黄岛地下水封洞库水封条件和围岩稳定性分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:为了对水封式地下储油洞库群进行稳定性分析评价,从水封系统和洞库群围岩稳定性两方面进行研究。水封系统的研究在总结论述水封实验室试验的基础上,通过数值模拟和参数设计得到了水封泄漏的机理,优化了各水封参数的选取;洞库群围岩稳定性研究通过复杂模型的三维数值模拟,得到了水封条件下围岩稳定评价的各指标值,优化了洞库群的施工布置和开挖方案。具体研究内容如下:
     (1)在充分分析库区工程地质条件的前提下,以最大位移值为试验指标,通过正交试验确定了围岩力学参数的值和权重关系,结果表明围岩的弹性模量是影响最大位移值的最重要因素,其次是泊松比和内摩擦角,而抗拉强度和粘聚力影响最弱。在确定了围岩力学参数的基础上,分别以最大位移值、塑性区体积和拱顶垂直水力梯度为试验指标,通过正交试验确定了洞库的几何参数。另外根据库区提水试验结果和公式计算,得到了水文地质参数。
     (2)通过分析库区应力场和渗流场特征,建立了用于储库应力场与渗流场耦合作用分析的孔隙型等效连续介质数学模型,并给出了有限元法和有限差分法求解步骤。
     (3)在总结分析水封洞库泄漏实验室试验及微观机理的基础上,为了模拟储库的油气泄漏情况,采用非饱和地下水流及热流运移程序TOUGH2的TMVOC模块,进行了四种不同储油条件下的数值模拟,油品采用LPG(丙烷)。模型在TOUGH2_TMVOC的图形化界面程序PETRASIM中建立,分为无水幕和有水幕两种情况。数值模拟结果表明人工水幕系统可以十分有效地防止地下储油库的泄漏,保证气密和液密条件;在围岩饱和的情况下,即便是存在高导水率的大裂隙和断层(小于围岩渗透率的102倍),由于其处于饱和状态下,可以有效地阻止油气的泄漏,所以确保围岩水饱和是防止储库泄漏的前提条件;在人工水幕系统突然失效的极端情况下,油气会经过一定时间而不会立即泄漏至地表层。
     (4)针对自然地下水水动力封存和人工水幕水动力封存两种水封情况,分别进行了水封参数的分析。引入了衡量储库泄漏程度的泄漏参数Ψ评价自然地下水水动力封存,用以判断自然条件下储库的水封条件,并分析了储库几何参数对Ψ值的影响;采用最小水幕超压值评价人工水幕水动力封存,用以判断储库的水封条件。针对水幕覆盖范围、水幕超压、最大水幕压力、水幕钻孔间距、钻孔方向、储库与水幕间距等设计参数,给出了实际设计中的一些经验准则。在完全水封的情况下,以储库的临界储压为指标,采用有限元法从洞室几何参数、水幕布置和储库埋深三个方面对储库的储存能力进行了分析评价。在考虑应力场和渗流场耦合的情况下,分析了人工水幕系统对储库渗流场的影响并给出了估算储库涌水量的解析方法。
     (5)为了对洞库群进行耦合条件下的围岩稳定性分析,通过Solidworks, Hypermesh和FLAC3D等数值模拟软件建立了能够体现洞库群各部分特征的复杂三维数值模型,在FLAC3D中分别进行不考虑和考虑渗流场条件下的开挖模拟,以及耦合工况下的储油模拟。选取三个水平联络巷位置的横断面作为特征断面,从特征断面的应力场、位移场、水力梯度场和塑性区分布特征对模拟结果进行了分析评价。为了确定储库最优的洞群布置和单洞开挖方案,使得储库具有较高的稳定性,分别对洞群开挖工序和单洞开挖工序进行了方案比较,以塑性区体积和最大水平位移为评价指标得到了最优的开挖方案。数值模拟结果表明:在模型现有的力学参数、洞室几何参数、水封条件和边界条件前提下,储库可以实现完全水封,并且储库围岩是稳定的。
     (6)从地下水封储库的密闭性、围岩稳定性和可用性三个方面分别提出了评价指标。通过储库围岩水压力场和水力梯度场的分布来评价储库的密闭性。其涉及到的评价指标主要有:泄漏参数,降水漏斗范围,水幕超压值,临界储压,水力梯度,涌水量,气体饱和度,液态油品饱和度及溶于水油品质量分数等。通过应力场、渗流场、位移场和塑性区分布来评价储库的围岩稳定性。其涉及到的评价指标主要有:最大主应力、最小主应力、剪应力、最大位移和塑性区体积等。通过对储库的储油工况进行油品长期泄漏模拟和围岩流变模拟来评价储库的可用性。主要涉及到水封失效和围岩的粘塑性变形破坏,可以综合利用储库密封性和围岩稳定性的评价指标对储库进行可用性评价。
In order to analyze and evaluate the stability of water sealed underground petroleum storage caverns, the efficiency of water curtain system and the surrounding rock stability of storage caverns are studied respectively. Several typical laboratory tests are summarized and refined. Through numerical modeling and parameter designing, the mechanism of petroleum leakage is clarified and all related water seal parameters are optimized. The study for surrounding rock stability is carried out through establishing and computing complicated three-dimensional numerical model. And then the value of each indicator for evaluating the surrounding rock stability is achieved, the layout and excavation scheme of storage caverns is optimized. The detailed terms of the study are as follows:
