基于靶探针法的激光等离子体弱荷电效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强激光与物质相互作用过程中表现出来的电学效应包含了激光等离子体演变过程丰富的特征信息,对这种电学效应进行测试和分析已经逐渐发展成为研究激光等离子体特性参数的重要手段之一。本文针对1064nm波长、功率密度约10~10W/cm~2的脉冲激光与金属靶作用过程中等离子体的弱荷电效应,从理论和实验两个方面进行了深入系统的研究,初步建立了一个弱荷电球为基础的激光等离子体扩散模型。
     论文根据对点源激光等离子体冲击波演化过程中能量分布特征的分析,提出了激光等离子体形成初期具有内部荷电储能的新观点,这种微弱荷电效应源于脉冲激光烧蚀靶材期间少量高速电子的逃逸,从而构成了初期的弱荷电等离子体球。从高温高压激光等离子体荷电量少、膨胀迅速的基本特征出发,详细分析荷电等离子体演变过程中的电学特性,以及对外表现出来的电学效应,同时深入研究了金属靶与荷电等离子体之间的相互作用机理,以激光作用过程和等离子体膨胀过程的时间特征为基础,建立激光等离子体荷电效应等效电流源模型。
     通过对等效电流源演变对金属靶电势信号影响的分析,将等离子体荷电接触效应、等离子体扩散机制、电场感应机制、净余电荷转移机制,与激光参数、材料特性等参数进行综合性分析,提出“靶探针”测试激光等离子体荷电的新方法,建立了测试信号分析模型。并设计了激光等离子体弱荷电效应的“靶探针”测试装置,对自由靶、控制靶两种情况下的靶电势信号演变规律进行了一系列实验,研究激光作用能量、靶材特性参数、偏置电压等因素对激光等离子体微弱荷电效应的影响。实验研究结果表明,本论文建立的激光等离子体弱荷电效应模型与靶电势信号的演变规律完全吻合。该实验装置还能够对激光等离子体中存在的净余电荷量进行了估测。
     本论文的研究成果提供了一种新的激光等离子体电学效应的测试方法,丰富了激光等离子体理论与实验基础,为激光等离子体诊断提供了很有价值的参考。
Abundant evolvement information of laser plasma is manifested by the electrical effect during the process of the interaction between high power laser and matter. The technique for testing and analyzing the electrical effect for laser plasma has become one of the most important methods for plasma diagnosis. The electrical effect derived from the interaction between the pulsed laser (wavelength:1064 nm; intensity near 1011 W/cm2) and the metal target is investigated theoretically and experimentally, and a diffusion model based on a low electriferous sphere for laser plasma is established primarily.
     According to analyzing the energy distribution in the evolved stage of a point-source laser plasma shock wave, a new viewpoint is proposed that the energy is stored by inner charged particles in the initial stage of the laser plasma's formation. The feebly electrical effect is rooted in the fact of the escape of a few high-speed electrons which forms a plasma sphere with low charge when laser ablating metal target. Considering the characters of low charge and rapid bulge for the high temperature and pressure laser plasma, the electrical characteristic of the charged plasma in the process of evolution and the electrical effect to external are analyzed in detail.At the same time, mechanism of the interaction between metal target and charged laser plasma is also profoundly studied. An equivalent current supply model is founded for the electric field effect of laser plasma on the basis of interaction process and the time character of the laser plasma's expansion process.
     The electrical potential signals of the metal targets affected by the evolvement of the equivalent current supply are also analyzed. In the integrated analysis, the mechanisms of electric induction, diffusion and surplus charge's transfer are all considered, as well as the parameters of laser and the characters of material.A new target-probe method of testing the electric effect for laser plasma is proposed and the analysis model for testing signal is established. A target-probe experimental device is designed for detecting the feebly electrical effect of laser plasma. A series of experiments are implemented to explore the evolvement rule of electricity signal for free and controlled targets respectively. The impacts of the incident energy of laser, special parameters of targets and offset voltage on the feebly electrical effect of the laser plasma are investigated. The results indicate that the feebly electrical effect established in this dissertation coincides with the experimental results. Besides, the device also can be used to measure the remained electric charge in laser plasma.
     In conclusion, the results of this dissertation will provide a novel testing method for the electrical effect of laser plasma, enrich the theoretical and experimental basis for laser plasma and provide valuable references for the diagnosis of laser plasma.
