Pickering乳液聚合法制备特殊结构有机—无机纳米复合材料及其应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着界面科学和技术的发展,可以通过“精细结构设计”得到具有各种特殊结构(核-壳、胶囊等)的纳米复合颗粒,并获得各种特有的应用性能,可以更好的使聚合物材料和无机材料的优势得到互补。目前,针对具体应用的特点和功能对材料进行设计,制备出适合应用性能的材料是科学界和工业界共同努力的目标。鉴于此,本文采用新颖的Pickering乳液聚合法,制备了具有特殊结构的聚苯乙烯/二氧化硅复合微球、磁性复合微胶囊、核壳结构聚丙烯酰胺/二氧化硅复合微球以及温敏性聚N-异丙基丙烯酰胺/聚甲基丙烯酸甲酯/二氧化硅复合微胶囊,并系统地研究了各制备过程的影响因素、产品的形成机理及应用性能。全文主要研究内容如下:
     1.以具有反应性的γ-甲基丙烯酰氧基丙基三甲氧基硅烷为改性剂对纳米二氧化硅颗粒进行表面改性,考察了改性溶剂类型、溶剂中水相pH值、溶剂中水含量、改性剂质量以及改性温度对改性效果(接触角)的影响。研究表明:环己烷/水混合改性溶剂、弱酸性水相、溶剂中水含量略高于所加硅烷水解所需水量、改性温度50-70℃,有利于二氧化硅的表面改性。所制备的改性二氧化硅在水中有所团聚,在乙醇中分散性较好。
     2.选择具有反应性的单体苯乙烯作为油相,二氧化硅颗粒作为稳定剂,考察了苯乙烯/水/二氧化硅的Pickering乳液体系的性质。颗粒的表面润湿性(接触角)与颗粒润湿顺序对颗粒在油水(苯乙烯,水)体系中所处的位置以及所制备乳液的类型都有明显影响。具有强亲水(接触角为9.2°)或强疏水(接触角为128.5°)表面的颗粒完全分散在水相或苯乙烯相中,不能起到稳定乳液的作用,只有具有适中润湿性的颗粒能够稳定乳液。用适中亲水性(接触角41.5°)的固体颗粒作为稳定剂,制备了O/W型乳液体系,实验结果表明,二氧化硅颗粒表面电荷越低或固体颗粒浓度越高或乳液所处温度越低,有利于Pickering乳液稳定性的提高。乳液液滴粒径随着固体颗粒浓度的增加而减小。
     3.以苯乙烯作为内相,去离子水作为连续相,改性二氧化硅作为稳定剂,采用O/W型Pickering乳液聚合法成功制备了核壳结构的聚苯乙烯/二氧化硅纳米复合微球。借助于TEM、SEM、IR、TG以及XPS等测试手段对其进行了表征。结果表明:在复合微球结构中,苯乙烯球为核,氧化硅颗粒为壳,微球粒径为1-1.4μm左右;通过调节固体颗粒浓度或颗粒表面润湿性或颗粒表面电荷电量可以影响Pickering乳液聚合过程,得到两种不同结构的产物:核壳结构复合微球或聚苯乙烯球与二氧化硅共混物。经测试,核壳结构复合微球较聚苯乙烯球与二氧化硅共混物具有更高的分解温度。
     4.用改进的Pickering乳液聚合法,成功制备了具有磁性的复合微胶囊。磁性复合微胶囊粒径在0.8-2μm左右,壁厚为140nm左右,微胶囊囊壁具有双层结构:外层为二氧化硅固体颗粒层,内层为聚合物层,而且磁性颗粒定位于聚合物层中。复合微胶囊具有超顺磁性,分散在溶液中时,能够被外加磁铁富集。采用原位载药的复合微胶囊在释放溶剂中具有药物缓释性能。
     5.以丙烯酰胺水溶液作为内相,液态石蜡作为连续相,改性二氧化硅颗粒作为稳定剂,采用反相Pickering乳液聚合法成功制备了聚丙烯酰胺/二氧化硅复合微球。复合微球粒径约在2-4μm左右,聚丙烯酰胺为核、二氧化硅为壳。制备过程中,丙烯酰胺浓度和固体颗粒浓度对于聚丙烯酰胺/二氧化硅复合微球的形成有显著影响。聚丙烯酰胺/二氧化硅复合微球对废水中Hg2+有较强的吸附性能,复合微球对Hg2+的吸附在弱酸条件下效果较好,受吸附温度影响不大。吸附温度在30℃时,复合微球的吸附等温线可以用Langmuir等温方程很好的拟合。另外,复合微球对Hg2+吸附过程符合拟一级吸附动力学模型。
     6.以N-异丙基丙烯酰胺水溶液作为内相,液态石蜡作为连续相,甲基丙烯酸甲酯和二乙烯基苯作为外相单体,改性二氧化硅颗粒作为稳定剂,采用反相Pickering乳液聚合法成功制备了具有温敏性的聚N-异丙基丙烯酰胺/聚甲基丙烯酸甲酯/二氧化硅复合微胶囊。复合微胶囊粒径为3μm左右。微胶囊囊壁具有双层结构,外层为二氧化硅固体颗粒层,内层为聚合物层,总厚度约为290nm。微胶囊具有温敏性并且其壁层厚度可以通过改变聚合前所加入甲基丙烯酸甲酯的质量进行调节。复合微胶囊可以作为药物载体,在药物释放过程中,可以通过控制微胶囊壁厚或调节释放溶剂温度来调控药物的释放速率。
     7.尝试利用旋转填充床作为乳化设备制备反相Pickering乳液。固体颗粒浓度、旋转填充床转速以及循环时间对所制备Pickering乳液稳定性均有影响。在一定条件下,较高的固体颗粒浓度或较快旋转填充床转速或较长的循环时间有利于Pickering乳液稳定性的提高。所形成乳液液滴的粒径随着所用固体颗粒浓度的增加或旋转填充床转速的提高或循环时间的延长而变小。
With the development of interface science and technology, We can obtain nano-composite particles with various structures (core-shell, capsule, etc) by "design of structure" and get different specific application performances. In this way, the advantages of polymer materials and inorganic materials can be linked. At present, according to features and functions of practical application to design materials and prepare applicable materials are the common goal of scientific community and industrial circles. In this thesis, polystyrene/nano-SiO2 composite microspheres (PS/nano-SiO2) with core-shell structure, magnetic polymer enhanced hybrid capsules, poly(acrylamide)/silica hybrid microspheres and poly(N-isopropyl-acrylamide)/poly(methyl methacrylate)/silica hybrid capsules were prepared from Pickering emulsion polymerization. The preparations, characterizations and applications of these materials were studied. The main research works are summarized as follows:
     1. Nano-silica particles were modified by y-methacryltrimethoxysilane. The effects of solvent type, pH value of water in solvent, water content in solvent, mass of modifier and temperature for modification on modification (contact angle) were investgated. The results indicated:cyclohexane/water solvent, slightly acidic aqueous phase in solvent, lower water content and reaction temperature of 50-70℃are better for modification. The prepared modified silica particles aggregate in water but well dispersed in ethanol.
