超支化聚醚层层组装构建心血管植入体表面多功能涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用多功能薄膜涂层实现抗凝血、内皮细胞诱导和局部药物控释是解决心血管植入材料临床应用问题的重要手段。本文以分子末端带有大量羟基的超支化聚醚为研究主体,通过对超支化聚醚末端官能基的改性与活化,采用静电和共价键层层组装,制备了多功能薄膜涂层材料,探索其应用于心血管植入体表面涂层的可行性。
     一.类肝素超支化聚醚静电层层组装构建多功能薄膜涂层材料的研究
     研究首先对超支化聚(3-乙基-3-羟甲基环氧丁烷)(HBPO)的末端官能团进行磺酸基改性,将疏水的HBPO转化为水溶性的类肝素超支化聚醚HBPO-SO_3。通过荧光探针法、粒径分析和透射电镜(TEM)对聚合物在水溶液中的自组装行为进行表征,证明当HBPO-SO_3的浓度高于临界胶束浓度(CMC)0.017 mg/mL时,可自发组装形成尺寸在25~70 nm之间,内核为疏水的超支化聚醚链,外层为带负电荷的磺酸基的球形胶束。荧光探针法的结果进一步表明,HBPO-SO_3的单分散大分子状态及其自组装聚集体均为包载疏水的客体小分子提供了良好的疏水环境。复钙化凝血时间的测定结果证明了改性超支化聚醚的类肝素性质,分子末端的磺酸基使得HBPO-SO_3体现了良好的抗凝血性;同时体外细胞活性测定和细胞形貌观察证明HBPO-SO_3具有低的细胞毒性和良好的细胞相容性,适用于与血液直接接触的体内环境。
     超支化聚醚的磺酸化改性不仅改善了聚合物的生物相容性,同时分子末端的大量磺酸基使聚合物具有强聚电解质的性质。以HBPO-SO_3作为肝素的替代物,与聚阳离子壳聚糖静电交替组装制备层状多层膜。原子力显微镜(AFM)数据表明,HBPO-SO_3以自组装聚集体的形式载入多层膜,在多层膜中形成大量纳米尺寸的疏水区域。多层膜可通过“预包载法”和“扩散法”两种方式包载疏水模型药物—芘。荧光光谱和紫外光谱的结果显示,与“预包载法”相比,由“扩散法”制备的芘负载的多层膜具有更高的包载量和更好的控释能力。通过相同的“扩散法”负载方式,在多层膜中包载具有抗再狭窄功能的疏水药物一普罗布考,与肝素/壳聚糖多层膜相比,HBPO-SO_3/壳聚糖多层膜由于具有纳米尺寸的疏水区域,对扩散有机溶剂没有限制,可成功实现对普罗布考的包载和控释。复钙化凝血时间的测定结果表明,即使以抗菌的壳聚糖为最外层,多层膜表面也具有良好的抗凝血性。HBPO-SO_3/壳聚糖多层膜可望成为具有抗菌性、抗凝血性和局部控释疏水药物的能力的多功能涂层材料。
     二.反应性超支化聚醚共价键层层组装构建多功能薄膜涂层材料的研究
     研究进一步利用超支化聚醚HBPO的多末端羟基,制备了与氨基化合物具有化学反应活性的端对硝基苯酯基超支化聚醚HBPO-NO_2。在氨基化的基材表面,HBPO-NO_2与PEI通过共价键层层自组装过程,形成了具有共价键交联结构的稳定的多层膜。HBPO-NO_2/PEI多层膜兼容了疏水超支化聚醚与阳离子型聚电解质两种不同属性的物质,因此具有独特的包载性能。多层膜可通过质子化作用包载阴离子型模型药物一丽春红2R,调节载药溶液的pH值可以影响丽春红2R在多层膜中的包载量和释放量,在中性pH值条件下,多层膜即可实现高载药量及可控释放。多层膜可作为原位制备纳米银粒子的模板,纳米银的载入量随多层膜中PEI层数的增加而增加。多层膜还可成功包载疏水药物普罗布考,并实现长效释放。内皮细胞的体外培养结果显示,HBPO-NO_2/PEI多层膜具有阻抗细胞粘附的作用,随着膜厚的增加,这种作用愈加明显。在(HBPO-NO_2/PEI)_n/HBPO-NO_2多层膜表面接枝生物活性分子胶原和多肽REDV,促进了内皮细胞的粘附,改善了多层膜表面的细胞相容性。尤其,胶原功能化的(HBPO-NO_2/PEI)_5/HBPO-NO_2多层膜表现出显著促进内皮细胞粘附的能力。因此,具有化学反应活性的HBPO-NO_2/PEI多层膜不仅可以作为多种治疗因子的局部控释载体,而且可通过表面生物功能化改性调控细胞行为,具有作为心血管植入体表面多功能涂层的潜在应用价值。
Much attention has been paid to the application of layer-by-layer(LBL) films as functional surface coatings of implanted medical devices(such as vascular catheters, vascular implants,and heart valves).They appear as interesting candidates for the localized delivery of therapeutic agents,antibacterial and anticoagulation applications, control of cell adhesion and growth,and so on.Toward the goal of constructing multifunctional LBL films,hyperbranched polyether is used as a building block for LBL assembly,and multilayer films via electrostatic or covalent LBL assembly technique have been constructed,respectively.
     Construction of multifunctional coatings via the electrostatic LBL assembly of heparin-like hyperbrabched polyether
     A water soluble sulfonated hyperbranched polyether(HBPO-SO_3),consisting of a hydrophobic hyperbranched poly(3-ethyl-3-oxetanemethanol) core and sulfonate terminal groups,is designed as a promising heparin-like biomaterial.The micellization of the resultant HBPO-SO_3 in aqueous solution is monitored by fluorescence spectroscopy using pyrene as a hydrophobic probe and the critical micelle concentration(CMC) is determined to be 0.017 mg/mL.The analyses of transmission electron microscopy(TEM) clearly show that HBPO-SO_3 can aggregate into spherical micelles with diameters of 25~70 nm above CMC.Results from the plasma recalcification time assay and cell culture declare that HBPO-SO_3 exhibits good hemocompatibility and low cytotoxicity.
     As an alternative to heparin,sulfonated hyperbranched polyether HBPO-SO_3 is employed as a building block to fabricate multilayer films with chitosan via LBL assembly.The atomic force microscopy(AFM) images demonstrate the stability of HBPO-SO_3 micelles during the LBL process and therefore many hydrophobic nanodomains are incorporated into the LBL films to provide nanoreservoirs for hydrophobic guest molecules.The fluorescence emission spectra verify that the hydrophobic dye pyrene can be incorporated into the LBL films either by pre-encapsulation in HBPO-SO_3 micelles or post-diffusion in preassembled multilayer films.Compared with the pre-encapsulation approach,the post-diffusion process is more efficient to incorporate hydrophobic guest molecules into the LBL films and can carry out a much more controlled release of the guest molecules.Hydrophobic drug probucal,which has powerful antioxidant properties and can prevent restenosis after coronary angioplasty,is chosen and incorporated into multilayer films via post-diffusion.Successful loading and controlled release of probucal in HBPO-SO_3/chitosan multilayer films are obtained.In addition,HBPO-SO_3/chitosan multilayer films exhibit anticoagulant activity even with chitosan as the outmost layer. Therefore,a multifunctional coating with potential anticoagulation,antibacterial and localized release of hydrophobic drug is developed.
     Construction of multifunctional coating via the covalent LBL assembly of reactive hyperbranched polyether
     The construction of multilayer films via the alternating covalent LBL assembly of p-nitrophenyloxycarbonyl groups-terminated hyperbranched polyether (HBPO-NO_2) and polyethylenimine(PEI) onto aminolyzed substrates is investigated. Ellipsometry measurements confirm the successful LbL assembly of HBPO-NO_2 and PEI.Results from contact angle measurements and UV-vis spectrum demonstrate that 5-bilayered multilayer films form uniform surface coatings on the substrate surface. HBPO-NO_2/PEI multilayer films can be used as localized delivery carriers for multiple therapeutic agents because of the distinct properties of the building blocks. The loading behaviors of HBPO-NO_2/PEI multilayer films toward hydrophilic anionic dye ponceau 2R can be controlled by the protonation of PEI,and ponceau 2R-loaded multilayer films prepared at neutral pH value exhibit well loading and release behaviors.By making use of the effective chelating capability of PEI to Ag~+,Ag~+ is loaded into the LBL films and then is in situ photoreduced into Ag nanoparticles in the multilayers template.The amount of Ag nanoparticles increases with the increasing of the number of PEI layers in the LBL films.The hydrophobic hyperbranched polyether chains can be regarded as reservoirs for hydrophobic guest molecules,and the LBL films are capable of controlled loading and release of hydrophobic drug probucal.Results from cell experiments indicate that increasing the thickness of the LBL films,human umbilical vein endothelial cells(HUVECs) adhesion and proliferation on the LBL surface are obviously decreased.The multilayer films with HBPO-NO_2 as the outmost layer react readily with the nucleophilic N-terminus of the extracellular matrix proteins collagen or peptide REDV to achieve biomimetic surfaces.The adhesion and growth of HUVECs for the biomolecules-grafted surfaces are better than that of ungrafted multilayer films. Especially,the immobilization of collagen on the surface of 5.5-bilayered multilayer films significantly improves the HUVECs adhesion and proliferation.Therefore,the LBL films exhibit excellent capabilities of localized delivery of multiple therapeutic agents and control of cell function.The facile method here to prepare multifunctional LBL films may have good potential for surface modification of cardiovascular devices.
引文
[1]胡巧玲,张中明,王晓丽,沈家骢.可吸收型甲壳素、壳聚糖生物医用植入材料的研究进展,功能高分子学报,2003,16(2),293-298.
    [2]高长有,马列.《医用高分子材料》,化学工业出版社,2006.
    [3]Fischman D.L.,Leon M.B.,Baim D.S.,Schatz R.A.,Savage M.P.,Penn I.A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary-artery disease.N.Engl.J.Med.,1994,331(8),496-501.
    [4]Serruys P.W.,Foley D.P.,Suttorp M.J.,Rensing B.J.,Suryapranata H.A randomized comparison of the value of additional stenting after optimal balloon angioplasty for long coronary lesions-Final results of the additional value of NIR stents for treatment of long coronary lesions(ADVANCE) study.J.Am.Coll.Cardiol.,2002,39(3),393-399.
    [5]Kavanagh C.A.,Rochev Y.A.,Gallagher W.M.,Dawson K.A.,Keenan A.K.Local drug delivery in restenosis injury:thermoresponsive co-polymers as potential drug delivery systems.Pharmacol.Ther.,2004,102(1),1-15.
    [6]Kipshidze N.,Leon M.B.,Tsapenko M.Falotico R.,Kopia G.A.,Moses J.,Update on sirolimus drug-eluting stents.Curr.Pharm.Des.,2004,10(4),337-348.
    [7]Bonnie L.,Hiatt M.D.,Andrew J.The drug-eluting stent:is it the holy grail? Rev.Cardiovasc.Med.,2001,2(4),190-196.