引文
[1]陆建,倪晓武,贺安之.激光与材料相互作用物理学.第一版.北京:机械工业出版社.1998
    [2]张国顺.现代激光制造技术.第一版.北京:化学工业出版社.2006
    [3]朱林泉,朱苏磊.激光应用技术基础.第一版.北京:国防工业出版社.2004
    [4]张钧,常铁强.激光核聚变靶物理基础.第一版.北京:国防工业出版社.2004
    [5]李平,王煜,冯国进.超短激光脉冲对硅表明微构造的研究.中国激光.2006,33(12):1688~1691
    [6]Basov N G, Oraevskii A N, Strakhovskii G M, Tatarenkov V M. Quantum Electronics (Proceedings of Third International Congress, Paris,1963)Vol.1,Eds Grivet P, Bloembergen N, (Paris:Dunod; New York:Columbia University Press),1964,377
    [7]Quirk M,Serda J. Semiconductor Manufacturing Technology.第一版.北京:电子工业出版社.2004
    [8]Niemz M H,张镇西译.激光与生物组织的相互作用原理及应用.第一版.北京:科学出版社.2005
    [9]孙承伟,陆启生,范正修,陈裕泽,李成富,关吉利.激光辐照效应.第一版.北京:国防工业出版社.2002
    [10]Allmen M V,漆海兵译.激光束与材料相互作用的物理原理和应用.第一版.北京:科学出版社.1994
    [11]Stephens R B, Hatchett S P, Tabak M, Stoeckl C, Shiraga H, fujioka S,Bonino M, Nikroo A, Petrasso R, Sangster T C, Smith J, and Tanaka K A. Implosion hydrodynamics of fast ignition targets. Phys. Plasma.2005,12,056312
    [12]Zhang G, Yan P, Liang T, Du Y, Sanchez P, Park S, Lanzendorf E J, Choi C J, Shu E Y, Stivers A R, Farnsworth J, Hsia K, Chandhok M, Leeson M J, Vandentop G. EUV Mask Process Development and Integration. Proc. of SPIE.2006,6283: 62830G-1~10
    [13]Kadaksham J, Zhou D, Murthy Peri M D, Varghese I, Eschbach F, Cetinkaya C. Nanoparticle removal from EUV photomask using laser induced plasma shockwaves. Proc. of SPIE.2006,6283:62833C-1~11
    [14]Mao S S, Mao X. Greif R, Russo R E. Simulation of a picosecond laser ablation plasma. Appl.phys.Lett.2000,76(23):3370-3372
    [15]Qi B, Gilgenbach Q M, Jones M C, Johnston M D, Lau Y Y, Wang L M, and Lian J. Diagnostic characterization of ablation plasma ion implantation. J. Appl.Phys.2003, 93(11):8876-8883
    [16]Zuo Tiechuana, Xiao Rongshia, R. Volz. Experimental research on the influence of laser-induced plasma on beam focusing during high-power CO2 laser materials processing. Proc. of SPIE.2000,3268:62~69
    [17]Bessieres D, Paillol J. Negative corona triggering in air. J. Appl. Phys.,2004,95(8): 3943-3951
    [18]Woryna E, Parys P, Wolowski J, Krasa J, Laska L, Rohlena K, Stockli M P, Winechi S, Walch B.Absolute measurements of characteristics of tantalum ion current from laser-produced plasma. Rev. Sci. Instrum.1998,69(2):1045~1047
    [19]Hong M H, Lu Y F, and Chong T C.Diagnostics and Real-time Monitoring of Pulsed Laser Ablation. Proc.of SPIE.2002,4426:51~54
    [20]Harilal S S, Bindhu C V, Tillack M S, Najmabadi F, and Gaeris A C.Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J. Appl. Phys.2003,93(5):2380~2386
    [21]Ming Hui Hong, ZhiHong Mai, G X Chen,Thomas Thiam, Wen D Song,Yongfeng Lu,Chye E Soh,Tow Chong Chong. Pulsed laser ablation of IC packages for device failure analyses. Proc. of SPIE.2002,4637:445~452
    [22]Rajiv K Singh and J Narayan. Pulsed-laser evaporation technique for deposition of thin films:Physics and theoretical model. Phys. Rev. B.1990,41 (5):8843~8849
    [23]Lu Y F, Hong M H, and Chua S J. Audible acoustic wave emission in excimer laser interaction with materials.J. Appl. Phys,1996,79(5):186~190