     2. Pickering emulsion (styrene/water) stabilized by silica nanoparticles were investgated here. The following conclusions are drawn:Particle wettability and the priority wettability have significant effect on the particles location in Pickering emulsion system, and the type of prepared emulsion. Solid particles with too hydrophilic (contact angle is 9.2°) or hydrophobic (128.5°) can not be used as a stabilizer for emulsion preparation. The particles with moderate hydrophilicity (41.5°) can stabilize O/W emulsions;For the particles (with a contact angle of 87.2°), the prior wettibility decide the type of emulsion-the O/W emulsion is formed when particles are dispersed in water preferentially, W/O emulsion is formed when particles are dispersed in styrene preferentially. For O/W emulsion stabilized by the particles with a contact angel of 41.5°, the lower particle surface charge or higher particle concentration or lower emulsion temperature are better for the stability of as-prepared emulsion. The droplet size in Pickering emulsion decrease as increasing the particle concentration.
     3. Polystyrene/nano-SiO2 composite microspheres (PS/nano-SiO2) with core-shell structure were successfully synthesized in a Pickering emulsion route using nano-SiO2 particles as stabilizers, which were organically modified by methacryloxypropyl-trimethoxysilane (MPTMS) which containing a reactive C=C bond. The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transformation infrared spectrum (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). In addition, bare PS spheres could also be obtained by changing synthetic conditions. It was found that the morphology of the resulting products depends on particle concentration, particle wettability and pH value of particle dispersion. A possible mechanism for the formation of the composites with different morphologies is proposed.
     4. Magnetic polymer enhanced hybrid capsules (MPEHCs) were successfully prepared from a novel Pickering emulsion polymerization. The resultant products were characterized by Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Fourier transform infrared spectrum (FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Vibration sample magnetometer (VSM). It was proved that the MPEHCs consist of SiO2 outer shell and magnetic polymer inner shell with particle sizes from 0.8μm to 2μm and thickness about 140 nm. The MPEHCs were applied as a drug carrier to study their controlled release behaviors and ibuprofen was used as a model drug. The curve of release behaviors of ibuprofen exhibited a typical sustained release pattern, indicating that the MPEHCs could be applied as a promising drug vehicle for controlled release systems.
     5. Poly(acrylamide)/silica hybrid microspheres were prepared from inverse pickering emulsion polymerization using a acrylamid aqueous solution as the inner droplets, liquid paraffin as the outer continuous phase and modified silica nanoparticles as stabilizers. These hybrid capsules sized about 2-4μm, and they contained a solid silica shell and a Poly(acrylamide) core. In the process of the preparation, both the concentrations of AM and solid particles can bring a notable influence on the synthesis of the capsules. The prepared Poly(acrylamide)/silica hybrid microspheres had a strong adsorption of Hg2+ in the wastewater and the effect of the adsorption, which is not much influenced by temperature, can be better in the weak acid condition. At 30℃, the adsorption isotherms fit the Langmuir isotherms equation very well. Meanwhile, the adsorption of Hg2+ by the hybrid microspheres agrees with Pseudo-first-order adsorption kinetic process.
