重型再生障碍性贫血患者外周血自然杀伤细胞亚群数量及功能变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     分析重型再生障碍性贫血(SAA)患者免疫抑制治疗(IST)前、后外周血自然杀伤(NK)细胞及其亚群占外周血淋巴细胞百分比、功能变化及其与造血功能相关性,探讨NK细胞在SAA发病机制中的作用。
     方法
     用单克隆抗体四标法和流式细胞术(FCM)检测42例SAA患者[初治12例(初治组)、IST后恢复30例(恢复组)]外周血NK细胞(CD3CD56+/CD16+)及其亚群[CD56bright (CD3"CD56brightCD16neg/dim)、CD56dim (CD3-CD56dimCD16bnght)、CD3-CD56negCD16bright]占淋巴细胞的百分比、NK细胞胞膜抑制性受体(CD158a和CD158b)、NK细胞胞膜活化性受体(NKG2D和NKp46)及NK细胞胞浆穿孔素、颗粒酶B的表达,并与13名正常对照(对照组)做比较。分析上述变化与SAA患者外周血中性粒细胞百分比(ANC%)、淋巴细胞百分比(Lym%)、网织红细胞计数(Ret)及骨髓造血功能(增生程度、粒系百分比、红系百分比、巨核细胞数量、淋系百分比)的相关性。
     结果
     1.SAA患者外周血NK细胞及其亚群占淋巴细胞百分比的变化
     ①SAA患者NK细胞百分比的变化初治组、恢复组、对照组NK细胞百分比分别为(10.30±6.08)%、(16.47±8.29)%、(19.45±6.88)%,初治组明显低于恢复组和对照组(均p<0.05),恢复组与对照组比较差异无统计学意义(p>0.05)
     ②SAA患者CD56bnghtNK细胞亚群百分比的变化初治组、恢复组、对照组CD56bnght细胞亚群百分比的中位数分别为0.11%、0.68%、0.53%,初治组明显低于恢复组和对照组组(均p<0.05),恢复组与对照组比较差异无统计学意义(p>0.05)。
     ③SAA患者CD56dim NK细胞亚群百分比的变化初治组、恢复组、对照组CD56dim NK细胞亚群百分比分别为(9.62±6.04)%、(13.81±7.52)%、(18.21±7.16)%,初治组明显低于对照组(p<0.05),初治组与恢复组比较差异无统计学意义(p>0.05),恢复组与对照组比较差异亦无统计学意义(p>0.05)。
     ④SAA患者CD3-CD56negCD16bright NK细胞亚群百分比的变化初治组、恢复组、对照组CD3-CD56negCD16bright NK细胞亚群百分比的中位数分别为0.37%、0.79%、0.41%,恢复组明显高于初治组及对照组(均p<0.05),初治组与对照组比较差异无统计学意义(p>0.05)。
     2.SAA患者外周血NK细胞功能的变化
     ①SAA患者NK细胞胞膜受体表达的变化SAA初治组NK细胞胞膜CD158a、NKG2D、NKp46中位表达阳性率分别为16.45%、95.68%、88.23%,SAA恢复组为19.34%、96.85%、82.97%,对照组为21.59%、96.13%、40.99%,初治组与恢复组NKp46表达阳性率明显高于对照组(均p<0.05);初治组、恢复组、对照组NK细胞胞膜CD158b表达阳性率分别为(34.66±16.02)%、(39.13±17.75)%、(41.43±17.43)%,各组之间比较差异均无统计学意义(均p>0.05)。
     ②SAA患者NK细胞胞浆穿孔素、颗粒酶B表达的变化初治组、恢复组、对照组NK细胞胞浆穿孔素表达阳性率分别为(64.97±21.61)%、(66.14±20.73)%、(42.11±27.25)%,初治组与恢复组均明显高于对照组(均p<0.05),初治组与恢复组比较差异无统计学意义(p>0.05);初治组、恢复组、对照组NK细胞胞浆颗粒酶B表达的中位阳性率分别为96.43%、96.97%、92.88%,各组之间比较差异均无统计学意义(均p>0.05)。
     3.SAA患者外周血NK细胞及亚群占淋巴细胞百分比、功能与造血功能的相关性
     ①SAA患者NK细胞及其亚群百分比与造血功能的相关性NK细胞百分比与SAA患者ANC%、骨髓增生程度、骨髓粒系及红系百分比呈正相关(r分别为0.423、0.455、0.357、0.340,均p<0.05),与Lymm%、骨髓淋系百分比呈负相关(r分别为-0.411、-0.522,均p<0.05);CD56brightNK细胞亚群百分比与SAA患者ANC%、骨髓增生程度、骨髓的粒系百分比及巨核细胞数量呈关正相关(r分别为0.609、0.412、0.517、0.362,均p<0.05),与骨髓淋系百分比呈负相关(r=-0.435,p<0.05); CD56dimNK细胞亚群百分比与SAA患者骨髓增生程度呈正相关(r=0.404,p<0.05),与骨髓淋系百分比呈负相关(r=-0.411,p<0.05);CD3-CD56negCD16bright NK细胞亚群百分比与SAA患者ANC%、Ret、骨髓增生程度、骨髓粒系百分比呈正相关(r分别为0.468、0.328、0.451、0.434,均p<0.05),与Lymm%、骨髓淋系百分比呈负相关(r分别为-0.389、-0.547,均p<0.05)。
     ②SAA患者NK细胞功能与造血功能的相关性NK细胞的CD158a、CD158b、NKG2D、NKp46、穿孔素、颗粒酶B表达与前述各造血功能指标均无相关性(均p>0.05)。
     结论
     SAA患者外周血NK细胞、CD56brigt、CD56dimNK细胞亚群占淋巴细胞百分比降低可能引起患者免疫耐受被破坏、T细胞功能亢进而导致造血功能衰竭;SAA患者外周血NK细胞NKp46、穿孔素表达增强可能是对NK细胞数量不足的一种“代偿”。
Objective
     To investigate the quantitative and functional changes of natural killer (NK) cells and it's subsets in peripheral blood of severe aplastic anemia (SAA) patients before and after immunosuppressive therapy (IST),evaluate the relationships between these changes and hematopoietic function,and explore the role of NK cells in the the pathogenisis of SAA.