     (1) After clarifying the engineering geological conditions of storage caverns thoroughly, the orthogonal experiment for determining the values and the weights of mechanical parameters for surrounding rock was carried out with the maximum displacement as test index. The test results reveal that the most important element which affects the maximum displacement is elastic modulus, the next most important elements are Poisson ratio and internal frictional angle, and then tensile strength and cohesive strength take the third place. On the basis of qualified mechanical parameters for surrounding rock, more orthogonal tests were carried out to achieve appropriate geometric parameters, and the maximum displacement, the volume of plastic zone and the vertical hydraulic gradient were taken as test indexes respectively. In addition, hydrogeological parameters were attained according to the result of water lifting test and empirical formula.
     (2) In accordance with the characteristics of stress field and seepage field, porous equivalent continuum mathematical model was formed for resembling coupled stress field and seepage field. And the calculation procedures of finite element method and finite difference method for the mathematical model were provided.
     (3) On the basis of summarizing and refining several typical laboratory tests about leakage of water sealed storage caverns, the principle of petroleum leakage was put forward. TOUGH2_TMVOC was employed to resemble the leakage of storage caverns. Propane was taken as petroleum for modeling and four different storage conditions were studied. By making use of PETRASIM, two models for the condition without water curtain and the condition with water curtain were established respectively. The results indicate the following:The artificial water curtain system can retard or prevent leakage of petroleum storage caverns effectively. By operating with appropriate pressure and layout, the gas tightness and water tightness can be ensured. Along highly conductive features such as major fissure and faults (less than 102 times rock permeability), even partially saturated zones possess certain effects that can retard or prevent petroleum leakage, while a fully unsaturated major fissure or fault connected to the storage caverns can quickly cause petroleum leakage. This possibility strongly suggests that ensuring water saturation of the surrounding rock is a very important requirement. Even if an accident should suddenly impair the water curtain, the gas plume of the petroleum does not instantly penetrate the ground surface, the results of numerical simulations reveal that the gas plum takes several years to reach the ground surface.