    [24]Stephen W McKnight, Charles A DiMarzio, Wen Li and Ronald A Roy. Laser-induced acoustic generation for buried object detection. Proc. of SPIE.2000, 4038:734~739
    [25]黄庆举.紫外激光烧蚀Cu产生等离子体辐射特性.光谱学与光谱分析.2008,28
    (2):278~281
    [26]Sanchez Ake C, Sobral H, Sterling E, Villagran-muniz M. Time of flight of dual-laser ablation carbon plasmas by optical emission spectroscopy. Appl.Phys.A. 2004,79:1345~1347
    [27]Xianzhong Zeng, Samuel S.Mao, Chunyi Liu, Xianglei Mao, Ralph Greif and Richard E. Russoa. Laser-induced plasmas in micromachined fused silica cavities. Appl. Phys.Lett.2003,83(2):240~242
    [28]Novodvorsky O A, Khramova O D, Wenzel C, Bartha J W, Filippova E O. Erosion plume characteristics determination in ablation of metallic copper, niobium and tantalum targets. Proc.of SPIE.2003,5121:337~345
    [29]Novodvorsky O A, Khramova O D, Filippova E O, Sagdeev R Ya, Wenzel C, Bartha J W. Ions acceleration by CW CO_2 laser irradiation in the erosion plume after ablation with excimer laser. Proc.of SPIE.2002,4644:48~54
    [30]Fujii T, Inoue S,and Kannaria F.Measurements of charged particles in the laser ablation plume of polymers. J. Appl.Phys.1995,78(5):3401~3407
    [31]Lorusso Antonella, Krasa, Rohlena K, Nassisi V, Belloni F, Doria D. Charge losses in expanding plasma created by an XeCl laser. Appl.Phys.Lett.2005,86:081501-1~ 081501-2
    [32]Xianglei Mao, Samuel S Mao, and Richard E Russo.Imaging femtosecond laser-induced electronic excitation in glass. Appl.Phys. Lett.2003,82(5):697~699
    [33]Misra A,Mitre A,Thoreja R K. Diagnostics of laser ablated plasmas using fast photography. Applied Physics Letters.1999,74(7):929~93
    [34]Gill C G,Allen J M,Nogar N S.Low-power resonant laser ablation of copper. Applied Optics.1996,35(12):2069~2081
    [35]Irving Langmuir and Katharine B Blodgett. Currents Limited by Space Charge between Concentric Spheres. Phys. Rev.1924,24:49~60
    [36]Hendron J M, Mahony C M O, Morrow T, Graham W G. Langmuir probe measurements of plasma parameters in the late stages of a laser ablated plume.J. Appl.Phys.1997,81(5):2131~2134
    [37]David W Koopman. Langmuir Probe and Microwave Measurements of the Properties of Streaming Plasmas Generated by Focused Laser Pulses. Phys.Fluids.1971,14: 1707~1716
    [38]Hendron J M, Mahony C M O, Morrow T, and Graham W G. Langmuir probe measurements of plasma parameters in the late stages of a laser ablated plume. J. Appl.Phys.1997,81(5):2131-2134
    [39]Weaver I, Martin G W, Graham W G, Morrow T, and Lewis C L S.The Langmuir probe as a diagnostic of the electron component within low temperature laser ablated plasma plumes. Rev. Sci. Instrum.1999,70:1801~1806
    [40]Wild J, Kudrn P a, Gronych T, Bro J z, Zelinger Z, Kubat P, and Civis S.Langmuir probe measurement of plasma splitting during pulsed laser deposition. Rev. Sci. Instrum.2001,72:1597~1599
    [41]Koichi Ogura. Electrical Probe Measurements of the Late Stage of the Plasma Produced by Laser Irradiation in an Argon Gas-puff Target. Jpn. J. Appl.Phys.2003, 42:4518~4519