     Methods
     By means of four-color monoclonal antibody labeling technology, the percentag-es of NK cells (CD3-CD56+/CD16+) and it's subsets [CD56bright (CD3-CD56bright CD16neg/dim) CD56dim (CD3-CD56dimCD16bright),CD3-CD56negCD16bright] in peripheral blood were detected in 42 SAA patients,including 12 untreated patients and 30 recovered patients, and 13 normal controls respectively. NK cells inhibitory receptors (CD158a and CD158b), activating receptors (NKG2D and NKp46), perforrin and granzyme-βof patients and normal controls were also detected.The correlation between these changes and hematopoietic function, including percentage of neutron-phil granulocyte (ANC%), percentage of lymphocyte (Lym%) and reticulocyte absol-ute value (Ret) in peripheral blood,and hyperplasia degree,percentage of granulocytes, erythrocytes,lymphocytes and megakaryocytes absolute value in bone marrow were evaluated.
     Results
     1. The variations of NK cells and it's subsets percentages in peripheral blood lymphocytes in SAA patients
     ①The change in the proportion of NK cells in SAA patients The percentage of NK cells in peripheral blood lymphocytes was (10.30±6.08)% in untreated SAA patients, (16.47±8.29)% in recovered patients, and (19.45±6.88)% in normal controls. The percentage of NK cells in untreated SAA patients was lower than that of recovered patients and normal controls (p<0.05),but there was no statistical difference between recovered patients and normal controls (p>0.05).
     ②The change in the proportion of CD56bright NK cells subset in SAA patients The median percentage of CD56bright NK cells subset was 0.11% in untreated SAA patients,0.68% in recovered patients and 0.53% in normal controls.The median percentage of CD56bnght cells in untreated patients was lower than that of the other two groups (p<0.05), but there was no statistical difference between recovered patients and normal controls (p>0.05).
     ③The change in the proportion of CD56dim NK cells subset in SAA patients The percentage of CD56dim NK cells subset was (9.62±6.04)% in untreated patients, (13.81±7.52)% in recovered patients and (18.21±7.16)% in normal controls.The percentage of CD56dim cells in untreated SAA patients was lower than that of normal controls (p<0.05),but there was no statistical difference between the other groups (p>0.05).
     ④The change in the proportion of CD3-CD56negCD16bright NK cells subset in SAA patients The median percentage of CD3-CD56negCD16bright NK cells subset was 0.37% in untreated SAA patients,0.79% in recovered patients and 0.41% in normal controls.The percentage of CD3-CD56negCD16bright NK cells subset in recovered SAA patients was higher than that of the other two groups (p<0.05), but there was no statistical difference between untreated patients and normal controls (p>0.05).
     2. The variation of NK cells function in SAA patients
     ①The changes in the proportion of receptors on NK cells surface in SAA patients The median expressions of CD158a,NKG2D and NKp46 on NK cells surface were 16.45%,95.68%,88.23% in untreated SAA patients,19.34%,96.85%, 82.97% in recovered patients and 21.59%,96.13%,40.99% in normal controls.The expression of NKp46 on NK cells surface of untreated and recovered SAA patients were higher than that of healthy individuals (p<0.05).The expression of CD 158b on NK cells surface was (34.66±16.02)% in untreated patients,(39.13±17.75)% in recovered patients,(41.43±17.43)% in controls,but there was no statistical difference between each groups (p>0.05).