     (4) The analytic evaluation for hydrodynamic containment based on natural groundwater or artificial water curtain was carried out respectively, and the related evaluation indexes were brought forth. The leakage parameterψwas introduced to evaluate the efficiency of hydrodynamic containment based on natural groundwater. Meanwhile the influence of geometric parameters on the value ofψwas examined. In order to evaluate the efficiency of the hydrodynamic containment based on artificial water curtain, the minimum overpressure of water curtain was employed. Some empirical rules for the design parameters in practice were put forward. And the design parameters mainly included the coverage and the overpressure of water curtain, the maximum water curtain pressure, the distance between drill holes, the direction of drill holes, and the distance between the roof of caverns and water curtain. Providing that air tightness and water tightness of storage caverns were ensured, the storage capacity of caverns was studied by employing finite element method. The study employed the critical storage pressure as indicator, the geometric parameters of caverns, the layout of water curtain and the depth of storage caverns as impact factors. On the condition of coupled stress field and seepage field, the impact of artificial water curtain on seepage field of surrounding rock was analyzed and the analytical method for estimating the water inflow of storage caverns was put forward.
     (5) Complicated three-dimensional numerical model with the characteristics of storage caverns was established by software of Solidworks, Hypermesh and FLAC3D. The aim was to analyze the stability of surrounding rock on the condition of coupling stress field and seepage field. Following that simulations for excavating condition with seepage field and without seepage field, and simulation for storing condition were implemented. Three cross sections of connecting tunnels located at three different levels were taken as feature sections. According to the characteristics of stress field, displacement field, hydraulic gradient field and distribution of plastic zone, the results of simulation were studied. In order to ensure optimized schemes for the layout of caverns and the excavating procedure of each cavern, and high stability of surrounding rock, the comparison of schemes was executed with the volume of plastic zones and the maximum horizontal displacement as evaluating indexes. The results reveal that under the current situations of mechanics parameters, geometric parameters, water seal conditions and boundary conditions, the air-water tightness and surrounding rock stability can be ensured.
     (6) In accordance with the air-water tightness of hydrodynamic containment system, the stability of surrounding rock and the usability of storage caverns, the corresponding evaluating indicators were put forward respectively. The air-water tightness was evaluated through studying the distribution of pore pressure and hydraulic gradient. The evaluating indicators for tightness were composed of leakage parameter, coverage of groundwater depression cone, overpressure, critical pressure, hydraulic gradient, water inflow, gas saturation, oil saturation and mass fraction of dissolved petroleum in water. The stability of surrounding rock was evaluated through analyzing the distribution of stress field, seepage field, displacement field and plastic zone. The evaluating indicators connected to stability included major principal stress, minor principal stress, shear stress, maximum displacement and volume of plastic zone. The usability of storage caverns was evaluated by simulating the long-time leakage and the rheology of surrounding rock. The usability was concerned with the ineffectiveness of hydrodynamic containment and the viscoplastic deformation of surrounding rock, which can be evaluated comprehensively by making use of the indicators for tightness and stability.
引文
[1]Winqvist T, Mellgren K. Going underground[M]. Stockholm[Sweden]:IVA, Royal Swedish Academy of Engineering Sciences,1988:177.
    [2]杨明举.地下水封裸洞储气应力场、渗流场、储气场耦合模型的研究及其工程应用[D].西南交通大学,2001.
    [3]崔京浩.地下工程与城市防灾[M].北京:中国水利水电出版社,2007.
    [4]B A. Prevention of gas leakage from unlined reservoirs in rock[C]. Stockholm:Oxford, New York, Pergamon Press,1977.
    [5]Goodall D C. Containment of gas in rock caverns[D]. Berkley:University of California,1986.
    [6]Suh J, Chung H, Kim C. A study on the condition of preventing gas leakage from the unlined rock cavern[Z]. Helsinki, Finland:1986725-736.
    [7]Bergman, Magnus S. Storage in excavated rock caverns, rockstore 77:proceedings of the First international Symposium[M]. Oxford, New York:Pergamon Press,1977.
    [8]Rehbinder G, Karlsson R, Dahlkild A. A study of a water curtain around a gas store in rock[J]. Applied Scientific Research.1988,45(2):107-127.
    [9]Nilsen, Olsen. Storage of gases in rock caverns[M]. Rotterdam, Netherlands:A. A. Balkema, 1989.
    [10]Hamberger U. Case history:Blowout at an LPG storage cavern in Sweden[J]. Tunnelling and Underground Space Technology.1991,6(1):119-120.