    [8]Stone G.W.,Ellis S.G.,Cox D.A.,Hermiller J.,O'Shaughnessy C.,Mann J.T.,Turco M.,Caputo R.,Bergin P.,Greenberg J.,Popma J.J.Russell M.E.A polymer-based,paclitaxel-eluting stent in patients with coronary artery disease.Nat.Eng.J.Med.,2004,350(3),221-231.
    [9]Losordo D.W.,Isener J.M.Diaz-Sandoval L.J.Endothelial recovery:the next target in restenosis prevention.Circulation,2003,107(21),2635-2637.
    [10]Pavithra D.,Doble M.Biofilm formation,bacterial adhesion and host response on polymeric implants - issues and prevention.Biomed.Mater.,2008,3(3),034003.
    [11]Reintjes T.,Tessmar J.,G(o|¨)pferich A.Biomimetic polymers to control cell adhesion.J.Drug Del.Sci.Tech.,2008,18(1),15-24.
    [12]George P.A.,Donose B.C.,Cooper-White J.J.Self-assembling polystyreneblock-poly (ethylene oxide) copolymer surface coatings:resistance to protein and cell adhesion.Biomaterials,2009,30(13),2449-2456.
    [13]宫铭,杨珊,张世平,宫永宽.生物医用材料表面仿细胞膜结构改性,化学进展,2008,20(10),1628—1634.
    [14]Nakaya T.,Li Y.Recent progress of phospholipid polymers.Des.Monomers Polym.,2003,6(4),309-351.
    [15]Lewis A.L.Phosphorylcholine-based polymers and their use in the prevention of biofouling.Colloid Surf.B:Biointerfaces,2000,18(3-4),261-275.
    [16]Iwasaki Y.,Ishihara K.Phosphorylcholine-containing polymers for biomedical applications.Anal.Bioanal.Chem.,2005,381(3),534-546.
    [17]Chen H.,Yuan L.,Song W.,Wu Z.,Li D.Biocompatible polymer materials:role of protein-surface interactions.Prog.Polym.Sci.,2008,33(11),1059-1087.
    [18]Wattendorf U.,Merkle H.P.PEGylation as a tool for the biomedical engineering of surface modified microparticles.J.Pharm.Sci.,2008,97(11),4655-4669.
    [19]Georgiev G.S.,Karnenska E.B.,Vassileva E.D.,Kamenova I.P.,Georgieva V.T.,Iliev S.B.,Ivanov I.A.Self-assembly,anti polyelectrolyte effect,and nonbiofouling properties of polyzwitterions.Biomacromolecules,2006,7(4),1329-1334.
    [20]Lewis A.L.,Furze J.D.,Small S.,Robertson J.D.,Higgins B.J.,Taylor S.,Ricci D.R.Long-term stability of a coronary stent coating post implantation.J.Biomed.Mater Res.,2002,63(6),699-705.
    [21]Lewis A.L.,Tolhurst L.A.,Stratford P.W.Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation.Biomaterials,2002,23(7), 1697-1706.
    [22]Tseng Y.C.,Mullin W.M.,Park K.Albumin grafting on to polypropylene by thermal activation.Biomaterials,1993,14(5),392-400.
    [23]Shen M.C.,Martinson L.,Wagner M.S.,Castner D.G.,Ratner B.D.,Horbett T.A.PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins:in vitro and in vivo studies.J.Biomater.Sci.-Polym.Ed.,2002,13(4),367-390.
    [24]Denizli F.K.,Guven O.Competitive adsorption of blood proteins on gamma-irradiated-polycarbonate films.J.Biomater.Sci.-Polym.Ed.,2002,13(2),127-139.
    [25]计剑,封麟先,沈家骢.白蛋白原位复合生物医用功能材料的研究(Ⅰ)一材料的合成和表面结构研究,高等学校化学学校,2002,23(11),2196-2201.
    [26]Christensen K.,Larsson R.,Emanuelsson H.,Elgue G.,Larsson A.Heparin coating of the stent graft - effects on platelets,coagulation and complement activation.Biomaterials,2001,22(4),349-355.
    [27]Rollason G.,Sefton M.V.Inactivation of thrombin in heparin-PVA coated tubes.J.Biometer.Sci.Polym.Ed.,1989,1(1),31-41.
    [28]高宁国,程秀兰,杨敬.肝素结构与功能的研究进展,生物工程进展,1999,19(5),4-13.
    [29]黄寿吾,李惜光.肝素抗凝血和抗血栓作用机理研究的某些进展,国外医学输血及血液学分册,1996,19(2),99-101.
    [30]文志红,邬素华,陈维涛.医用肝素化抗凝血高分子材料的研究进展,塑料,2005,34(2),26-30.
    [31]Cardin A.D.,Weintraub H.J.R.Molecular modeling of protein-glycosamino- glycan interactions.Arteriosclerosis,1989,9(1),21-32.
    [32]Caidwell E.E.,Nadkarni V.D.,Fromm J.R.,Linhardt R.J.,Weiler J.M.Importance of specific amino acids in protein binding sites for heparin and heparan sulfate,Int.J.Biochem.Cell Biol.,1996,28(2),203-216.
    [33]Fromm J.R.,Hileman R.E.,Caldwell E.E.,Weiler J.M.,Linhardt R.J.Differences in the interaction of heparin with arginine and lysine and the importance of these basic-amino-acids in the binding of heparin to acidic fibroblast growth-factor.Arch.Biochem.Biophys.,1995,323(2),279-287.
    [34]Bae J.,Desai U.R.,Pervin A.,Caldwell E.E.,Weiler J.M.,Linhardt R.J.Interaction of heparin with synthetic antithrombin-Ⅲ peptide analogs.Biochem.J.,1994,301(1),121-129.
    [35]Vazquez-Campos S.,St.Hilaire P.M.,Damgaard D.,Meldal M.GAG mimetic libraries:sulphated peptide as heparin-like glycosaminoglycan mimics in their interaction with FGF-1.QSAR Comb.Sci.,2005,24(8),923-942.
    [36]Moscatelli D.,Quarto N.Transformation of NIH 3T3 cells with basic fibroblast growth-factor or the HST/K-FGF oncogene causes down-regulation of the fibroblast growth-factor receptor - reversal of morphological transformation and restoration of receptor number by suramin.J.Cell Biol.,1989,109(5),2519-2527.
    [37]Tamada Y.,Murata M.,Hayashi T.,Goto K.Anticoagulant mechanism of sulfonated polyisoprenes.Biomaterials,2002,23(5),1375-1382.
    [38]Aguilar M.R.,Rodriguez G.,Fernandez M.,Gallardo A.,Roman J.S.Polymeric active coatings with functionality in vascular applications.J.Mater.Sci.-Mater.Med.,2002,13(12),1099-1104.
    [39]Kim Y.H.,Han D.K.,Park K.D.,Kim S.H.Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept.Biomaterials,2003,24(13),2213-2223.
    [40]吴刚,万昌秀,段友容.植入用高分子材料表面改性抗细菌粘附的研究进展,生物医学工程学杂志,2000,17(1),84—86.
    [41]Tenke P.,Riedl C.R.,Jones G.L.,Williams G.J.,Stickler D.,Nagy E.Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy.Int.J.Antimicrob. Agents.,2004,23(1),S67-S74.
    [42]Roosjen A.,van der Mei H.C.,Busscher H.J.,Norde W.Microbial adhesion to poly(ethylene oxide) brushes:influence of polymer chain length and temperature.Langmuir,2004,20(25),10949-10955.
    [43]Kingshott P.,Wei J.,Bagge-Ravn D.,Gadegaard N.,Gram L.Covalent attachment of poly(ethylene glycol) to surfaces,critical for reducing bacterial adhesion.Langmuir,2003,19(17),6912-6921.
    [44]Harris L.G.,Tosatti S.,Wieland M.,Textor M.,Richards R.G.Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers.Biomaterials,2004,25(18),4135-4148.
    [45]Muller R.,Eidt A.,Hiller K.A.,Katzur V.,Subat M.,Schweikl H.,Imazato S.,Ruhl S.,Schmalz G.Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers.Biomaterials,2009,30(28),4921-4929.
    [46]Bertal K.,Shepherd J.,Douglas C.W.I.,Madsen J.,Morse A.,Edmondson S.,Armes S.P.,Lewis A.,MacNeil S.Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels.J.Mater.Sci.,2009,44(23),6233-6246.
    [47]Tunney M.M.,Gorman S.P.Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use.Biomaterials,2002,23(23),4601-4608.
    [48]Tiller J.C.,Lee S.B.,Lewis K.,Klibanov A.M.Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria.Biotechnol.Bioeng.,2002,79(4),465-471.
    [49]Cen L.,Neoh K.G.,Kang E.T.Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces.Langmuir,2003,19(24),10295-10303.
    [50]Lee S.B.,Koepsel R.R.,Morley S.W.,Matyjaszewski K.,Sun Y.,Russell A.J.Permanent,nonleaching antibacterial surfaces.1.Synthesis by atom transfer radical polymerization.Biomacromolecules,2004,5(3),877-882.
    [51]Allan C.R.,Hadwiger L.A.The fungicidal effect of chitosan on fungi of varying cell wall composition.Exp.Mycol.,1979,3,285-287.
    [52]杨冬芝,刘晓非,李治,徐怀玉,管云林,姚康德.壳聚糖抗菌活性的影响因素,应用化学,2000,17(6),598-602.
    [53]Hu S.G.,Jou C.H.,Yang M.C.Protein adsorption,fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid.Biomaterials,2003,24(16),2685-2693.
    [54]Thomas V.,Yallapu M.M.,Sreedhar B.,Bajpai S.K.Fabrication,characterization of chitosan/nanosilver film and its potential antibacterial application.J.Biomater.Sci.-Polym.Ed.,2009,20(14),2129-2144.
    [55]Cai ZS.,Song ZQ.,Yang CS.,Shang SB.,Yin YB.Synthesis,characterization and antibacterial activity of quaternized N,O-(2-carboxyethyl)chitosan.Polym.Bull.,2009,62(4),445-456.
    [56]Fu J.H.,Ji J.,Yuan W.Y.,Shen J.C.Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan.Biomaterials,2005,26(33),6684-6692.
    [57]袁伟永,付金红,计剑,沈家骢.层层静电自组装构建壳聚糖/肝素抗菌多层膜的研究,高等学校化学学报,2005,26(10),1963—1965.
    [58]郑连英,朱江峰,孙昆山.壳聚糖抗菌活性研究,材料科学与工程,2000,18(2),22—24.
    [59]Jones D.S.,Djokic J.,McCoy C.P.,Gorman S.P.Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials:characterisation of mechanical and surface properties,degradation and resistance to encrustation in vitro.Biomaterials,2002,23(23),4449-4458.
    [60]Raad I.,Darouiche R.,Dupuis J.,Abi-Said D.,Gabrielli A.,Hachem R.,Wall M.,Harris R., Jones J.,Buzaid A.Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections - a randomized,double-blind trial.Ann.Int.Med.,1997,127(4),267-274.