     ②The changes in the proportion of perforin and granzyme-B in NK cells cytoplasm in SAA patients The expression of perforin in NK cells cytoplasm was (66.14±20.73)% in untreated SAA patients,(64.97±21.61)% in recovered patients and (42.11±27.25)% in controls.The expression of perforn in untreated and recovered SAA patients were higher than that of controls (p<0.05),but there was no statistical difference between that of the other groups (p>0.05).The median expression of granzyme-B in NK cells cytoplasm is 96.43% in untreated SAA patients,96.97% in recovered patients,92.88% in controls,there was no statistical difference between each groups (p>0.05).
     3. The correlations between the percentage of NK cells subsets and hematopoietic function in SAA patients
     ①The correlations between the variations of NK cells and it's subsets percenage and hematopoietic function in SAA patients The percentage NK cells was positively correlated with ANC%,hyperplasia degree of bone marrow,percentage of granuloc-ytes and erythrocytes in bone marrow (r was 0.423,0.455,0.357,0.340 respectively, p<0.05), but negatively correlated with Lym% in peripheral blood and percentage of lymphocytes in bone marrow(r was-0.411,-0.522 respectively, p<0.05).The percen-tage of CD56brightNK cells subset was positively correlated with ANC%, hyperplasia degree of bone marrow, percentage of granulocytes and megakaryocytes in bone marrow(r was 0.609,0.412,0.517,0.362 respectively,p<0.05). Meanwhile, it was nega-tively correlated with the percentage of lymphocytes in bone marrow(r=-0.435, p<0.05).The percentage of CD56dim NK cells subset was positively correlated with hyperplasia degree of bone marrow (r=0.404, p<0.05), but negatively correlated with the percentage of lymphocytes in bone marrow (r=-0.411,p<0.05).The percentage of CD3-CD56negCD16bright NK cells subset was positively correlated with ANC%, Ret, hyperplasia degree of bone marrow, percentage of granulocytes in bone marrow (r was 0.468,0.328,0.451,0.434 respectively,p<0.05).Yet, it was negatively correlated with Lym% in peripheral blood and the percentage of lymphocytes in bone marrow (r was-0.389,-0.547 respectively,p<0.05).
     ②The correlation between the function of NK cells and hematopoietic function in SAA patients The expression of CD158a, CD158b, NKG2D, NKp46, perforrin and granzyme-βof NK cells has no correlation with hematopoiesis (p>0.05) in SAA patients.
     Conclusion
     The decrease in the percentage of NK cells, CD56bright, CD56dimNK cell subsets may have led to the over-function of T lymphocytes and the hematopoiesis failure in SAA. The higher expression of NKp46 and perforin of NK cells may be a compensation for the decrease of NK cells propotion.
引文
[1]Camitta BM, Rappeport JM, Parkman R, et al. Selection of patients for bone marrow transplantation in severe aplastic anemia[J]. Blood,1975,45(3): 355-363.
    [2]Brodsky RA, Jones RJ. Aplastic anemia[J]. Lancet,2005,365(9471):1647-1656.
    [3]Bacigalupo A, Bruno B, Saracco P, et al. Antithymocyte globulin, cyclosporine, prednisolone, and granulocyte colony-stimulating factor for severe aplastic anemia:an update of the GITMO/EBMT study on 100 patients[J]. Blood,2000, 95(6):1931-1934.
    [4]何广胜,邵宗鸿,刘鸿,等.序贯强化免疫抑制并用造血生长因子治疗重型再生障碍性贫血[J].中华血液学杂志,2001,22(4):177-181.
    [5]Rosenfeld S, Follman D, Nunez O, et al. Antithymocyte globulin and cyclosporine for severe aplastic anemia:association between hematologic response and long-term outcome[J]. JAMA,2003,1289(9):1130-1135.
    [6]Frickhofen N, Heimpel H, Kaltwasser JP, et al. Antithymocyte globulin with or without cyclosporine A:11-year follow-up of a randomized trial comparing treatments Of aplastic anemia[J]. Blood,2003,101(4):1236-1242.
    [7]Fuhrer M, Baumann I, Faldum A, et al. Immunosuppressive therapy for aplastic anaemia in children:a more severe disease predicts better survival[J]. Blood, 2005,106(6):2102-2104.
    [8]Locasciulli A, Oneto R, Bacigalupo A, et al. Outcomes of patients with acquired aplastic anemia given first line bone marrow transplantation or immuno-suppressive treatment in the last decade:a report from the European Group for Blood and Marrow Transplantation (EBMT).Severe Aplastic Anemia Working Party of the European Blood and Marrow Transplant Group.Haematologica, 2007,92(1):11-18.
    [9]Dincol G, Aktan M, Diz-Kucukkaya R, et al. Treatment of acquired severe aplastic anemia with antilymphocyte globulin, cyclosporine A, methypredni-solone, and granulocyte colony-stimulating factor[J]. Am J Hematol,2007, 82(6):783-786.
    [10]Young NS, Seheinberg P, Calado RT. Aplastic anemia[J]. Curt Opin Hematol, 2008,15(3):162-168.
    [11]Bacigo A. Aplastic anemia:pathogenesia and treatment[J]. Hematology Am Soc Hematol Educ Program,2007:23-28.