    [11]Sturk R, Stille H. Design and excavation of rock caverns for fuel storage-a case study from Zimbabwe[J]. Tunnelling and Underground Space Technology.1995,10(2):193-201.
    [12]Lee Y N, Yun S P, Kim D Y, et al. Design and construction aspects of unlined oil storage caverns in rock[J]. Tunnelling and Underground Space Technology.1996,11(1):33-37.
    [13]Lee Y N, Suh Y H, Kim D Y, et al. Stress and deformation behaviour of oil storage caverns during excavation[J]. International Journal of Rock Mechanics and Mining Sciences ISRM International Symposium 36th U.S. Rock Mechanics Symposium.1997,34(3-4):301-305.
    [14]高翔,谷兆祺.人工水幕在不衬砌地下贮气洞室工程中的应用[J].岩石力学与工程学报.1997,16(2):178-187.
    [15]Yang D W, Kim D S. Preliminary study for determining water curtain design factor by optimization technique in underground energy storage[J]. International Journal of Rock Mechanics and Mining Sciences.1998,35(4-5):409.
    [16]Kim T, Lee K K, Ko K S, et al. Groundwater flow system inferred from hydraulic stresses and heads at an underground LPG storage cavern site[J]. Journal of Hydrology.2000,236(3-4):165-184.
    [17]杨明举,关宝树.地下水封储气洞库原理及数值模拟分析[J].岩石力学与工程学报.2001,20(3):301-305.
    [18]陈奇,慎乃齐,连建发,等.液化石油气地下洞库围岩稳定性分析——以山东某地实际工程为例[J].煤田地质与勘探.2002,30(3):33-36.
    [19]张振刚,谭忠盛,万姜林,等.水封式LPG地下储库渗流场三维分析[J].岩土工程学报.2003,25(3):331-335.
    [20]谭忠盛,万姜林,张振刚.地下水封式液化石油气储藏洞库修建技术[J].土木工程学报. 2006,39(6):88-93.
    [21]Lee C, Song J. Rock engineering in underground energy storage in Korea[J]. Tunnelling and Underground Space Technology.2003,18(5):467-483.
    [22]Tezuka M, Seoka T. Latest technology of underground rock cavern excavation in Japan[J]. Tunnelling and Underground Space TechnologyTunnelling in Japan.2003,18(2-3):127-144.
    [23]Chung I, Cho W, Heo J. Stochastic hydraulic safety factor for gas containment in underground storage caverns[J]. Journal of Hydrology.2003,284(1-4):77-91.
    [24]连建发.锦州大型地下水封LPG洞库岩体完整性参数及围岩稳定性评价研究[D].中国地质大学(北京),2004.
    [25]Levinsson L, Ajling G, Nord G. Design and construction of the Ningbo underground LPG storage project in China[J]. Tunnelling and Underground Space TechnologyUnderground space for sustainable urban development. Proceedings of the 30th ITA-AITES World Tunnel Congress.2004, 19(4-5):374-375.
    [26]Yamamoto H, Pruess K. Numerical Simulations of Leakage from Underground LPG Storage Caverns[R].,2004.
    [27]Park J J, Jeon S, Chung Y S. Design of Pyongtaek LPG storage terminal underneath Lake Namyang:A case study[J]. Tunnelling and Underground Space Technology.2005,20(5):463-478.
    [28]王芝银,李云鹏,郭书太,et al.大型地下储油洞粘弹性稳定性分析[J].岩土力学.2005,26(11).
    [29]李仲奎,刘辉,曾利,et al.不衬砌地下洞室在能源储存中的作用与问题[J].地下空间与工程学报.2005,1(3).
    [30]Benardos A G, Kaliampakos D C. Hydrocarbon storage in unlined rock caverns in Greek limestone[J]. Tunnelling and Underground Space Technology.2005,20(2):175-182.