    [42]Paul Mannion, Sebastian Favre, Gerard M O'Connor, Brendan Doggett, James G. Lunney, and Thomas J Glynn. Langmuir probe study of plasma expansion in femtosecond pulsed laser ablation of silver. Proc. of SPIE.2005,5827:457~567
    [43]Hansen T N, Schou J, Lunney J G Langmuir probe study of plasma expansion in pulsed laser ablation. Appl.Phys.A.1999,69(suppl.):601~604
    [44]Hermann J, ViVien C, Carrieato A P, Boulmer C.A spectricsopie study of laser ablation plasmas from Ti, Al and C targets. Appl.Surf.Sci.1998,645:127129
    [45]Man B Y. Particle velocity, electron temperature, and density profiles of pulsed laser-induced plasmas in air at different ambient pressures. Applied Physics B.1998, 67(2):241~245
    [46]Liu H C, Mao X L, Yoo J H, and Russo R E. Nonlinear changes in plasma and crater properties during laser ablation of Si. Appl. Phys. Lett.1999,75:1216
    [47]Harilal S S,Bindhu C V, Tillack M S,Najmabadi F, and Gaeris A C.Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J. Appl.Phys. 2003,93,2380
    [48]Syahrun N M, Iwao Kitazima, Tiung Jie Lie. Spectrochemical analysis using low-background laser plasma induced by Nd-YAG laser at low pressure. Jpn. J. Appl. Phys,42,2003,3452~3457
    [49]Hery Suyanto, Hendrik Kurniawan, Tjung Jie Lie, May On Tjia and Kiichiro Kagawa. Hole-modulated plasma for suppressing background emission in laser-induced shock wave plasma spectroscopy. Jpn. J. Appl. Phys.2003,42:5117~5122
    [50]Giacomo A D. Early stage emission spectroscopy study of metallie titanium plasma induced in air by femtosecond and nanosecond laser pulses.Spectrochimica Acta B. 2005,60:935
    [51]Dvaid C,Avizonis P V, Weichel H, Bruce C and Pyatt K D.Density and temperature of a laser induced plasma. Journal of Quantum Electronic.1966,2(9):493
    [52]Dick K, Pepin H, Martineau J, Parbhakar K, A Thibaudeau. Plasma creation from thin aluminum targets by a TEA-CO2 laser. J.Appl.Phys.1973,44(7):3284
    [53]Klosternam E L, Byron S R. Measurement of subsonic absorption wave propagation-characteristics at 10.6um. Journal of Applied Physics.1974,45(11): 4751
    [54]NadjaVogel, J Heinzinger, F Cichos. Measurement of cathode spot parameters with pulsed laser diagnostics. Proc. of SPIE.1994,2259:207~210
    [55]NadjaVogel, N Kochan. Interferometric diagnostic of picosecond laser ablation in air. Applied Surface Science.1998,127:928-934
    [56]B V Weber, S F Fulghum. A high-sensitivity two-color interferometer for pulsed power plasma. Rev.Sci.Instrum.1997,68:1227~1232
    [57]Hojo H. Method of eleetron density measurement by Fabr-Perot interferomentry. Plasma and Industrial Applications.2005,30(13):26~27
    [58]Maria M Suliyanti, Sar Sardy, Anung Kusnowo, Rinda Hedwig, and Syahrun N Abdulmadjid. Plasma emission induced by an Nd-YAG laser at low pressure on solid organic sample, its mechanism, and analytical application. J. Appl. Phys,2005,97: 053305
    [59]Richard E Honig. Laser-induced emission of electrons and positive ions from metals and semiconductors. Applied Physics Letters.1963,3(1):8-11
    [60]Mendel C W, Olsen Y J N. Charge-seperation electric fields in laser plasmas. Physical Review Letters.1975,34(14):859~962