    [12]何广胜,邵宗鸿,和虹,等.重型再生障碍性贫血患者骨髓Ⅰ型树突细胞亚群的变化[J].中华血液学杂志,2004,25(11):649-652.
    [13]涂梅峰,邵宗鸿,刘鸿,等.重型再生障碍性贫血患者外周血树突细胞亚群及共刺激分子表达的研究[J].中华血液学杂志,2006,27(9):611-615.
    [14]张强,李庆,徐静玮,等. 再生障碍性贫血患者T细胞亚群检测的临床意义[J].中国实验血液学杂志,2007,15(5):1046-1049.
    [15]Kaito K, Otsubo H, Usui N, et al. Thl/Th2 lymphocyte balance in patients with aplastic anemia[J]. Rinsho Byori,2004,52(7):569-573.
    [16]何广胜,邵宗鸿,和虹,等. 重型再生障碍性贫血患者骨髓中辅助性T细胞亚群数量级功能的变化[J]. 中华血液学杂志,2004,25(10):613-616.
    [17]Solomou EE, Rezvani K, Mielke S, et al. Deficient CD4+CD25+FOXP3+T regulatory cells in acquired aplastic anemia[J]. Blood,2007,110(5):1603-1606.
    [18]涂梅峰,邵宗鸿,刘鸿,等.重型再生障碍性贫血患者Th3细胞、调节T细胞数量和转化生长因子B1的水平[J].中华血液学杂志,2006,27(11):753-756.
    [19]邱莲女,周永列,刘成成,等. 再生障碍性贫血患者CD34+与T淋巴细胞亚群CD45RA+、CD45RO+表达的相关性研究[J]..中国免疫学杂志,2008,24(8):757-758.
    [20]Risitano AM, Maciejewski JP, Green S, et al. In-vivo dominant immune responses in aplastic anaemia:molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing[J]. Lancet,2004,364(9431): 355-364.
    [21]何广胜,周玲,吴德沛,等.CD28/CTLA-4共刺激分子在再生障碍性贫血免疫发病机制中的作用[J].中华血液学杂志,2007,28(9):590-593.
    [22]申蓉,徐从高,李丽珍,等.再生障碍性贫血患者T淋巴细胞早期激活及可溶性肿瘤坏死因子受体的研究[J].中华血液学杂志,2004,25(4):209-212.
    [23]LI W, FU J, WANG F, et al. Distinct overexpression of Fas ligand on T lymphocytes in aplastie anemia[J]. Cell Mol Immunol,2004,1(2):142-147.
    [24]ZHANG J, Gu Y, XU C, et al. Increased T cell immunoglobulin mucin-3 and its ligand in acquired aplastie anemia[J]. Eur J Haematol,2008,81(2):130-139.
    [25]Solomou EE, Keyvanfar K, Young NS. T-bet, a Thl Tranaciption factor, is up-regulated in T cells from patients with aplastic anemia[J]. Blood,2006, 107(10):3983-3991.
    [26]Hwang ES, Szabo SJ, Schwartzberg PL, et al. T helper cell fate specied by kinase-medidated interation of T-bet with GATA-3[J]. Science,2005,307(5708): 430-433.
    [27]Solomu EE, Wong S, Visconte V, et al. Decreased TCR zeta chain expression in T cells from patients with acquired aplastic anemia[J]. Br J Haematol,2007, 138(1):72-76.
    [28]Sloand E, Kim S, Maciejewski JP, et al. Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia[J]. Blood,2002, 100(4):1185-1191.
    [29]Dubey S, Shukla P, Nithanand S. Expression of interferon-gamma and tumor necrosis factor-alpha in bone marrow T cells and their levels in bone marrow plasma in patients with aplastic anemia[J]. Ann Hematol,2005,84(9):572-577'.
    [30]Dufour C, Ferretti E, Bagnasco F, et al. Marrow Failure Study Group of the AIEOP. Changes in cytokine profile pre-and post-immunosuppression in acquired aplastic anemia[J]. Haematologica,2009,94(12):1743-1747.
    [31]Xu JL, Nagasaka T, Nakashima N. Involvement of cytotoxic granules in the apoptosis of aplastic anaemia[J]. Br J Haematol,2003,120(5):850-852.
    [32]Solomou EE, Gibellini F, Stewart B, et al. Perforin gene mutations in patients with acquired aplastic anemia[J]. Blood,2007,109(12):5234-5237.
    [33]Tripathy NK, Nityanand S. Bone marrow and blood plasma levels of IL 8 in aplsetic anemia and their relationship with disease severity[J]. Am J Hematol, 2005,79(3):240-242.
    [34]Kakagianni T, Giannakoulas NC, Thanopoulou E, et al. A probable role for trail-induced apoptosis in the pathogenesis of marrow failure, implications from an in vitro model and marrow of aplastic anemia patients[J]. Leuk Res,2006, 30(6):713-721.