    [31]Eric A, Francois C, Anne M. Groundwater management during the construction of underground hydrocarbon storage in rock caverns[Z]. University of Oviedo, Oviedo, Spain:2005311-315.
    [32]徐方.分形理论在青岛某地下水封石油储备库工程中的综合应用[D].中国地质大学(北京),2006.
    [33]刘贯群,韩曼,宋涛,等.地下水封石油洞库渗流场的数值分析[J].中国海洋大学学报.2007,37(5):819-824.
    [34]宫晓明.三维流固耦合模型在地下储库稳定性分析中的应用研究[D].中国石油大学(北京),2007.
    [35]陈祥.黄岛地下水封石油洞库岩体质量评价及围岩稳定性分析[D].北京:中国地质大学,2007.
    [36]许建聪.隧道围岩施工变形控制监测与工程失稳险情预警研究&地下水封油库围岩不良地质处理原则及渗流量计算[D].同济大学,2007.
    [37]巫润建,李国敏,董艳辉,等.锦州某地下水封洞库工程渗流场数值分析[J].长江科学院院报.2009,26(010):87-91.
    [38]王怡,王芝银,许杰,等.地下储油岩库稳定性的三维流固耦合分析[J].中国石油大学学报:自然科学版.2009,33(003):132-137.
    [39]刘青勇,万力,张保祥,等.地下水封石洞油库对地下水的影响数值模拟分析[J].水利水电科技进展.2009(2):61-65.
    [40]Zienkiewicz O C. Coupled problems and their numerical solution[C]. John Wiley & Sons Ltd, 1984.
    [41]邢景棠,崔尔杰.流固耦合力学概述[J].力学进展.1997,27(1):19-38.
    [42]Louis C. Rock hydraulics in rock mechanics[M]. New York:Verlay Wien,1974.
    [43]Oda M. Equivalent Continuum Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses[J]. Water Resources Research WRERAQ.1986,22(13):1845-1856.
    [44]Noorishad J, Ayatollahi M S, Witherspoon P A. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 1982,19:185-193.
    [45]Noorishad J, Tsang C F, Witherspoon P A. Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks-1. Development and verification of a numerical simulator[C]. Elsevier,1992.
    [46]Snow D T. Rock fracture spacings, openings, and porosities[J]. Proc Amer Soc Civil Eng, J Soil Mech Found Div.1968,94:73-91.
    [47]Long J, Remer J S, Wilson C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research.1982,18(3):645-658.
    [48]Jones Jr F. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J]. Journal of Petroleum Technology.1975,27(1):21-27.
    [49]Kranz R L, Frankel A D, Engelder T, et al. Permeability of whole and jointed Barre granite[J]. Name:Int. J. Rock Mech. Min. Sci. Geomech. Abstr.1979,16(4):225-234.
    [50]Gale J E. The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships[C].1982.
    [51]Tsang Y W, Tsang C F. Channel model of flow through fractured media[J]. Water Resour. Res. 1987,23(3):467-479.
    [52]王媛,徐志英.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报.2000,19(2):177-181.
    [53]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质.1995,22(6):30-35.
    [54]陈祖安,伍向阳.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报.1995,14(2):155-159.
    [55]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987,14(2):28-32.
    [56]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学.1997,18(4):59-62.
    [57]周创兵,熊文林.不连续面渗流与变形耦合的机理研究[J].水文地质工程地质.1996,23(3):14-17.
    [58]赵阳升,杨栋.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学:E辑.1999,29(1):82-86.
    [59]耿克勤.复杂岩基的渗流、力学及其耦合分析研究以及工程应用[D].清华大学,1994.
    [60]Gangi A F. Variation of whole and fractured porous rock permeability with confining pressure[C]. Elsevier,1978.
    [61]Walsh J B, Grosenbaugh M A. A new model for analyzing the effect of fractures on compressibility[J]. Journal of Geophysical Research-Solid Earth.1979,84(B7):3532-3536.
    [62]Walsh J B. Effect of pore pressure and confining pressure on fracture permeability[C]. Elsevier, 1981.