    [61]Franco Docchio, Pietro Regodi, Malcolm R C Capon, and John Mellerio.Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses.1:Analysis of the plasma starting times. Applied Optics.1988, 27(17):3661~3668
    [62]David B Geohegan and Alexander A Puretzky. Laser ablation plume thermalization dynamics in background gases studied by time-resolved imaging, spectroscopic, and ion probe diagnostics. Proc. of SPIE.1995,2403:15-25
    [63]David B Geohegan. Laser ablation plume thermalization dynamics in back ground gases:combined imaging, optical absorption and emission spectroscopy and ion probe measurements. Applied Surface Science.1996,96:131~138
    [64]Weaver I, Doyle L A, Martin G W, Riley D, Lamb M J, Graham W C, Morrow T and Lewis C L S.Mapping neutral, ion, and electron number densities within laser-ablated plasma plumes. Proc. of SPIE.2000,3404:341~350
    [65]Harilal S S, Bindhu C V, Tillack M S, Najmabadi F and Gaeris A C.Plume splitting and sharpening in laser-produced aluminium plasma. J. Phys. D:Appl. Phys.2002, 35,2935~2938
    [66]Hong M H,Koh M L,Zhu S,Lu Y F,Chong T C.Steam-assisted laser ablation and its signal diagnostics. Applied surface science.2002,197:925~929
    [67]Giao M A P, Rodrigues N A S, Riva R, Schwab C.PVDF sensor in laser ablation experiments. Review of Scientific Instruments,2004,12(75):5213~5215
    [68]Amoruso S,Berardi V, Bruzzese R, Spinelli N and Wang X. Kinetic energy distribution of ions in the laser ablation of copper targets. Applied Surface Science. 1998,127:953-958
    [69]徐荣青,陈笑,倪晓武,陆建,程祖海.纳秒激光与靶材相互作用过程分析.南京理工大学学报.2003,27(4):431~438
    [70]沈文达,朱莳通,王黎君.球对称激光等离子体中的快离子膨胀.物理学报.1985.34(9):1111~1118
    [71]张可言.超强激光参数对等离子体折射系数的影响分析.光子学报.2005,34(11):1620~1624
    [72]高国棉,陈长乐,王永仓,陈钊,李谭.脉冲激光沉积(PLD)技术及其应用研究.空军工程大学学报(自然科学版).2005,6(3):77~81
    [73]倪晓武,陆建,贺安之,李永年.Nd:YAG激光对晶体透明皮质乳化的物理机理研究.中国激光.1994,21(3):238-240
    [74]杨波,朱金荣,杨雁南,沈中华,陆建,倪晓武.由激光靶冲量耦合实验结果判定激光支持爆轰波点燃阈值.中国激光.2007,34(1):137~142
    [75]王晓方,徐至展,张正泉,项惠珠,陆海鹤,江云华,高泉兰,吴建光,李明富,宋向阳.槽状靶和平面靶产生的激光等离子体的实验研究.中国科学(A辑).1996,26(5):468~472
    [76]成金秀,温天舒,朱宗元,郑志坚,唐道源.激光等离子体喷射空间特性实验观测.光学学报.1997,17(10):1327~1331
    [77]邹彪,陈建平,沈中华,卞保民,陆建,倪晓武,潘永东.激光等离子体的声学诊断研究.光学学报.1998,18(2):212-216
    [78]郝作强,俞进,张杰,远晓辉,郑志远,杨辉,王兆华,令维军,魏志义.用声学诊断方法测量激光等离子体通道的长度与电子密度.物理学报.2005,54(3):1290~1294
    [79]张端明,李莉,李智华,关丽,候思普,谭新玉.靶材吸收率变化与烧蚀过程熔融前靶材温度分布.物理学报.2005,54(3):1283~1289
    [80]李智华,张端明,关丽,黄明涛.脉冲激光烧蚀靶材等离子体羽辉的动力学模拟.华中科技大学学报.2001,29(9):103~105
    [81]袁永华,刘常龄,谭显祥,陈超,桂元珍,周烟渚.全息术诊断激光产生蒸汽羽等离子体.强激光与粒子束.1992,4(2):56-59
    [82]李玉同,张杰,陈黎明,夏江帆,腾浩,赵理曾,林景全,魏志义,江文勉,王龙.飞秒激光等离子体的光学诊断.中国科学A辑.2001,31(1):85-89
    [83]王琛,王伟,孙今人,方智恒,吴江,傅思祖,马伟新,顾援,王世绩,张国平,郑无敌,张覃鑫,彭惠民,邵平,易葵,林尊琪,王占山,王洪昌,周斌,陈玲燕,金春水.利用x射线激光干涉诊断等离子体电子密度.物理学报.2005,54(1):202~205
    [84]宋光乐,宋一中.激光诱导A1等离子体辐射空间分布.光谱学与光谱分析.2003,23(1):22~24
    [85]张树东,张为俊.激光烧蚀A1靶产生的等离子体中辐射粒子的速度及激波.物理学报.2001,50(8):1512~1516
    [86]林兆祥,李小银,程学武,李发泉,龚顺生.激光大气等离子体时间演化特性的光谱研究.光谱学与光谱分析.2003,23(3):421~425
    [87]杨伯谦,张继彦,韩申生,郑志坚.A1激光等离子体电子密度的空间分辨诊断. 强激光与粒子束.2005,17(5):703~706
    [88]薛思敏,陈冠英,苏茂根,张正荣,申北智.外加电场下激光诱导Al等离子体特性的实验研究.原子与分子物理学报.2006,23(1):39~44
    [89]黄庆举.紫外激光烧蚀Cu产生等离子体辐射特性.光谱学与光谱分析.2008,28(2):278~281