    [35]Verma A, Deb DK, Sassano A, et al. Cutting edge:activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia[J]. J Immunol,2002,168(12): 5984-5988.
    [36]Chung IJ, Lee JJ, Nam CE, et al. Increased inducible nitric oxide synthase expression and nitric oxide concentration in patients with aplastic anemia[J]. Ann Hematol,2003,82(2):104-108.
    [37]Novitzky N, Jacobs P. In aplastic anemia progenitor cells have a reduced sensitivity to the effects of growth factors[J]. Eur J Haematol,1999,63(3): 141-148.
    [38]Hansen PB, Lauritzen AM. Aplastic anemia successfully treated with rituximab[J]. Am J Hematol,2005,80(4):292-294.
    [39]Castiglioni MG, Scatena P, Pandolfo C, et al. Rituximab therapy of severe aplastic anemia induced by fludarabine and cyclophosphamide in a patient affected by B-cell chronic lymphocytic leukemia[J]. Leuk Lymphoma,2006, 47(7):1985-1986.
    [40]Hirano N, Butler MO, Von Bergwelt Boildon MS, et al. Autoantibodies frequently detected in patients with aplastie anemia[J]. Blood,2003,102(13): 4567-4575.
    [41]Feng X, Chuhjo T, Sugimori C, et al. Diazepam-binding inhibitor-related protein 1:a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells[J]. Blood,2004,104(8):2425-2431.
    [42]Takamatsu H, Feng X, Chuhjo T, et al. Specific antibodies to Moesin,a membrane-cytoskeleton linker protein, are frequently detected in patiets with acquired aplastic anemia[J], Blood,2007,109(6):2514-2520.
    [43]Takamatsu H, Espinoza JL, Lu X, et al. Anti-moesin antibodies in the serum of patients with aplastic anemia stimulate peripheral blood mononuclear cells to secrete TNF-alpha and IFN-gamma[J]. J Immunol,2009,182(1):703-710.
    [44]Fietta P, Delsante G. Focus on human natural killer cells[J]. Riv Biol,2009, 102(2):219-235.
    [45]Hoover RG, Gullickson G, Kombluth J. Impaired NK cytolytic activity and enhanced tumor growth in NK lytic-associated molecule-deficient mice[J]. J Immunol,2009,183(11):6913-6921.
    [46]Sun JC, Beilke JN, Lanier LL. Adaptive immune factures of natural killer cells[J]. Nature,2009,457(7229):557-561.
    [47]Nagler A, Lanier LL, Cwira S, et al. Comparative studies of human FcR m-positive and-negtive natural killer cells[J]. J Immunol,1989,143(10): 3183-3191.
    [48]Fan YY, Yang BY, Wu CY Phenotypic and functional heterogeneity of natural killer cells from umbilical cord blood mononuclear cells[J]. Immunol Ivest, 2008,37(1):79-96.
    [49]吴长有,刘杰,杨滨燕,等.人外周血NK细胞亚群、表型和生物学特征[J].中国免疫学杂志,2005,21(7):483-486.
    [50]Pegram HJ, Andrews DM, Smyth MJ, et al. Activating and inhibitory receptors of natural killer cells[J]. Immunol Cell Biol,2011,89(2):216-224.
    [51]Empson VG, McQueen FM, Dalbeth N. The natural killer cell:a further innate mediator of gouty inflammation?[J]. Immounol Cell Biol,2010,88(1):24-31.
    [52]Kalinski P, Giermasz A, Nakaraura Y, et al. Helper role of NK cells during the induction of anticancer responses by dendritic cells[J], Mol Immunol,2005, 42(4):535-539.
    [53]Lunemann A, Lunemann JD, Munz C. Regulatory NK-cell functions in inflammation and autoimmunity[J]. Mol Med,2009,15(9-10):352-358.
    [54]Fisicaro P, Valdatta C, Boni C, Massari M, et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection[J]. Gut,2009,58: 974-982.
    [55]Dunn C, Brunetto M, Reynolds G, et al. Cytokines induced during chronic hepatitis B viru infection promote a pathway for NKcell-mediated liver damage[J]. J Exp Med,2007,204(3):667-680.
    [56]傅晋翔,张学光,虞斐,等.再生障碍性贫血患者骨髓及外周血T、NK细胞膜分子和可溶性分子动态变化[J].中华微生物学和免疫学杂志,2001,21(4):423-426.
    [57]Wang H, Grzywacz B, Sukovich D, et al. The unexpected effect of cyclosporin A on CD56+CD16- and CD56+CD16+natural killer cell subpopulations[J]. Blood,2007,110(5):1530-1539.
    [58]张之南,沈悌.血液病诊断及疗效标准[M].第三版.北京:科学出版社,2007:19-23.
    [59]Camitta BM, Thomas ED, Nathan DG. A prospective study of androgens and bone marrow transplantation for treatment of severe aplastic anemia[J]. Blood, 1979,53(3):504-514.