    [61]Nablo B.J.,Rothrock A.R.,Schoenfisch M.H.Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants.Biomaterials,2005,26(8),917-924.
    [62]Dobmeier K.P.,Schoenfisch M.H.Antibacterial properties of nitric oxide- releasing sol-gel microarrays.Biomacromolecules,2004,5(6),2493-2495.
    [63]Marxer S.M.,Rothrock A.R.,Nablo B.J.,Robbins M.E.,Schoenfisch M.H.Preparation of nitric oxide(NO)-releasing sol-gels for biomaterial applications.Chem.Mater.,2003,15(22),4193-4199.
    [64]Gray J.E.,Norton P.R.,Alnouno R.,Marolda C.L.,Valvano M.A.,Griffiths K.Biological efficacy of electroless-deposited silver on plasma activated polyurethane.Biomaterials,2003,24(16),2759-2765.
    [65]Dai J.H.,Bruening M.L.Catalytic nanoparticles formed by reduction of metal ions in muitilayered polyelectrolyte films.Nano Lett.,2002,2(5),497-501.
    [66]Zhang L.Z.,Yu J.C.,Yip H.Y.,Li Q.,Kwong K.W.,Xu A.W.,Wong P.K.Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO_2 with enhanced photocatalytic and bactericidal activities.Langmuir,2003,19(24),10372-10380.
    [67]张连鹏,刘敬肖.药物涂层支架的研究进展,生物医学工程学杂志,2007,24(1),235—239.
    [68]Cho J.C.,Cheng G.,Feng D.,Faust R.Synthesis,characterization,properties,and drug release of poly(alkyl methacrylate-b-isobutylene-b-alkyl methacrylate).Biomacromolecules,2006,7(11),2997-3007.
    [69]Sternberg K.,Kramer S.,Nischan C.,Grabow N.,Langer T.,Hennighausen G.,Schmitz K.-P.In vitro study of drug-eluting stent coatings based on poly(L-lactide) incorporating cyclosporine A-drug release,polymer degradation and mechanical integrity.J.Mater.Sci.:Mater.Med.,2007,18(7),1423-1432.
    [70]Unger F.,Westedt U.,Hanefeld P.,Wombacher R.,Zimmermann S.,Greiner A.,Ausborn M.,Kissel T.Poly(ethylene carbonate):a thermoelastic and biodegradable biomaterial for drug eluting stent coatings? J.Control.Release,2007,117(3),312-321.
    [71]Lewis A.L.,Tolhurst L.A.,Stratford P.W.Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation.Biomaterials,2002,23(7),1697-1706.
    [72]Xu J.-P.,Ji J.,Chen W.-D.,Fan D.-Z.,Sun Y.-F.,Shen J.-C.Phospholipid based polymer as drug release coating for cardiovascular device.Eur.Polym.J.,2004,40(2),291-298.
    [73]Carter A.J.,Aggarwal M.,Kopia G.,Tio F.,Tsao P.S.,Kolata R.,Yeung A.C.,Llanos G.,Dooley J.,Falotico R.Long-term effects of polymer-based,slow-release,sirolimus-eluting stents in a porcine coronary model.Cardiovasc.Res.,2004,63(4),617-624.
    [74]Wang X.,Venkatraman S.S.,Boey F.Y.C.,Loo J.S.C.,Tan L.P.Controlled release of sirolimus from a multilayered PLGA stent matrix.Biomaterials,2006,27(32),5588-5595.
    [75]Karoussos A.,Wieneke H.,Sawitowski T.,Wnendt S.,Fischer A.,Dirsch O.,Dahmen U.,Erbel R.Inorganic materials as drug delivery systems in coronary artery stenting.Materialwiss.Werkstofftech.,2002,33(12),738-746.
    [76]Shi Z.,Neoh K.G.,Kang E.T.Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities.Langmuir,2004,20(16),6847-6852.
    [77]Shin H.,Jo S.,Mikos A.G.Biomimetic materials for tissue engineering.Biomaterials,2003,24(24),4353-4364.
    [78]Hersel U.,Dahmen C.,Kessler H.RGD modified polymers:biomaterials for stimulated cell adhesion and beyond.Biomaterials,2003,24(24),4385-4415.
    [79]Jensen N.,Lindblad B.,Bergqvist D.Endothelial-cell seeded dacron aortobifurcated graftsplatelet deposition and long-term follow-up.J.Cardiovasc.Surg.,1994,35(5),425-429.
    [80]Massia S.P.,Hubbell J.A.Vascular endothelial-cell adhesion and spreading promoted by the peptide redv of the ⅢCS region of plasma fibronectin is mediated by integrin alpha-4-beta-1.J.Biol.Chem.,1992,267(20),14019-14026.
    [81]Decher G.Fuzzy nanoassemblies:Toward layered polymeric multicomposites.Science,1997,277(5330),1232-1237.
    [82]沈家骢 等,《超分子层状结构-组装与功能》,科学出版社,2003.
    [83]Bergbreiter D.E.,Liao K.S.Covalent layer-by-layer assembly-an effective,forgiving way to construct functional robust ultrathin films and nanocomposites.Soft Matter,2009,5(1),23-28.
    [84]Quinn J.F.,Johnston A.P.R.,Such G.K.,Zelikin A.N.,Caruso F.Next generation,sequentially assembled ultrathin films:beyond electrostatics.Chem.Soc.Rev.,2007,36(5),707-718.
    [85]Houska M.,Brynda E.Interactions of proteins with polyelectrolytes at solid/liquid interfaces:Sequential adsorption of albumin and heparin.J.Colloid Interface Sci.,1997,188(2),243-250.
    [86]Cai K.,Rechtenbach A.,Hao J.,Bossert J.,Jandt K.D.Polysaccharide-protein surface modification of titanium via a layer-by-layer technique:Characterization and cell behaviour aspects.Biomaterials,2005,26(30),5960-5971.
    [87]Serizawa T.,Yamaguchi M.,Akashi M.Alternating bioactivity of polymeric layer-by-layer assemblies:Anticoagulation vs procoagulation of human blood.Biomacromolecules,2002,3(4),724-731.
    [88]Tang Z.,Wang Y.,Podsiadlo P.,Kotov N.A.Biomedical applications of layer-by-layer assembly:From biomimetics to tissue engineering.Adv.Mater.,2006,18(24),3203-3224.
    [89]Thierry B.,Winnik F.M.,Merhi Y.,Silver J.,Tabrizian M.Bioactive coatings of endovascular stents based on polyelectrolyte multilayers.Biomacromolecules,2003,4(6),1564-1571.
    [90]Tan Q.G.,Ji J.,Barbosa M.A.,Fonseca C.,Shen J.C.Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant.Biomaterials,2003,24(25),4699-4705.
    [91]Meng S.,Liu Z.,Shen L.,Guo Z.,Chou L.L.,Zhong W.,Du Q.,Ge J.The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system.Biomaterials,2009,30(12),2276-2283.
    [92]Boulmedais F.,Frisch B.,Etienne O.,Lavalle P.,Picart C.,Ogier J.,Voegel J.C.,Schaaf P.,Egles C.Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials.Biomaterials,2004,25(11),2003-2011.
    [93]Choi J.,Konno T.,Matsuno R.,Takai M.,Ishihara K.Surface immobilization of biocompatible phospholipid polymer multilayered hydrogel on titanium alloy.Colloid Surf.B:Biointerfaces,2008,67(2),216-223.
    [94]孙婕衍,王雪飞,计剑.层状组装:先进药物控释涂层材料的新选择,化学进展,2009,21(12),2682—2688.
    [95]Sukhorukov G.B.,Mohwald H.,Decher G.,Lvov Y.M.Assembly of polyelectrolyte multilayer films by consecutively alternating adsorption of polynucleotides and polycations.Thin Solid Films,1996,284/285,220-223.
    [96]Ren K.F.,Ji J.,Shen J.C.Construction and enzymatic degradation of multilayered poly-L-lysine/DNA films.Biomaterials,2006,27(7),1152-1159.
    [97]Lynn D.M.Layers of opportunity:nanostructured polymer assemblies for the delivery of macromolecular therapeutics.Soft Matter,2006,2(4),269-273.
    [98]Chen J.,Huang S.W.,Lin W.H.,Zhuo R.X.Tunable film degradation and sustained release of plasmid DNA from cleavable polycation/plasmid DNA multilayers under reductive conditions.Small,2007,3(4),636-643.
    [99]Etienne O.,Gasnier C.,Egles C.Antifungai coating by biofunctionalized polyelectrolyte multilayered films.Biomaterials,2005,26(33),6704-6712.
    [100]van den Beucken J.J.J.P.,Walboomers X.F.,Boerman O.C.,Vos M.R.J.,Sommerdijk N.A.J.M.,Hayakawa T.,Fukushima T.,Okahata Y.,Nolte R.J.M.,Jansen J.A. Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. J.Control. Release, 2006, 113(1), 63-72.
    [101] Van den Beucken J.J.J.P., Walboomers X.F., Nillesen S.T.M., Vos M.R.J., Sommerdijk N.A.J.M., Van Kuppevelt T.H., Nolte R.J.M., Jansen J.A. In vitro and in vivo effects of deoxyribonucleic acid-based coatings funtionalized with vascular endothelial growth factor.Tissue Eng., 2007, 13(4), 711 -720.
    [102] Chuang H.F., Smith R.C., Hammond P.T. Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules, 2008, 9(6), 1660-1668.
    [103] Wang L., Wang X., Xu M., Chen D., Sun J. Layer-by-layer assembled microgel films with high loading capacity: reversible loading and release of dyes and nanoparticles. Langmuir,2008,24(5), 1902-1909.
    [104] Thierry B., Kujawa P., Tkaczyk C, Winnik F.M., Bilodeau L., Tabrizian M. Delivery platform for hydrophobic drugs: prodrug approach combined with self-assembled multilayers. J. Am. Chem. Soc, 2005, 127(6), 1626-1627.
    [105] Vodouh(?) C., Le Guen E., Garza J.M., Francius G., D(?)jugnat C., Ogier J., Schaaf P., Voegel J.C., Lavalle P. Control of drug accessibility on functional polyelectrolyte multilayer films.Biomaterials, 2006, 27(22), 4149-4156.
    [106] Berg M.C., Zhai L., Cohen R.E., Rubner M.F. Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules, 2006, 7(1), 357-364.
    