    [90]池凌飞,林揆训,姚若河,林璇英,余楚迎,余云鹏.Langmuir单探针诊断射频辉光放电等离子体及其数据处理.物理学报.2001,50(7):
    [91]翟侃,王成,闻一之,俞昌旋,万树德,刘万东,徐至展.用静电探针反馈控制KT-5C托卡马克边缘湍流.核聚变与等离子体物理.1998,18(4):
    [92]唐恩凌,张庆明,黄正平.超高速碰撞产生等离子体的电子温度诊断.北京理工大学学报.2007,27(5):381~384
    [93]张健,任春生,齐雪莲,王友年.射频感应等离子体的Langmiur探针和光谱诊断.核聚变与等离子体物理.2007,27(2):156-162
    [94]Mao S S,Xianglei Mao, Ralph Greif, and Richard E Russo. Simulation of a picosecond laser ablation plasma. Appl. Phys. Lett.2000,76(23):3370~3372
    [95]Mao S S,Xianglei Mao, Ralph Greif, and Richard E Russo. Initiation of an early-stage plasma during picosecond laser ablation of solids. Appl. Phys. Lett.2000, 77(16):2464-2466
    [96]Mao S S, Greif X, Mao R, and Russo R E. Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation. Appl. Phys. Lett.2000,76(1):31-33
    [97]Jeong S H, Greif R, russo R E. Shock wave and amterial vapour plume propagation during excimer laser ablation of aluminium samples. J. Phys. D:Appl.Phys.1999,32: 2578~2585
    [98]Mori K, Komurasaki K, Arakawa Y. Energy transfer from a laser ulse to a blast wave in reduced-pressure air atmospheres. J. Appl.Phys.2004,95(11):5979~5983
    [99]卞保民,杨玲等.激光等离子体及点爆炸空气冲击波波前运动方程的研究.物理学报.2002,51(4):809~813
    [100]李维新.一维不定常流体动力学.北京:国防工业出版社.2003,340
    [101]Issac R C, Gopinath P, Nampoori Geetha K, Varier V P N, Vallabhan C P G.. Twin peak distribution of electron emission profile and impact ionization of ambient
    molecules during laser ablation of silver target. Appl. Phys. Lett.1998,73(2), 163~165
    [102]Amoruso S, Armenante M, Bruzzese R, Spinelli N, Velotta R, Wang X. Emission of prompt electrons during excimer laser ablation of aluminum targets. Appl. Phys. Lett.1999,75(1):7~9
    [103]Novodvorsky O A, Filippova E O, Khramova O D, Shevelev A K. Energy distribution of charged particles in laser erosion plume on ablation of solid metallic targets with excimer laser. Proc. of SPIE.2001,4352:183~190
    [104]张树东,张为俊.激光烧蚀A1靶产生的等离子体中辐射粒子的速度及激波.物理学报.2001,50(8):1512~1516
    [105]Kabashin A V, Nikitin P I. Space-time structure of the magnetic field of a laser plasma and methods for its enhancement outside the plasma. Phys. Rev. E.1997, 55(3):3393~3399
    [106]Madjid Syahrun Nur, Kitazima Iwao, Kobayashi Takao,Lee Yong Inn, Kagawa Kiichiro. Characteristics of induced current due to laser plasma and its application to laser processing monitoring. Jpn. J. Appl. Phys.2004,143(3):018~1027
    [107]吴东江,许媛,尹波,王续跃.激光功率密度对Ge烧蚀蒸气动力学特性的影响.中国激光.2008,35(3):462-465
    [108]谢建,曾传相,周业为,姚兵,曹雁,刘迅.外加电场增强激光脉冲在靶中产生的冲击波.激光杂志.2000,21(2):17-18
    [109]王春勇,张平,赖小明,纪运景,卞保民,李振华.激光熔蚀过程中等离子体冲击波压缩层能量演化.光散射学报.2007,19(2)
    [110]Rafi S Ahmad. Evidence for Reverse Photoelectrons in Laser-Induced Current. J. Appl.Phys.1972,43(1):244~245
    [111]Bechtel J H, Franken P A. Laser-induced electron emission. Phys.Rev. B.1975, 11(4):1359~1364
    [112]Kabashin A V, Nikitin P I, Marine W. Electric fields of a laser plasma formed by optical breakdown of air near various targets. Quantum electrics.1998,28(1):24~ 28
    [113]Lu Y F, Hong M H. Electric signal detection at the early stage of laser ablation in air. J. Appl.Phys.1999,86(5):2812~2816