    [63]Tsang Y W, Witherspoon P A. Hydromechanical behavior of a deformable rock fracture subject to normal stress[J]. Journal of Geophysical Research.1981,86(B10):9287-9298.
    [64]Hart R D. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems[D]. Univ. of Minnesota, St. Paul, MN,1981.
    [65]Noorishad J, Tsang C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks:numerical approach[J]. J. Geophy. Res.1984,89(B12): 10365-10373.
    [66]常晓林.岩体稳定渗流与应力状态的耦合分析及其工程应用初探[Z].峨嵋:西南交通大学出版社,1987335-343.
    [67]许梦国.考虑裂隙渗流的不连续岩体应力状态的有限元分析[Z].同济大学:同济大学出版社,1990.
    [68]朱伯芳.渗透水对非均质重力坝应力状态的影响[J].水利学报.1965,2:50-54.
    [69]陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报.1988,32(1):8-13.
    [70]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报.1994,13(4):299-308.
    [71]王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J].水文地质工程地质.1992,19(1):12-14.
    [72]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质高边坡的稳定性[J].水文地质与工程地质.2000,27(2):30-33.
    [73]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报.1996,15(4):338-344.
    [74]Warren J E, Root P J. The behavior of naturally fractured reservoirs[J]. Old SPE Journal.1963, 3(3):245-255.
    [75]黎水泉,徐秉业.双重孔隙介质非线性流固耦合渗流[J].力学季刊.2000,21(1).
    [76]Streltsova T D. Hydrodynamics of Groundwater Flow in a Fractured Formation[J]. Water Resources Research.1976,12:405-414.
    [77]Duguid J O, Lee P. Flow in fractured porous media[J]. Water Resources Research.1977,13(3): 558-566.
    [78]Huyakorn P S, Lester B H, Faust C R. Finite Element Techniques for Modeling Groundwater Flow in Fractured Aquifers[J]. Water Resources Research.1983,19(4):1019-1035.
    [79]Neretnieks I, Rasmuson A. An approach to modelling radionuclide migration in a medium with strongly varying velocity and block sizes along the flow path[J]. Water Resources Research.1984, 20(12):1823-1836.
    [80]Dykhuizen R C.A new coupling term for double-porosity models [J]. Water Resources Research.1990,2.
    [81]张有天.岩石水力学与工程[M].中国水利水电出版社,2005:350.
    [82]杨天鸿,唐春安,徐涛.岩石破裂过程的渗流特性——理论,模型与应用[M].北京:科学出版社,2004.
    [83]Gnirk P F, Fossum A F. On the formulation of stability and design criteria for compressed air energy storage in hard rock caverns[C].1979.
    [84]莫海鸿,杨林德.硬岩地下洞室围岩的破坏机理[J].岩土工程师.1991,3(002):1-7.
    [85]张斌.二滩地下厂房系统围岩稳定性分析[J].水电站设计.1998,14(003):72-76.
    [86]史红光.二滩水电站地下厂房围岩稳定性因素评价[J].水电站设计.1999,15(002):75-78.
    [87]丁文其,杨林德,鲍德波.复杂地质条件下地下厂房围岩稳定性分析[J].新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集.2000.
    [88]陈帅宇,周维垣,杨强,等.三维快速拉格朗日法进行水布垭地下厂房的稳定分析[J].岩石力学与工程学报.2003,22(007):1047-1053.
    [89]张奇华,邬爱清,石根华.关键块体理论在百色水利枢纽地下厂房岩体稳定性分析中的应用[J].岩石力学与工程学报.2004,23(015):2609-2614.
    [90]杨典森,陈卫忠,杨为民,等.龙滩地下洞室群围岩稳定性分析[J].岩土力学.2004,25(003):391-395.
    [91]王文远,张四和.糯扎渡水电站左岸厂房区地下洞室群围岩稳定性研究[J].水力发电.2005,31(005):30-32.