    [107] Guyomard A., Nysten B., Muller G., Glinel K. Loading and release of small hydrophobic molecules in multilayer films based on amphiphilic polysaccharides. Langmuir, 2006, 22(5),2281-2287.
    
    [108] Guyomard A., D(?) E., Jouenne T., Malandain J.J., Muller G., Glinel K. Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv. Fund. Mater., 2008, 18(5),758-765.
    
    [109] Choi J., Konno T., Takai M., Ishihara K. Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface. Biomaterials, 2009, 30(28),5201-5208.
    
    [110] Qi B., Tong X., Zhao Y. Layer-by-layer assembly of two different polymer micelles with polycation and polyanion coronas. Macromolecules, 2006, 39(17), 5714-5719.
    
    [111] Liu X., Zhou L., Geng W., Sun J. Layer-by-layer-assembled multilayer films of polyelectrolyte-stabilized surfactant micelles for the incorporation of noncharged organic dyes. Langmuir, 2008, 24(22), 12986-12989.
    
    [112] Ma N., Zhang H., Song B., Wang Z., Zhang X. Polymer micelles as building blocks for layer-by-layer assembly: an approach for incorporation and controlled release of water-insoluble dyes. Chem. Mater., 2005, 17(20), 5065-5069.
    [113] Nguyen P.M., Zacharia N.S., Verploegen E., Hammond P.T. Extended release antibacterial layer-by-layer films incorporating linear-dendritic block copolymer micelles. Chem. Mater.,2007, 19(23), 5524-5530.
    [114] Yoo D., Shiratori S.S., Rubner M.F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules,1998, 31(13), 4309-4318.
    