    [114]Hong M H, Lu Y F. Plasma diagnostics at early stage of laser ablation. Appl.Phys.A. 1999,69:S605-S608
    [115]Hong M H, Lu Y F, Foong. Electric signal diagnostics of plasma dynamics at an early stage of laser ablation. Proc. of SPIE.2000,3933:207~216
    [116]Cronberg H, Reichling M, Broberg E, Nielsen H B,Matthias E and Tolk N. Effects of inverse bremsstrahlung in laser-induced plasmas from a graphite. Applied Physics B.1991,52(3):155~157
    [117]Amoruso S, Armenanteb M, Bruzzese R, Velotta R, Spinellic N and Wang X. Prompt electron emission characterization in UV laser ablation of metallic targets. Proc. of SPIE.2000,4070,246~251
    [118]Hong M H, Lu Y F. Comment on'Emission of prompt electrons during excimer laser ablation of aluminum targets'.Appl. Phys. Lett.2000,76(2):248~248
    [119]Amoruso S, Armenante M, Bruzzese R, Spinelli N, Velotta R, Wang X. Response to "Comment on'Emission of prompt electrons during excimer laser ablation of aluminum targets'".Appl.Phys. Lett.2000,76(2):249~250
    [120]Hansen T N, Schou J, Lunney J G. Angle-resolved energy distributions of laser ablated silver ions in vacuum. Appl.Phys. Lett.1998,72(15):1829~1831
    [121]Pardede Marincan, Kurniawan Hendrik, Lie Tjung J, Tjia M O, Kagawa K. Direct measurement of charge current by employing a mesh Electrode in the laser plasma induced by Nd:YAG laser (I).Appl. Spectro.2002,56(8):994~998
    [122]Madjid S N, Kitazima I, Kagawa K. Low-cost monitoring system for laser processing. Jpn. J. Appl. Phys.2002,41(11 A):6411~6412
    [123]Li Y T, Xu M H, Yuan X H, Wang W M. Effect of target shape on fast electron emission in femtosecond laser-plasma interactions. Physical Review E.2007,77(1): 016406
    [124]Zhang Z, Vanrompay P A, Nees J A, Pronko P P. Multi-diagnostic comparison of femtosecond and nanosecond pulsed laser plasmas. J. Appl.Phys.2002,92(5): 2867~2874
    [125]Zhang P, Ji YJ, Lai XM, Bian BM, Li ZH. Peak polarity overturn for charged particles in laser ablation process. J.Appl.Phys.2006,100(1):013303-1~5.
    [126]赵庆春,陈时胜,毕无忌,王笑琴,何兴法.激光等离子体中的靶电压测量.中
    国激光.1984,11(4):222~224
    [127]曾宪康,方尔悌,张谊华,黄正宇,张抗战,何波,滕玉美.激光烧蚀溅射A1靶产生的Al离子的空间角分布.应用激光.1994,14(3):113-116
    [128]黄庆举,方尔悌.脉冲激光烧蚀金属Cu产生电子和离子发射研究.激光与红外.1999,29(5):286-289
    [129]胡芳林,张树东.激光烧蚀Al靶产生的等离子体信号的飞行时间测量.西北师范大学学报.2001,37(1):50~55
    [130]凌浩,吴嘉达,应质峰,孙剑,许宁.李富铭.激光诱导等离子体中铜原子和铜离子的时空行为.原子核物理评论.2002,19(2):195~198
    [131]陈正林,张杰,陈黎明,滕浩,董全力,赵理曾,魏志义.金属靶和绝缘靶对飞秒激光吸收的比较.物理学报.2003,52(7):1672~1675
    [132]蔡达锋,谷渝秋,郑志坚,杨向东,焦春晔,陈豪,周维民,温天舒,淳于书泰,黄小军,王晓东,郭仪,周凯南,曾小明.超短超强激光与固体靶相互作用中超热电子的角分布.强激光与粒子束.2004,16(5):587~592
    [133]许媛,吴东江,刘悦.脉冲激光烧蚀Ge产生等离子体特性的数值模拟.强激光与粒子束.2007,19(9):1561-1566
    [134]Lichtman D, Ready J F. Reverse Photoelectric effect and positive ion emission caused by Nd-in-glass laser radiation. Appl. Phys. Lett.1963,3(7):115~116
    [135]Lichtman D, Ready J F. Laser beam induced electron emission. Phys.Rev. Lett. 1963,10(8):342~345
    [136]Honig R E. Laser-induced emission of electrons and positive ions from metals and semiconductors. Appl.Phys.Lett.1963,3(1):8~11
