,1970,10:1-7.
    [113] Bidhendi M., Hsu T.C. A Rheological Study of a Superplastic Sheet Metal Forming Process[J]. Proceedings of VIIIth International Congress on Rheology, Napoli, Italy. Sept., 1980, 585- 590.
    [114] Hsu T.C, Shang H.M., Lee T.C, Lee S.Y. Flow Stresses in Sheet Material Formed into Nearly Spherical Shapes[J]. Trans. ASME ., series H ,1975 ,97(1):57-65.
    [115]王春荣,曹淑芝.超塑气胀构件的可成形性判据[J].金属学报,1987,23(4):185-189.
    [116]王春荣,宋海龙,曲力等.超塑气胀可成形性判据的数学模型[J].金属学报,1989,25(6):152-155.
    [117]王春荣,潘学卿,高子明等.金属板材超塑气胀可成形性研究[J].锻压技术,1984,9(4):4-9.
    [118]龚泉源.超塑气胀成形薄板零件的形变过程分析及其壁厚分布的控制[J].中国锻压学会第四届全国超塑性学术讨论会论文,1985(9).
    [119]陶树学,崔建忠,马龙翔.超塑胀形最佳加压规律及其控制[J].东北工学院学报,1989,10(6):603-608.
    [120]赵家昌等.超塑胀形时m值的测定方法[J].哈尔滨工业大学科学研究报,1989,(39):1.
    [121]胡世光.板料冷压成形原理[M].国防工业出版社,1979年7月
    [122]罗子键.用胀形法测定应变速率敏感性指数的研究[J].锻压技术,1986,3:7.
    [123]宋玉泉,连书君.压力跃变法测量超塑胀形时m值的公式[J].科学通报,1990(1): 73-76.
    [124]宋玉泉,不同加压方式的超塑胀形m值公式及测量方法[J],科学通报,1990,4:306-309.
    [125] Song Yuquan, Z.C.Wang. Superplastic Bulge Forming of Domes[J]. Mater. Sci. and Tch., 1993, vol9:57-60.
    [126]宋玉泉.加载路径对超塑胀形m值曲线的影响[J].宇航学报,1992,1:48-54.
    [127]宋玉泉.超塑胀形m值的力学解析[J].中国科学,A辑1990,10:1095-1102.
    [128]王卫英,张中元,李靖谊.薄板超塑胀形材料参数m、K值的测定[J].金属成形工艺,1997,15(3):28-30.
    [129]陈维桓.微分几何[M].北京:北京大学出版社,1982.
    [130]同济大学数学教研室.高等数学(上册)[M].北京:高等教育出版社,1995.
    [131]宋玉泉,赵军,万胜狄.超塑胀形光电测量实验装置[J].金属科学与工艺,1985,4(3):89-94.
    [132]林有义,骆晓森,张爱斌.超塑胀形CCD光电检测技术[J].实验力学,1992,7(4):351-355.
    [133]周建华,傅桂龙,陈明和,等.光纤式光电高度测量装置[J].数据采集与处理,1996,11(1):69-71.
    [134]高柏恩,超塑自由胀形真实几何形状与材料参数关系的解析研究[D].长春:吉林工业大学,1998.
    [135]宋玉泉,李达,杨申申等.曲面测量仪:中国,CN200510016865.8,2005. 10.
    [136]宋玉泉,李达,管志平.任意曲面曲率测量仪[J].吉林大学学报(工学版),2006,36(05):686-690.
    [137]宋玉泉,马品奎,管志平.保护气体超塑性胀形可控温度、压力的光电记录试验装置:中国,ZL200410010939.2, 2004. 10.
    [138]宋玉泉,马品奎,任明文等.高温超塑胀形实验装置[J].中国机械工程, 2006, 17(19): 2042-2045.
    [139]宋玉泉,马品奎,管志平.超塑性非球面自由胀形测量[J].金属学报,2010, 49(1): 1-5.
    [140]马品奎,宋玉泉.超塑性非球面自由胀形几何参数测量装置和方法:中国,申请号:200910067417.9.
    [141]于起峰,陆宏伟,刘肖琳.精密测量与运动测量[M].北京:科学出版社,2002.
    [142]孙培懋.图像测量技术.光学仪器[J], 1996(3): 49-55.
    [143]许琳,曹茂永,冯季变.图像测量技术及其在无损检测中的应用[J].电子测量技术,2008,31(1): 137-141.
    [144]冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003.3.
    [145]阮秋琦阮字智.数字图像处理[M].北京:电子工业出版社,2003.3.
    [146]马颂德,张正友.计算机视觉—理论与算法基础[M].北京:科学出版社, 1998.
    [147]李鹏,王军宁.摄像机标定方法综述[J].山西电子技术,2007 (4):77-79.
    [148]贾云得.机器视觉[M ].北京:科学出版社.
    [149]胡学龙,数字图像处理[M].北京:科学出版社.
    [150]马艳,张治辉.几种边缘检测算子的比较.工矿自动化, 2004(1): 54-56.
    [151]于起峰陆宏伟刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社,2002.
    [152]刘力双,张铫,卢慧卿等.图像的快速亚像素边缘检测方法[J].光电子·激光,2005,16(8):993-996.
    [153]贺忠海,王宝光,廖怡白,等.利用曲线拟合方法的亚像素提取算法[J].仪器仪表学报,2003,24(2):195-197.
    [154]范生宏,黄桂平,陈继华等. Canny算子对人工标志中心的亚像素精度定位[J],测绘科学技术学报,2006, 23(1): 76-78.
    [155]丁兴号.基于小波变换的亚像素边缘检测[J].仪器仪表学报,2005(8):801-804.
    [156]章毓晋.图像工程(中)图像分析[M].清华大学出版社,2005.
    [157]张广军.机器视觉[M].北京:科学出版社,2005.
    [158] Harris C, Stephens M. A Combined Corner and Edge Hetection[C].In:Proc. 4th Alvey Vision Conf., 1988:189-192.
    [159]赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006, 10: 17-19.
    [160]于殿泓.图像检测与处理技术[M].西安:西安电子科技大学出版社,2006.
    [161]宋玉泉.超塑胀形光电测量实验装置[J].金属科学与工艺, 1985, 4(3):89-94.
    [162] Xing Huilin. An Advanced SuperPlastic Sheet-Forming Machine Controlled by Microcomputer[J]. J. Mater. Proc. and Tech , 1995, 55:43-47.
    [163]潘琢金,施国君. C8051Fxxx高速SOC单片机原理及应用[M].北京:航空航天大学出版社,2002.5.
    [164]潘琢金. C8051F130/1/2/3系列混合信号ISP FLASH微控制器数据手册.新华龙电子有限公司, 2004.12.
    [165]祝绍箕,黄宣劭.光栅数字显示计数及应用[M].北京:机械工业出版社,1992,90-11.
    [166]韩喜春.计算机总线技术应用实例[M].北京:化学工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700