    [115] Joly S., Kane R., Radzilowski L., Wang T., Wu A., Cohen R.E., Thomas E.L., Rubner M.F.Multilayer nanoreactors for metallic and semiconducting particles. Langmuir, 2000, 16(3),1354-1359.
    
    [116] Zhou Y., Ma R., Ebina Y., Takada K., Sasaki T. Multilayer hybrid films of titania semiconductor nanosheet and silver metal fabricated via layer-by-layer self-assembly and subsequent UV irradiation. Chem. Mater., 2006, 18(5), 1235-1239.
    [117] Cui X., Li C.M., Bao H., Zheng X., Lu Z. In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J. Colloid Interface Sci., 2008,327(2), 459-465.
    
    [118] Yuan W.Y., Ji J., Fu J.H., Shen J.C. A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J. Biomed. Mater. Res. Part B, 2008, 85B(2),556-563.
    [119]Mendelsohn J.D.,Yang S.Y.,Hiller J.,Hochbaum A.I.,Rubner M.F.Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films.Biomacromolecules,2003,4(1),96-106.
    [120]Thompson M.T.,Berg M.C.,Tobias I.S.,Rubner M.F.,Van Vliet K.J.Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.Biomaterials,2005,26(34),6836-6845.
    [121]Buck M.E.,Breitbach A.S.,Belgrade S.K.,Blackwell H.E.,Lynn D.M.Chemical modification of reactive multilayered films fabricated from poly(2-alkenyl azlactone)s:design of surfaces that prevent or promote mammalian cell adhesion and bacterial biofilm growth.Biomacromolecules,2009,10(6),1564-1574.
    [122]Zhu H.G.,Ji J.,Tan Q.G.,Barbosa M.A.,Shen J.C.Surface engineering of poly(D,L-lactide) via electrostatic self-assembly of extracellular matrix-like molecules.Biomacromolecules,2003,4(2),378-386.
    [123]Zhu H.G.,Ji J.,Shen J.C.Construction of multilayer coating onto poly-(D,L-lactide) to promote cytocompatibility.Biomaterials,2004,25(1),109-117.
    [124]Zhu H.G.,Ji J.,Shen J.C.Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold.Biomacromolecules,2004,5(5),1933-1939.
    [125]Zhu H.G.,Ji J.,Barbosa M.A.,Shen J.C.Protein electrostatic self-assembly on poly(D,L-Lactide) scaffold to promote osteoblast growth.J.Biomed.Mater.Res.Part B:Appl.Biomater.,2004,71B(1),159-165.
    [126]侯悦,层层组装构建细胞选择性界面的研究,浙江大学硕士学位论文,2008.
    [127]Gao C.,Yan D.Y.Hyperbranched polymers:from synthesis to applications.Prog.Polym.Sci.,2004,29(3),183-275.
    [128]李景果,孟超,张修强,张磊,张阿方.树形聚醚的合成及其应用,化学进展,2006,18(9),1157-1180.
    [129]Zhou Y.F.,Yan D.Y.Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions:progress,characteristics and perspectives.Chem.Commun.,2009,(10),1172-1188.
    [130]Kim Y.H.,Webster O.W.Water-soluble hyperbranched polyphenylene - a unimolecular micelle.J.Am.Chem.Soc.,1990,112(11),4592-4593.
    [131]Sunder A.,Kr(a|¨)mer M.,Hanselmann R.,M(u|¨)lhaupt R.,Frey H.Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols.Angew.Chem.Int.Ed.,1999,38(23),3552-3555.
    [132]Luo S.,Xu J.,Zhu Z.,Wu C.,Liu S.Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas.J.Phys.Chem.B,2006,110(18),9132-9139.
    [133]Kumar K.R.,Brooks D.E.Comparison of hyperbranched and linear polyglycidol unimolecular reverse miceiles as nanoreactors and nanocapsules.Macromol.Rapid Commun.,2005,26(3),155-159.
    [134]Kitajyo Y.,Nawa Y.,Tamaki M.,Tani H.,Takahashi K.,Kaga H.,Satoh T.,Kakuchi T.A unimolecular nanocapsule:encapsulation property of amphiphilic polymer based on hyperbranched polythreitol.Polymer,2007,48(16),4683-4690.
    [135]Yan D.Y.,Zhou Y.F.,Hou J.Supramolecular self-assembly of macroscopic tubes.Science,2004,303(5654),65-67.
    [136]Zhou Y.F.,Yan D.Y.Supramolecular self-assembly of giant polymer vesicles with controlled sizes.Angew.Chem.Int.Ed.,2004,43(37),4896-4899.
    [137]Zhou Y.F.,Yan D.Y.Real-time membrane fission of giant polymer vesicles.Angew.Chem.Int.Ed.,2005,44(21),3223-3226.
    [138]Zhou Y.F.,Yan D.Y.Real-time membrane fusion of giant polymer vesicles.J.Am.Chem.Soc.,2005,127(30),10468-10469.
    [139]Mai Y.Y.,Zhou Y.F.,Yan D.Y.Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether.Macromolecules,2005,38(21), 8679-8686.
    [140] Dong W.Y., Zhou Y.F., Yan D.Y., Li H.Q., Liu Y. PH-responsive self-assembly of carboxyl-terminated hyperbranched polymers. Phys. Chem. Chem. Phys., 2007, 9(10),1255-1262.
    [141] Jia Z.F., Zhou Y.F., Yan D.Y. Amphiphilic star-block copolymers based on a hyperbranched core: synthesis and supramolecular self-assembly. J. Polym. Sci. Part A: Polym. Chem.,2005, 43(24), 6534-6544.
    [142] Tian H., Deng C, Lin H., Sun J., Deng M., Chen X., Jing X. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization.Biomaterials, 2005, 26(20), 4209-4217.
    [143] Jiang G., Wang L., Chen T., Dong X., Yu H., Wang J., Chen C. Synthesis and self-assembly of hyperbranched polymers with benzoyl terminal arms. J. Polym. Sci. Part A-Polym.Chem., 2005, 43(22), 5554-5561.
    [144] Jiang G, Wang L., Chen T., Yu H., Dong X., Chen C. Synthesis and self-assembly of hyperbranched polyester peripherally modified by touluene-4-sulfonyl groups. Polymer,2005, 46(22), 9501-9507.
    [145] Hong H.Y., Mai Y.Y., Zhou Y.F., Yan D.Y, Cui J. Self-assembly of large multimolecular micelles from hyperbranched star copolymers. Macromol. Rapid Commun., 2007, 28(5),591-596.
    [146] Radowski M.R., Shukla A., Von Berlepsch H., Bottcher C, Pickaert G, Rehage H., Haag R.Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers.Angew. Chem. Int. Ed., 2007, 46(8), 1265-1269.
    [147] Ornatska M., Bergman K.N., Rybak B., Peleshanko S., Tsukruk V.V. Nanofibers from functionalized dendritic molecules. Angew. Chem. Int. Ed., 2004, 43(39), 5246-5249.
    [148] Ornatska M., Peleshanko S., Genson K.L., Rybak B., Bergman K.N., Tsukruk V.V.Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am.Chem. Soc, 2004, 126(31), 9675-9684.
    [149] Ornatska M., Bergman K.N., Goodman M., Peleshanko S., Shevchenko V.V., Tsukruk V.V.Role of functionalized terminal groups in formation of nanofibrillar morphology of hyperbranched polyesters. Polymer, 2006, 47(24), 8137-8146.
    [150] Rybak B.M., Ornatska M., Bergman K.N., Genson K.L., Tsukruk V.V. Formation of silver nanoparticles at the air-water interface mediated by a monolayer of functionalized hyperbranched molecules. Langmuir, 2006, 22(3), 1027-1037.
    
    [151] Peleshanko S., Tsukruk V.V. The architectures and surface behavior of highly branched molecules. Prog. Polym. Sci., 2008, 33(5), 523-580.
    
    [152] Stenzel M.H., Barner-Kowollik C., Davis T. P. Formation of honeycomb- structured, porous films via breath figures with different polymer architectures. J. Polym. Sci. Part A: Polym.Chem., 2006, 44(8), 2363-2375.
    [153] Ornatska M., Peleshanko S., Rybak B., Holzmueller J., Tsukruk V.V. Supramolecular multiscale fibers through one-dimensional assembly of dendritic molecules. Adv. Mater.,2004, 16(23-24), 2206-2212.
    
    [154] Jiang G., Wang L., Chen T., Yu H., Wang C., Chen C. Synthesis and macroscopic self-assembly of multiarm hyperbranched polyethers with benzoyl-terminated groups.Polymer, 2005, 46(14), 5351-5357.
    