    [137]Kabashin A V, Nikitin P I Nikitin P I, Prokhorov A M, Konjevic N, Vikor L Laser-plasma generation of currents along a conductive target. J. Appl.Phys.1990, 68(7):3140~3146
    [138]Kabashin A V, Nikitin P I.New method of magnetic field and current generation outside laser plasma. Appl.Phys. Lett.1996,68(2):173~175
    [139]Kabashin A V, Nikitin P I. Electric fields of a laser spark produced by radiation with various parameters. Quantum Electron.1997,27:536~541
    [140]Kabashina A V and Nikitin P I, Marine W, Sentis M. Experimental study of spontaneous electric field generated by a laser plasma. Applied Physics Letters. 1998,73(1):25~27
    [141]Dana M, Constantin G, Dumitru D. Characterization of pulsed-laser deposition plasmas using ion probes. Opt. Eng.1996,35(5):1325~1329
    [142]Lu Y F, Hong M Hand Low T S.Laser plasma interaction at an early stage of laser ablation. Journal of Applied Physics.1999,85(5):2899-2903
    [143]Krasa J, Jungwirth K, Kralikova B Laskal, Pfeifer M, Rohlenak, Skalaj, Ullschmied J, Hnatowicz V, Perina V, Badziak J, Parys P, Wolowski J, Woryna E, Szydlowski A. Highly charged ions generated with intense laser beams. Nuclear Instruments and Methods in Physics Research B.2003,205,355~359
    [144]Lorusso Antonella, Krasa, Rohlena K, Nassisi V, Belloni F, Doria D. Charge losses in expanding plasma created by an XeCl laser. Appl. Phys. Lett.2005,86: 081501-1~081501-2
    [145]Yasutaka Hanada, Koji Sugioka, Kotaro Obata, Serge V. Garnov, Iwao Miyamoto, and Katsumi Midorikawa. Transient electron excitation in laser-induced plasma-assisted ablation of transparent materials. J. Appl.Phys.2006,99(4): 043301-1~043301-6
    [146]James G L, Brendan D and Yitzhak K. Langmuir probe diagnosis of laser ablation plasmas. Journal of Physics:Conference Series.2007,59:470~474
    [147]姜平,陈武柱,夏侯荔鹏,张旭东 张红军,利用等离子体光、电信号对激光深熔焊焦点位置的双闭环控制.应用激光.1999,19(5):275~278
    [148]Zhang Xudong, Chen Wuzhu, Jiang Ping, Guo Jing. Modeling and application of plasma charge current in deep penetration laser welding. J. Appl. Phys.2003,93: 8842-8846
    [149]姜平,陈武柱,夏侯荔鹏,张旭东,田志凌.激光焊接时等离子体电流的产生机制及其数学模型.中国激光.2002,29(5):471~474
    [150]王成,陈武柱,彭云,包刚, 田志凌.激光焊接等离子体简化电流模型及应用.清华大学学报.2002,42(4):488-490
    [151]崔执凤,黄时中,陆同兴,凤尔银,赵献章,路轶群,马军.激光诱导等离子体中电子密度随时间演化的实验研究.中国激光.1996,23(7):627~632
    [152]崔执凤,凤尔银,黄时中,陆同兴,赵献章,路轶群,马军.外加静电场下激光诱导等离子体特性的实验研究.原子与分子物理学报.1996,13(2):181~188
    [153]郑贤锋,凤尔银,马靖,杨锐,季学韩.激光诱导等离子体电信号探测.原子与分子物理学报.2002,19(4):390~394
    [154]郑贤锋,杨锐,唐小闩,季学韩,凤尔银,崔执凤.外加静电场下激光诱导等离子体电子、离子特性的实验研究.原子与分子物理学报.2002,19(1):1~5
    [155]林兆祥,陈波,吴金泉,龚顺生,孙奉娄.激光大气等离子体的电子密度空间分布特性研究.光谱学与光谱分析.2007,27(1):18~22
    [156]Roth J R.工业等离子体.北京:科学出版社.1998,84
    [157]Dieleman J, Van de Riet E, Kools J C S.Laser ablation deposition:mechanisms and applications.Jpn.J. Appl. Phys. Part1,1992,31:1964
    [158]李振寰.元素性质数据手册[M].石家庄:河北人民出版社.1985
    [159]饭田修一,大野和郎,神前熙,熊谷宽夫,泽田正三.物理学常用数表[M].北京:科学出版社.1987
    [160]纪运景,童朝霞,卞保民,陆建.激光等离子体靶上感应电势的机理研究.光子学报.2007,36(12):2187~2191
    [161]Dyer P E. Electrical characterization of plasma generation in KrF laser Cu ablation. Appl. Phys.Lett.55(16),1989,1630-1632
    [162]徐跃生.激光等离子体干涉实验诊断研究.南京理工大学硕士学位论文.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700