    [92]余裕泰,黄赛超.坚硬而不完整岩体中地下洞室的分期开挖[J].地下工程.1984(11):31-35.
    [93]朱维申,王平.动态规划原理在洞室群施工力学中的应用[J].岩石力学与工程学报.1992,11(004):323-331.
    [94]肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报.2000,22(004):421-425.
    [95]汪易森,李小群.地下洞室群围岩弹塑性有限元分析及施工优化[J].水力发电.2001(006):35-38.
    [96]朱维申,李术才,程峰.能量耗散模型在大型地下洞群施工顺序优化分析中的应用[J].岩土工程学报.2001,23(003):333-336.
    [97]陈卫忠,李术才,朱维申,等.急倾斜层状岩体中巨型地下洞室群开挖施工理论与优化研究[J].岩石力学与工程学报.2004,23(019):3281-3287.
    [98]安红刚.大型洞室群稳定性与优化的综合集成智能方法研究[J].岩石力学与工程学报.2003,22(010):1760.
    [99]姜谙男.大型洞室群开挖与加固方案反馈优化分析集成智能方法研究[D].东北大学,2005.
    [100]中国地质大学地下工程研究所.某地下水封油库可研阶段工程地质勘察报告[R].北京:中国地质大学(北京)地下工程研究所,2005.
    [101]Tezuka M, Seoka T. Latest technology of underground rock cavern excavation in Japan[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research. 2003,18(2-3):127-144.
    [102]中华人民共和国住房和城乡建设部.地下水封石洞油库设计规范[S].中国北京,2009.
    [103]Kj(?)rholt H, Broch E. The water curtain-a successful means of preventing gas leakage from high-pressure, unlined rock caverns[J]. Tunnelling and Underground Space Technology.1992,7(2): 127-132.
    [104]Goodall D C, aberg B, Brekke T L. Fundamentals of gas containment in unlined rock caverns[J]. Rock Mechanics and Rock Engineering.1988,21(4):235-258.
    [105]Pruess K. The TOUGH Codes-A Family of Simulation Tools for Multiphase Flow and Transport Processes in Permeable Media[J]. Vadose Zone Journal.2004,3(3):738-746.
    [106]Pruess K, Oldenburg C, Moridis G. TOUGH2 user's guide, version 2.0[J]. Report LBNL-43134, Lawrence Berkeley Nat. Lab, Berkeley, CA.1999.
    [107]Pruess K, Battistelli A. TMVOC, a simulator for multiple volatile organic chemicals[C]. Lawrence Berkeley National Laboratory, Berkeley, California (US):2003.
    [108]Adenekan A E. Numerical modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface[D]. University of California at Berkeley, Berkeley, CA94720,1992.
    [109]Adenekan A E, Patzek T W, Pruess K. Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface:Numerical model formulation[J]. Water Resources Research.1993,29(11):3727-3740.
    [110]Parker J C, Lenhard R J, Kuppusamy T. A parametric model for constitutive properties governing multiphase flow in porous media[J]. Water Resources Research.1987,23(4):618-624.
    [111]Stone H L. Probability model for estimating three-phase relative permeability[J]. Journal of Petroleum Technology.1970,22(2):214-218.
    [112]波林美,普劳斯尼茨美,奥康奈尔美,et al.气液物性估算手册[M].北京:化学工业出版社,2006:578.
    [113]Liang J, Lindblom U. Critical pressure for gas storage in unlined rock caverns[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1994,31(4):377-381.
    [114]Kj(?)rholt H. Gas tightness of unlined hard rock caverns[D]. Trondheim,Norway:University of Trondheim,1991.
    [115]Tokheim O, Janbu N. Flow rates of air and water from caverns in soil and rock[C].1982.
    [116]Muskat M. (1937). The flow of homogeneous fluids through porous media, McGraw-Hill, New York[J].
    [117]Gustafson G, Lindblom U, Soder C O. Hydrogeological and hydromechanical aspects of gas storage[C]. Aachen, Germany:Rotterdam:A A Balkema,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700