    [155] Liu C.H., Gao C, Yan D.Y. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew. Chem. Int. Ed., 2007, 46(22),4128-4131.
    
    [156] Yeh P.Y.J., Kainthan R.K., Zou Y, Chiao M., Kizhakkedathu J.N. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s. Langmuir, 2008, 24(9), 4907-4916.
    
    [157] Tang L., Qiu T., You H., Liu D., Tang X. Influence of solution conditions on formation of amphiphilic hyperbranched polyanion/linear polycation multilayer films. Colloid Polym.Sci., 2006, 284(9), 957-964.
    [158]Tang L.,You H.,Wu J.,Yu K.,Tang X.Controlling surface morphologies of self-assembled films through adjusting amphiphilic balance of hyperbranched poly(ester-amine)s in water by solution pH.Colloid Surf.A-Physicochem.Eng.Asp.,2006,275(1-3),177-182.
    [159]Tang L.,You H.,Feng J.Formation and surface modification of self-assembled films with acrylated hyperbranched poly(ester-amine) as the outmost layer.Thin Solid Films,2007,515(5),2998-3004.
    [160]唐黎明,邱藤,由虎,方宇,庹新林,刘德山.超支化聚阴离子/超支化聚阳离子自组装膜的制备及反应,高分子学报,2005,(4),625-628.
    [161]邱藤,唐黎明,庹新林,由虎,王晓工,刘德山.端基结构对超支化聚合物静电吸附自组装行为的影响,高等学校化学学报,2004,25(5),971-974.
    [162]Qiu T.,Tang L.,Tuo X.,Zhang X.,Liu D.Study on self-assembly properties of aryl-alkyl hyperbranched polyesters with carboxylic end groups.Polym.Bull.,2001,47(3-4),337-342.
    [163]Kong H.,Luo P.,Gao C.,Yan D.Y.Polyelectrolyte-functionalized multiwalled carbon nanotubes:preparation,characterization and layer-by-layer self-assembly.Polymer,2005,46(8),2472-2485.
    [164]Li X.,Fan P.,Tuo X.,He Y.,Wang X.Photoresponsive layer-by-layer ultrathin films prepared from a hyperbranched azobenzene-containing polymeric diazonium salt.Thin Solid Films,2009,517(6),2055-2062.
    [165]Zhou Y.,Guo Z.,Zhang Y.,Huang W.,Zhou Y.,Yah D.Hyperbranched Polyamidoamines Containing beta-Cyclodextrin for Controlled Release of Chlorambucil.Macromol.Biosci.,2009,9(11),1090-1097.
    [166]Kontoyianni C.,Sideratou Z.,Theodossiou T.,Tziveleka L.-A.,Tsiourvas D.,Paleos C.M.A novel micellar PEGylated hyperbranched polyester as a prospective drug delivery system for paclitaxel.Macromol.Biosci.,2008,8(9),871-881.
    [167]Ternat C.,Ouali L.,Sommer H.,Fieber W.,Velazco M.I.,Plummer C.J.G.,Kreutzer G.,Klok H.-A.,M(?)nson J.-A.E.,Herrmann A.Investigation of the release of bioactive volatiles from amphiphilic multiarm star-block copolymers by thermogravimetry and dynamic headspace analysis.Macromolecules,2008,41(19),7079-7089.
    [168]Satoh T.Unimolecular micelles based on hyperbranched polycarbohydrate cores.Soft Matter,2009,5(10),1972-1982.
    [169]Sisson A.L.,Steinhilber D.,Rossow T.,Welker P.,Licha K.,Haag R.Biocompatible functionalized polyglycerol microgels with cell penetrating properties.Angew.Chem.Int.Ed.,2009,48(41),7540-7545.
    [170]Tziveleka L.-A.,Kontoyianni C.,Sideratou Z.,Tsiourvas D.,Paleos C.M.Novel functional hyperbranched polyether polyols as prospective drug delivery systems.Macromol.Biosci.,2006,6(2),161-169.
    [171]Kainthan R.K.,Mugabe C.,Burt H.M.,Brooks D.E.Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols:ligand binding properties.Biomacromolecules,2008,9(3),886-895.
    [172]Zhang J.G.,Krajden O.B.,Kainthan R.K.,Kizhakkedathu J.N.,Constantinescu I.,Brooks D.E.,Gyongyossy-Issa M.I.C.Conjugation to hyperbranched polyglycerols improves RGD-mediated inhibition of platelet function in vitro.Bioconjugate Chem.,2008,19(6),1241-1247.
    [173]Pu K.-Y.,Li K.,Shi J.,Liu B.Fluorescent single-molecular core-shell nanospheres of hyperbranched conjugated polyelectrolyte for live-cell imaging.Chem.Mater.,2009,21(16),3816-3822.
    [174]Tziveleka L.-A.,Psarra A.-M.G..,Tsiourvas D.,Paleos C.M.Synthesis and evaluation of functional hyperbranched polyether polyols as prospected gene carriers.Int.J.Pharm.,2008,356(1-2),314-324.
    [175]Reul R.,Nguyen J.,Kissel T.Amine-modified hyperbranched polyesters as non-toxic,biodegradable gene delivery systems.Biomaterials,2009,30(29),5815-5824.
    [176]Liang B.,He M.-Lo,Xiao Z.-P.,Li Y.,Chan C.-Y.,Kung H.-F.,Shuai X.-T.,Peng Y. Synthesis and characterization of folate-PEG-grafted-hyperbranched- PEI for tumor-targeted gene delivery.Biochem.Biophs.Res.Commun.,2008,367(4),874-880.
    [177]Khan J.A.,Kainthan R.K.,Ganguli M.,Kizhakkedathu J.N.,Singh Y.,Mait S.Water soluble nanoparticles from PEG-based cationic hyperbranched polymer and RNA that protect RNA from enzymatic degradation.Biomacromolecules,2006,7(5),1386-1388.
    [178]Kim T.H.,Cook S.E.,Arote R.B.,Cho M.-H.,Nah J.W.,Choi Y.J.,Cho C.S.A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier.Macromol.Biosci.,2007,7(5),611-619.
    [179]Banerjee P.,Weissleder R.,Bogdanov A.Linear polyethyleneimine grafted to a hyperbranched poly(ethylene glycol)-like core:a copolymer for gene delivery.Bioconjugate Chem.,2006,17(1),125-131.
    [180]Kim W.J.,Bonoiu A.C.,Hayakawa T.,Xia C.,Kakimoto M.,Pudavar H.E.,Lee K.-S.,Prasad P.N.Hyperbranched polysiloxysilane nanoparticles:surface charge control of nonviral gene delivery vectors and nanoprobes.Int.J.Pharm.,2009,376(1-2),141-152.
    [181]Blacklock J.,You Y.-Z.,Zhou Q.-H.,Mao G.,Oupicky,D.Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA.Biomaterials,2009,30(5),939-950.
    [182]Zou J.,Shi W.,Wang J.,Bo J.Encapsulation and controlled release of a hydrophobic drug using a novel micelle-forming hyperbranched polyester.Macromol.Biosci.,2005,5(7),662-668.
    [183]Prabaharan M.,Grailer J.J.,Piila S.,Steeber D.A.,Gong S.Amphiphilic multi-arm block copolymer based on hyperbranched polyester,poly(L-lactide) and poly(ethylene glycol) as a drug delivery carrier.Macromol.Biosci.,2009,9(5),515-524.
    [184]Wan A.,Kou Y.The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers as drug carriers.J.Nanopart.Res.,2008,10(3),437-448.
    [185]Tiwari A.,Aryal S.,Pilla S.,Gong S.An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles.Talanta,2009,78(4-5),1401-1407.
    [186]Mori T.,Yamanouchi G.,Han X.,Inoue Y.,Shigaki S.,Yamaji T.,Sonoda T.,Yasui K.,Hayashi H.,Niidome T.,Katayama Y.Signal-to-noise ratio improvement of peptide microarrays by using hyperbranched-polymer materials.J.Appl.Phys.,2009,105(10),102020.
    [187]Adeli M.,Mirab N.,Alavidjeh M.S.,Sobhani Z.,Atyabi F.Carbon nanotubes-graft-polyglycerol:biocompatible hybrid materials for nanomedicine.Polymer,2009,50(15),3528-3536.
    [188]Wang L.,Neoh K.G.,Kang E.T.,Shuter B.,Wang S.-C.Superparamagnetic hyperbranched polyglycerol-grafted fe3o4 nanoparticles as a novel magnetic resonance imaging contrast agent:an in vitro assessment.Adv.Funct.Mater.,2009,19(16),2615-2622.
    [189]Walton D.G.,Mayes A.M.Entropically driven segregation in blends of branched and linear polymers.Phys.Rev.E,1996,54(3),2811-2815.
    [190]Qian Z.,Minnikanti V.S.,Archer L.A.Surface segregation of highly branched polymer additives in linear hosts.J.Polym.Sci.Part B:Polym.Phys.,2008,46(17),1788-1801.