    [60]Kalinski P, Mailliard RB, Giermasz A, et al. Natural killer-dendritic cell cross-talk in cancer immunotherapy[J]. Expert Opin Biol Ther,2005,5(10): 1303-1315.
    [61]Piccioli D, Sbrana S, Melandri E, et al. Cantact-dependent stimulation and inhibition of dendritic cells by natural killer cells[J]. J Exp Med,2002,195(3): 335-341.
    [62]Kamath AT, Sheasby CE, Tough DF. Dendritic cells and NK cells stimulated by stander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma[J]. J Immunol,2005,174(2):767-776.
    [63]Lucas M, Schachterle W, Oberle K, et al. Dendritic cells prime natural killer cells by trans-presenting interleukin 15[J]. Immunity,2007,26(4):503-517.
    [64]Bajenoff M, Breart B, Huang AY, et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging[J]. J Exp Med,2006,203(3): 619-631.
    [65]Tarzona R, Casado JG, Delarosa O, et al. Selective depletion of CD56dim NK cell subsets and maintenance of CD56bright NK cells in treatment-naive HIV-1 seropositive individuals[J]. J Clin Immunol,2002,22(3):176-183.
    [66]谭峰,顾卫,黄涛,等.黄芪对急性脑梗死患者CD16+CD56+和T淋巴细胞亚群的影响[J].中华实用中西医结合杂志,2004,17(4):2551-2553.
    [67]Zhang AL, Colmenero P, Purath U, et al. Natural killer cells trigger differentiation of monocytes into dendritic cells[J]. Blood,2007,110(7): 2484-2493.
    [68]Harada K, Nakanuma Y. Molecular mechanisms of cholangiopathy in primary biliary cirrhosis[J]. Med Mol Morphol,2006,39(2):55-61.
    [69]Brillard E, Pallandre JR, Chalmer D, et al. Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25-T lymphocytes[J]. Exp Hematol,2007,35(3):416-425.
    [70]Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants[J]. Science,2002, 295(5562):2097-2100.
    [71]Gao N, Dang T, Yuan D. IFN-gamma-dependent and-independent initiation of switch recombination by NK cells[J]. J Immunol,2001,167(4):2011-2018.
    [1]Huntington ND, Vosshenrich CA, Di Santo JP. Developmental path ways that generate natural-killer-cell diversity in mice and humans[J]. Nat Rev Immunol, 2007,7(9):703-714.
    [2]Chiossone LC, Vitale F, Cottalasso, et al. Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function:evidence for different susceptibility of IL-2-versus IL-15-activated NK cells[J]. Blood,2007, 109(9):3767-3775.
    [3]Cooper MA, Bush JE, Fehniger TA, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells[J]. Blood,2002,100(10): 3633-3638.
    [4]Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis[J]. Annu Rev Immunol,2006,24:657-679.
    [5]Eonard WJ, Spolski R. Interleukin-21:a modulator of lymphoid proliferation, apoptosis and differentiation[J]. Nat Rev Immunol,2005,5:688-698.
    [6]Guo H, Samarakoon A, Vanhaesebroeck B, et al. The p110d of PI3K plays a critical role in NK cell terminal maturation and cytokine/chemokine generation[J]. J Exp Med,2008,205(10):2419-2435.
    [7]Blom B, Spits H. Development of human lymphoid cells [J]. Annu Rev Immunol, 2006,24:287-320.
    [8]Chaix J, Tessmer MS, Hoebe K, et al. Cutting edge:Priming of NK cells by IL-18[J]. J Immunol,2008,181(3):1627-1631.
    [9]Freud AG, Becknell B, Roychowdhury S, et al. A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells[J]. Immunity, 2005,22(3):295-304.
    [10]Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI, et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127[J]. Nat Immunol,2006,7(11):1217-1224.
    [11]Caligiuri MA. Human natural killer cells[J]. Blood,2008,112(3):461-469.
    [12]Freud AG, Caligiuri MA. Human natural killer cell development[J]. Immunol Rev,2006,214(1):56-72.
    [13]Freud AG, Yokohama A, Becknell B, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo[J]. J Exp Med,2006, 203(4):1033-1043.
    [14]Moretta L, Ferlazzo G, Bottino C, et al. Effector and regulatory events during natural killer-dendritic cell interactions[J]. Immunol Rev,2006,214(1): 219-228.
    [15]Chan A, Hong DL, Atzberger A, et al. CD56bright human NK cells differentiate into CD56dim cells:role of contact with peripheral fibroblasts[J]. J Immunol, 2007,179(1):89-94.
    [16]Di Santo JP, Vosshenrich CA. Bone marrow versus thymic pathways of natural killer cell development[J]. Immunol Rev,2006,214:35-46.
    [17]Nagler A, Lanier LL, Cwira S, et al. Comparative studies of human FcR m-positive and-negtive natural killer cells[J]. J Immunol,1989,143(10): 3183-3191.