    [191]Zhao Y.-H.,Zhu B.-K.,Kong L.,Xu Y.-Y.Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer.Langmuir,2007,23(10),5779-5786.
    [192]钟玲,贺小华,周永丰,颜德岳,潘才元.pH值响应性超支化多臂共聚物的合成及其自组装行为研究,高分子学报,2007,(10),986-992.
    [193]T(u|¨)rk H.,Shukla A.,Rodrigues P.C.A.,Rehage H.,Haag R.Water-soluble dendritic core-shell-type architectures based on polyglycerol for solubilization of hydrophobic drugs.Chem.Eur.J.,2007,13(15),4187-4196.
    [194]Tziveleka L.A.,Kontoyianni C.,Sideratou Z.,Tsiourvas D.,Paleos C.M.Novel functional hyperbranched polyether polyols as prospective drug delivery systems.Macromol.Biosci.,2006,6(2),161 - 169.
    [195]Kontoyianni C.,Sideratou Z.,Theodossiou T.,Tziveleka L.,Tsiourvas D.,Paleos C.M.A novel micellar PEGylated hyperbranched polyester as a prospective drug delivery system for paclitaxel.Macromol.Biosci.,2008,8(9),871-881.
    [196]Hong H.,Mai Y.,Zhou Y.,Yan D.,Chen Y.Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyether core.J.Polym.Sci.Part A:Polym.Chem.,2008,46(2),668-681.
    [197]Wan A.,Kou Y.The characters of self-assembly core/shell nanoparticles of amphiphilic hyperbranched polyethers as drug carriers.J.Nanopart.Res.,2008,10(3),437-448.
    [198]Zhou Y.,Yan D.Supramolecular self-assembly of giant polymer vesicles with controlled sizes.Angew.Chem.Int.Ed.,2004,43(37),4896-4899.
    [199]Tamada Y.,Murata M.,Hayashi T.,Goto K.Anticoagulant mechanism of sulfonated polyisoprenes.Biomaterials,2002,23(5),1375-1382.
    [200]Passirani C.,Barratt G.,Devissaguet J.P.,Labarre D.Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate).Pharm.Res.,1998,15(7),1046-1050.
    [201]Kim Y.H.,Han D.K.,Park K.D.,Kim S.H.Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept.Biomaterials,2003,24(13),2213-2223.
    [202]Aguilar M.R.,Rodriguez G.,Fernandez M.,Gallardo A.,San Roman J.Polymeric active coatings with functionality in vascular applications.J.Mater Sci.:Mater Med.,2002,13(12),1099-1104.
    [203]Wuang S.C.,Neoh K.G.,Kang E.,Pack D.W.,Leckband D.E.Heparinized magnetic nanoparticles:in-vitro assessment for biomedical applications.Adv.Funct.Mater,2006,16(13),1723-1730.
    [204]贾兰,徐建平,计剑,沈家骢.细胞膜仿生修饰树枝状聚酰胺-胺的研究,高分子学报,2008,(11),1108-1112.
    [205]Dong W.,Zhou Y.,Yan D.,Li H.,Liu Y.PH-responsive self-assembly of carboxyl-terminated hyperbranched polymers.Phys.Chem.Chem.Phys.,2007,9(10),1255-1262.
    [206]Zhou Y.,Yah D.,Dong W.,Tian Y.Temperature-responsive phase transition of polymer vesicles:real-time morphology observation and molecular mechanism.J.Phys.Chem.B,2007,111(6),1262-1270.
    [207]沈钟,王果庭,《胶体与表面化学》,化学工业出版社,2001.
    [208]Kalyanasundaram K.,Thomas J.K.Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems.J.Am.Chem.Soc.,1977,99(7),2039-2044.
    [209]Wilhelm M.,Zhao C.-L.,Wang Y.,Xu R.,Winnik M.A.Polymer micelle formation.3.Poly(styrene-ethylene oxide) block copolymer micelle formation in water - a fluorescence probe study.Macromolecules,1991,24(5),1033-1040.
    [210]Zhao C.-L.,Winnik M.A.,Riess G.,Croucher M.D.Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers.Langmuir,1990,6(2),514-516.
    [211]Nguyen P.M.,Zacharia N.S.,Verploegen E.,Hammond P.T.Extended release antibacterial layer-by-layer films incorporating linear-dendritic block copolymer micelles.Chem.Mater,2007,19(23),5524 5530.
    [212]Fu J.H.,Ji J.,Yuan W.Y.,Shen J.C.Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan.Biomaterials,2005,26(33),6684-6692.
    [213]Liu X.K.,Zhou L.,Geng W.,Sun J.Q.Layer-by-layer-assembled multilayer films of polyelectrolyte-stabilized surfactant micelles for the incorporation of noncharged organic dyes.Langmuir,2008,24(22),12986-12989.
    [214]Nguyen P.M.,Zacharia N.S.,Verploegen E.,Hammond P.T.Extended release antibacterial layer-by-layer films incorporating linear-dendritic block copolymer,micelles Chem.Mater.,2007,19(23),5524-5530.
    [215]Ma N.,Zhang H.Y.,Song B.,Wang Z.Q.,Zhang X.Polymer micelles as building blocks for layer-by-layer assembly:An approach for incorporation and controlled release of water-insoluble dyes.Chem.Mater,2005,17(20),5065-5069.
    [216]Manna U.,Patil S.Encapsulation of uncharged water-insoluble organic substance in polymeric membrane capsules via layer-by-layer approach.J.Phys.Chem.B,2008,112(42),13258-13262.
    [217]Qi B.,Tong X.,Zhao Y.Layer-by-layer assembly of two different polymer micelles with polycation and polyanion coronas.Macromolecules,2006,39(17),5714-5719.
    [218]付金红,弱聚电解质层层自组装特性及其抗菌性能的研究,浙江大学博士学位论文,2007.
    [219]T(u|¨)rk H.,Shukla A.,Rodrigues P.C.A.,Rehage H.,Haag R.Water-soluble dendritic core-shell-type architectures based on polyglycerol for solubilization of hydrophobic drugs.Chem.Eur.J.,2007,13(15),4187-4196.
    [220]Dong W.,Zhou Y.,Yan D.,Li H.,Liu Y.PH-responsive self-assembly of carboxyl-terminated hyperbranched polymers.Phys.Chem.Chem.Phys.,2007,9(10),1255-1262.
    [221]Gao B.J.,Yu Y.M.,Jiang L.D.Studies on micellar behavior of anionic and surface-active monomers with acrylamide type in aqueous solutions.Colloid Surf.A-Physicochem.Eng.Asp.,2007,293(1-3),210-216.
    [222]Nguyen P.M.,Hammond P.T.Amphiphilic linear-dendritic triblock copolymers composed of poly(amidoamine) and poly(propylene oxide) and their micellar-phase and encapsulation properties.Langmuir,2006,22(18),7825-7832.
    [223]Cho J.,Hong J.,Char K.,Caruso F.Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties.J.Am.Chem.Soc.,2006,128(30),9935-9942.
    [224]De Longchamp D.M.,Kastantin M.,Hammond P.T.High-contrast electrochromism from layer-by-layer polymer films.Chem.Mater.,2003,15(8),1575-1586.
    [225]Schoeler B.,Poptoschev E.,Caruso F.Growth of multilayer films of fixed and variable charge density polyelectrolytes:effect of mutual charge and secondary interactions.Macromolecules,2003,36(14),5258-5264.
    [226]McAloney R.A.,Sinyor M.,Dudnik V.,Goh M.C.Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology.Langmuir,2001,17(21),6655-6663.
    [227]Picart C.,Lavalle P.,Hubert P.,Cuisinier F.J.G.,Decher G.,Schaaf P.,Voegel J.-C.Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface.Langmuir,2001,17(23),7414-7424.
    [228]Picart C.,Mutterer J.,Richert L.,Luo Y.,Prestwich G.D.,Schaaf P.,Voegel J.-C.,Lavalle P.Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers.Proc.Natl.Acad.Sci.USA,2002,99(20),12531-12535.
    [229]Boulmedais F.,Ball V.,Schwinte P.,Frisch B.,Schaaf P.,Voegel J.C.Buildup of exponentially growing multilayer polypeptide films with internal secondary structure.Langmuir,2003,19(2),440-445.
    [230]Lavalle P.,Vivet V.,Jessel N.,Decher G.,Voegel J.,Mesini P.J.,Schaaf P.Direct evidence for vertical diffusion and exchange processes of polyanions and polycations in polyelectrolyte multilayer films.Macromolecules,2004,37(3),1159-1162.