    [18]Fan YY, Yang BY, Wu CY Phenotypic and functional heterogeneity of natural killer cells from umbilical cord blood mononuclear cells[J]. Immunol Ivest, 2008,37(1):79-96.
    [19]吴长有,刘杰,杨滨燕,等.人外周血NK细胞亚群、表型和生物学特征[J].中国免疫学杂志,2005,21(7):483-486.
    [20]Gregoire C, Chasson L, Luci C, et al. The trafficking of natural killer cells[J]. J Immunol Rev,2007,220(1):169-182.
    [21]Natarajan K, Dimasi N, Wang J, et al. Structure and function of natural killer cell receptors:Multiple molecular solutions to self, nonself discrimination[J]. Annu Rev Immunol,2002,20:853-885.
    [22]Cooper MA, Fehniger TA, Calligiuri MA. The biology of human natural killer cell subsets[J]. Trends Immunol,2001,22(11):633-640.
    [23]Hayakawa Y, Smyth MJ. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity[J]. J Immunol,2006,176(3): 1517-1524.
    [24]Vossen MT, Matmati M, Hertoghs KM, et al. CD27 defines phenotypically and functionally different human NK cell subsets[J]. J Immunol,2008,180(6): 3739-3745.
    [25]Silva A, Andrews DM, Brooks AG, et al. Application of CD27 as a marker for distinguishing human NK cell subsets[J]. Int Immunol,2008,20(4):625-630.
    [26]Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells:a unique innate immunoregulatory role for the CD56bright subset[J]. Blood,2001,97(10): 3146-3151.
    [27]Poli A, Michel T, Theresine M, et al. CD56bright natural killer (NK) cells:an important NK cell subset[J]. Immunology,2009,126(4):458-465.
    [28]Caligiuri MA, Murray C, Robertson MJ, et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2[J]. J Clin Invest,1993,91(1):123-132.
    [29]Caligiuri MA, Zmuidzinas A, Manley TJ, et al. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors[J]. J Exp Med, 1990,171(5):1509-1526.
    [30]Ellis TM, Fisher RI. Functional heterogeneity of Leu19 "bright" +and Leu19 "dim" + lymphokine activated killer cells[J]. J Immunol,1989,142(3): 2949-2954.
    [31]Baume DM, Robertson MJ, Levine H, et al. Differential responses to interleukin 2 define functionally distinct subsets of human natural killer cells [J]. Eur J Immunol,1992,22(1):1-6.
    [32]Berahovich RD, Lai NL, Wei Z, et al. Evidence for NK cell subsetbased on chemokine receptor expression[J]. J Immunol,2006,177(11):7833-7840.
    [33]Deniz G, Akdis M, Aktas E, et al. Human NK1 and NK2 subsets determined by purification of IFN-γ-secreting and IFN-γ-nonsecreting NK cells[J]. Eur J Immunol,2002,32(3):879-884.
    [34]O'Leary JG, Goodarzi M, Drayton DL. et al. T cell-and B cell-independent adaptive immunity mediated by natural killer cells[J]. Nat. Immunol,2006,7(5): 507-516.
    [35]Sun JC, Beilke JN, Lanier, LL. Adaptive immune features of natural killer cells[J]. Nature,2009,457(7229):557-561.
    [36]Cooper MA, Elliott JM, Keyel PA, et al. Cytokine-induced memory-like natural killer cells[J]. Proc Natl Acad Sci USA.2009,106(6):1915-1919.
    [37]Hsu KC, Chida S, Dupont B, et al. The killer cell immunoglobulin-like receptor (KIR) genomic regin:gene-order haplotypes and alletic polyorphism[J]. Immunol Rev,2002,190:40-52.
    [38]Cerwenka A, Lanier LL. NKG2D ligands:unconventional MHC class I-like molecules exploited by viruses and cancer[J]. Tissue Antigen,2003,61(5): 335-343.
    [39]Zhang C, Zhang J, Wei H, et al. Immunoreceptor and its ligands[J], Int Immunopharmacol,2005,5(7-8):1099-1111.
    [40]Mandelboim O, Lieberan N, Lev M, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells[J]. Nature, 2001,409(6823):1055-1060.
    [41]Arnon TI, Lev M, Katz G, et al. Recognition of viral hemagglutinins by NKp44 but not by NKp30[J]. Eur J Immunol,2001,31(9):2680-2689.
    [42]Arnon TI, Achdout H, Levi O, et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus[J]. Nat Immunol,2005,6(5):515-523.
    [43]Mavoungou E, Held J, Mewono L, et al. A Duffy binding-like domain is involved in the NKp30-mediated recognition of Plasmodium falciparum-parasitize erythrocytes by natural killer cells[J]. J Infect Dis,2007,195(10): 1521-1531.
    [44]Chisholm SE, Howard K, Gomez MV, et al. Expression of ICPO is sufficient to trigger natural killer cell recognition of hexes simplex virus-infected cells by natural cytotoxicity receptors[J]. J Infect Dis,2007,195(8):1160-1168.
    [45]Chisholm SE, Reyburn HT. Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors[J]. J Virol, 2006,80(5):2225-2233.
    [46]Vieillard V, Strominger JL, Debre P. NK cytotoxicity against CD4+cells during HIV-1 infection:a gp41 peptide induces the expression of an NKp44 ligand[J]. ProcNatl Acad Sci USA,2005,102(31):10981-10986.
    [47]Bloushtain N, Qimron U, Barllan A, et al. Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46[J]. J Immunol,2004,173(4):2392-2401.
    [48]Hershkovitz O, Jivov S, Btoushtain N, et al. Characterization of the recognition of tumor cells by the natural cytotoxicity receptor, NKp44[J]. Biochemistry, 2007,46(25):7426-7436.
    [49]Warren HS, Jones AL, Freeman C, et al. Evidence that the cellular ligand for the human NK cell activation receptor NKp30 is not a heparan sulfate glycosamin glycan[J]. J Immunol,2005,175(1):207-212.
    [50]Garg A, Barnes PF, Porgador A, et al. Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor[J]. J Immunol,2006,177(9):6192-6198.
    [51]Hoover RG, Gullickson G, Kombluth J. Impaired NK cytolytic activity and enhanced tumor growth in NK lytic-associated molecule-deficient mice[J]. J Immunol,2009,183(11):6913-6921.
    [52]Lanier LL. Upon the tightrope:natural killer cell activation and inhibition[J]. Nat Immunol,2008,9(5):495-502.
    [53]Karre K. Natural killer cell recognition of missing self[J]. Nat Immunol,2008, 9(5):477-480.
    [54]Raulet DH, Vance RE. Self-tolerance of natural killer cells[J]. Nat Rev Immunol, 2006,6(7):520-531.
    [55]傅晋翔,张学光,虞斐,等.再生障碍性贫血患者骨髓及外周血T、NK细胞膜分子和可溶性分子动态变化[J].中华微生物学和免疫学杂志,2001,21(4):423-426.
    [56]Kaito K, Otsubo H, Ogasawara Y, et al. Severe aplastic anemia associated with chronic natural killer cell lymphocytosis[J]. Int J Hematol,2000,72(4): 463-465.
    [57]Solomou EE, Gibellini F, Stewart B, et al. Perforin gene mutations in patients with acquired aplastic anemia[J]. Blood,2007,109(12):5234-5237.
    [58]Wang H, Grzywacz B, Sukovich D, et al. The unexpected effect of cyclosporin A on CD56+CD16-and CD56+CD16+natural killer cell subpopulations[J]. Blood,2007,110(5):1530-1539.
    [59]Shantaram S, Joshi, Lynch JC, et al. Decreased immune functions of blood cells following mobilization with granulocyte colony-stimulating factor:association with donor characteristics[J]. Blood,2001,98(6):1963-1970.
    [60]Poggi A, Negrini S, Zocchi MR, et al. Patients with paroxysmal nocturnal hemoglobinuria have a high frequency of peripheral-blood T cells expressing activating isoforms of inhibiting superfamily receptors[J]. Blood,2005,106(7): 2399-2408.
    [61]Nagakura S, Ishihara S, Dunn DE, et al. Decreased susceptibility of leukemic cells with PIG-A mutation to natural killer cells in vitro[J]. Blood,2002,100(3): 1031-1037.
    [62]Hanaoka N, Kawaguchi T, Horikawa K, et al. Immunoselection by natural killer cells of PIGA muthiantcells missing stress-inducible ULBP[J]. Blood,2006, 107(3):1184-1191.
    [63]徐述,许勇钢,杨晓红,等.骨髓增生异常综合征患者先天性免疫细胞数量和功能分析[J].中国免疫学杂志,2009,25(7):596-600.
    [64]Kiladjian JJ, Bourgeois E, Lobe Ⅰ, et al. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes[J]. Leukemia,2006,20(3):463-470.
    [65]Epling-Burnette PK, Bai F, Painter JS, et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors[J]. Blood,2007,109(11): 4816-4824.
    [66]Meers S, Vandenberghe P, Boogaerts M, et al. The clinical significance of activated lymphocytes in patients with myelodysplastic syndromes:A single centre study of 131 patients[J]. Leukemia Research,2008,32(7):1026-1035.
    [67]Ten Oever J, Kuijper PH, Kuijpers AL, et al. Complete remission of Mds raeb following immunosuppressive treatment in a patient with sweet's syndrome Neth J Med,2009,67(8):347-350.
    [68]Carlsten M, Baumann BC, Simonsson M, et al. Reduced DNAM-1 expression onbone marrow NK cells associated with impaired killing of CD34+blasts in myelodysplastic syndrome[J]. Leukemia,2010,24(9):1607-1616.
    [69]Martin Jadersten. Pathophysiology and treatment of the myelodysplastic syndrome with isolated 5q deletion[J]. Haematologica,2010,95(3):348-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700