    [231]Wang X.T.,Venkatraman S.S.,Boey F.Y.C.,Loo J.S.C.,Tan L.P.Controlled release of sirolimus from a multilayered PLGA stent matrix.Biomaterials,2006,27(32),5588-5595.
    [232]Guyomard A.,Nysten B.,Muller G.,Glinel K.Loading and release of small hydrophobic molecules in multilayer films based on amphiphilic polysaccharides.Langmuir,2006,22(5),2281-2287.
    [233]Schmitt J.,Grunewald T.,Decher G.,Pershan P.S.,.Kjaer K,Losche M.Internal structure of layer-by-layer adsorbed polyelectrolyte films - a neutron and X-ray reflectivity study.Macromolecules,1993,26(25),7058-7063.
    [234]Yoo D.,Shiratori S.S.,Rubner M.F.Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes.Macromolecules, 1998,31(13),4309-4318.
    [235]Sun J.,Wu T.,Sun Y.,Wang Z.,Zhang X.,Shen J.,Cao W.Fabrication of a covalently attached multilayer via photolysis of layer-by-layer self-assembled films containing diazo-resins.Chem.Commun.,1998,(17),1853-1854.
    [236]Shi F.,Dong B.,Qiu D.,Sun J.,Wu T.,Zhang X.Layer-by-layer self-assembly of reactive polyelectrolytes for robust multilayer patterning.Adv.Mater.,2002,14(11),805-809.
    [237]Zhang Y.,Yang S.,Guan Y.,Cao W.,Xu J.Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly.Macromolecules,2003,36(11),4238-4240.
    [238]Sun J.,Wang Z.,Wu L.,Zhang X.,Shen J.,Gao S.,Chi L.,Fuchs H.Investigation of the covalently attached multilayer architecture based on diazo-resins and poly(4-styrene sulfonate).Macromol.Chem.Phys.,2001,202(7),967-973.
    [239]Sun J.,Wu T.,Liu F.,Wang Z.,Zhang X.,Shen J.Covalently attached multilayer assemblies by sequential adsorption of polycationic diazo-resins and polyanionic poly(acrylic acid).Langmuir,2000,16(10),4620-4624.
    [240]Liu M.,Yue X.,Dai Z.,Xing L.,Ma F.,Ren N.Stabilized hemocompatible coating of nitinol devices based on photo-cross-linked Alginate/Heparin multilayer.Langmuir,2007,23(18),9378-9385.
    [241]Such G.K.,Quinn J.F.,Quinn A.,Tjipto E.,Caruso F.Assembly of ultrathin polymer multilayer films by click chemistry.J.Am.Chem.Soc.,2006,128(29),9318-9319.
    [242]Quinn J.F.,Johnston A.P.R.,Such G.K.,Zelikin A.N.,Caruso F.Next generation,sequentially assembled ultrathin films:beyond electrostatics.Chem.Soc.Rev.,2007,36(5),707-718.
    [243]Bergbreiter D.E.,Chance B.S."Click"-based covalent layer-by-layer assembly on polyethylene using water-soluble polymeric reagents.Macromolecules,2007,40(15),5337-5343.
    [244]Kim J.,Wacker B.K.,Elbert D.L.Thin polymer layers formed using multiarm poly(ethylene glycol) vinylsulfone by a covalent layer-by-layer method.Biomacromolecules,2007,8(11),3682-3686.
    [245]Watanabe J.,Ishihara K.Establishing ultimate biointerfaces covered with phosphorylcholine groups.Colloid.Surfaces B,2008,65(2),155-165.
    [246]Nishizawa K.,Konno T.,Takai M.,Ishihara K.Bioconjugated phospholipid polymer biointerface for enzyme-linked immunosorbent assay.Biomacromolecules,2008,9(1),403-407.
    [247]Li J.T.,Carlsson J.,Lin J.N.,Caldwell K.D.Chemical modification of surface active poly(ethylene oxide)-poly(propylene oxide) triblock copolymers.Bioconjugate Chem.,1996,7(5),592-599.
    [248]Jo S.,Shin H.,Mikos A.G.Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks.Biomacromolecules,2001,2(1),255-261.
    [249]Hersel U.,Dahmen C.,Kessler H.RGD modified polymers:biomaterials for stimulated cell adhesion and beyond.Biomaterials,2003,24(24),4385-4415.
    [250]Dirksen A.,Zuidema E.,Williams R.M.,De Cola L.,Kauffmann C.,V(o|¨)gtle F.,Roque A.,Pina F.Photoactivity and pH sensitivity of methyl orange functionalized poly(propyleneamine) dendrimers.Macromolecules,2002,35(7),2743-2747.
    [251]高敏,王冰冰,贾欣茹,李武松,旷桂超,危岩.外端为偶氮苯基团的聚酰胺-胺树枝状分子对光和H~+的响应行为,高分子学报,2008,(1),32-40.
    [252]Wang X.,Venkatraman S.S.,Boey F.Y.C.,Loo J.S.C.,Tan L.P.Controlled release of sirolimus from a multilayered PLGA stent matrix.Biomaterials,2006,27(32),5588-5595.
    [253]时钧,袁权,高从堵,《膜技术手册》,化学工业出版社,2001.
    [254]Dai J.,Bruening M.Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films.Nano Lett.,2002,2(5),497-501.
    [255]Fu J.,Ji J.,Fan D.,Shen J.Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex.J. Biomed. Mater. Res. Part A, 2006, 79A(3), 665-674.
    [256] Zhou Y., Ma R., Ebina Y., Takada K., Sasaki T. Multilayer hybrid films of titania semiconductor nanosheet and silver metal fabricated via layer-by-layer self-assembly and subsequent UV irradiation. Chem. Mater, 2006, 18(5), 1235-1239.
    [257] Tian C, Mao B., Wang E., Kang Z., Song Y, Wang C., Li S. Simple strategy for preparation of core colloids modified with metal nanoparticles. J. Phys. Chem. C, 2007, 111(9),3651-3657.
    [258] Joly S., Kane R., Radzilowski L., Wang T., Wu A., Cohen R.E., Thomas E.L., Rubner M.F.Multilayer nanoreactors for metallic and semiconducting particles. Langmuir, 2000, 16(3),1354-1359.
    [259] Cui X., Li C.M., Bao H., Zheng X., Lu Z. In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J. Colloid Interf. Sci., 2008, 327(2),459-465.
    [260] Huang H.Z., Yang X.R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles:a green method. Carbohydr. Res., 2004, 339(15), 2627-2631.
    [261] Picart C. Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr. Med. Chem., 2008, 15(7), 685-697.
    [262] Schoeler B., Delorme N., Doench I. Polyelectrolyte films based on polysaccharides of different conformations: effects on multilayer structure and mechanical properties.Biomacromolecules, 2006, 7(6), 2065-2071.
    [263] Richert L., Lavalle P., Payan E., Shu X.Z., Prestwich GD., Stoltz J.-F., Schaaf P., Voegel J.-C, Picart C. Layer by layer buildup of polysaccharide films: Physical chemistry and cellular adhesion aspects. Langmuir, 2004, 20(2), 448-458.
    [264] Richert L., Boulmedais F., Lavalle P., Mutterer J., Ferreux E., Decher G., Schaaf P., Voegel J.-C, Picart C. Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules, 2004, 5(2), 284-294.
    [265] Vodouh(?) C, Le Guen E., Garza J.M., Francius G, D(?)jugnat C, Ogier J., Schaaf P.,. Voegel J.-C, Lavalle P. Control of drug accessibility on functional polyelectrolyte multilayer films.Biomaterials, 2006, 27(22), 4149-4156.
    
    [266] Zhou Y, Yan D. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew. Chem. Int. Ed., 2004, 43(37), 4896-4899.
    
    [267] Yan D., Zhou Y., Hou J. Supramolecular self-assembly of macroscopic tubes. Science, 2004,303(5654), 65-67.
    
    [268] Dalby M.J., Riehle M.O., Johnstone H., Affrossman S., Curtis A.S.G. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials, 2002, 23(14),2945-2954.
    
    [269] Miller D.C., Thapa A., Haberstroh K.M., Webster T.J. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features.Biomaterials, 2004, 25(1), 53-61.
    
    [270] Chung T., Liu D., Wang S., Wang S. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials, 2003, 24(25), 4655-4661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700