     6. Poly(N-isopropylacrylamide)/poly(methyl methacrylate)/silica hybrid capsules were prepared from inverse Pickering emulsion polymerization. A N-isopropylacrylamide aqueous solution was emulsified into an oil phase containing methyl methacrylate and divinyl benzene by sonication to obtain a W/O Pickering emulsion using modified silica nanoparticles as stabilizers. After the emulsion was polymerized, the hybrid capsules were obtained. The capsule wall contained two layers-a solid particle monolayer and a polymer layer and the wall thickness could be controlled by adjusting the methyl methacrylate and divinyl benzene concentrations in the continuous oil phase before polymerization. The as-synthesized capsules exhibited temperature-responsive properties. The controlled release experiments showed that the release rate of a model drug from the hybrid capsules could be controlled by adjusting the wall thickness of the capsule or the temperature of the release medium.
     7. Rotating packed bed was used to prepare inverse Pickering emulsion. The stability of the Pickering emulsions has a relationship with the solid particle concentration, rotating speed and circulaton time. Higher particle concentration or rotating speed and longer circulation time can improve the stability of Pickering emulsions. Emulsion droplet size becomes smaller as increment of particle concentration or rotating speed, or extension of circulation speed.
引文
[1]张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994
    [2]Siegel R W. Nanostructured materials-mind over matter. Nanostruct. Mater.1994 (4): 121-128
    [3]Sayari A, Hamoudi S. Periodic Mesoporous Silica Based Organic-Inorganic Nanocomposite Materials[J]. Chem. Mater.,2001,13:3151-3168
    [4]Gomez-Romero P. Hybrid Organic-Inorganie Materials-In Search of Synergic Aetivity[J]. Adv. Mater.,2001,13:163-174
    [5]Mackenzie J D., Beseher E P. Structures, Properties and Potential Applications of Ormosils[J]. J. Sol-Gel Sci. Technol.,1998,13:371-377
    [6]Althues H, Henle J, Kaskel S. Functional inorganic nanofillers for transparent polymer[J]. Chem. Soc. Rev.,2007,36:1454-1465
    [7]魏建红,余剑英,马会茹,等.聚合物-无机纳米复合材料的制备[J].粘接,2001,22(3):1-3
    [8]Hulteen J C, Martin C R. J. A general template-based method for the preparation of nanomaterials[J]Mater. Chem. [J] 1997,7:1075-1087
    [9]Gabor L. Hornyak, Charles J. Patrissi, and Charles R. Martin. Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites:The Nonscattering Maxwell-Garnett Limit[J]. J. Phys. Chem. B,1997, 101(9):1548-1555
    [10]Yano K, Usuki A, Okada A, et al. Synthesis and properties of polymide-clay hybrid [J]. Polym Sic:Polym Chem,1993,31(10):2493-2498
    [11]Lan T, Pinnavaia T J. Clay-Reinforced Epoxy Nanocomposites[J]. Chem Mater,1994, 6(12):2216-2219
    [12]Giannelis E P. Polymer Layered Silicate Nanocomposites[J]. Adv Mater,1996,8(1): 29-35
    [13]Ruiz-Hitzky E. Conducting Polymers Intercalated in Layered Solids[J]. Adv Mater, 1993,5 (5):334-340
    [14]Shouji E,Buttry D A. New Organic-Inorganic Nanocomposite Materials for Energy Storage Applications[J].Langmuir,1999,15(3):669-673
    [15]Vaia R A, Ishii H,Giannelis E P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates[J]. Chem Mater,1993,5:1694-1696
    [16]Shang S W, Wiuiams J W. Preparation and propertiesof EVA/SiO2 hybrid material[J]. Mater Sci,1992,27(18):4949-4952
    [17]胡平.碳纳米管/OHMWPE复合材料的研究[J].工程塑料应用,1998,26(1):1-3
    [18]王胜杰,李强,漆宗能等.硅橡胶/蒙脱土复合材料的制备、结构与性能[J].高分子学报,1998,42(2):149-153
    [19]张立群.聚合物/无机物纳米复合胶乳的制备与性能研究[J].特种橡胶制品,1998,19(2):6-8
    [20]郝凌云,周勇等.紫外辐照同步合成无机-有机聚合物纳米复合材料[J].稀有金属材料与工程,2001,30(2):138-140
    [21]Yang F, Ou Y C, Yu Z Z. Polyamide 6/silica nanocomposites prepared by in situ polymerization[J]. J. Appl. Polym. Sci.,1998,69(2):355-361
    [22]Ou Y, Yang F, Yu Z Z. New conception on the toughness of nylon6/silica nanocomposite prepared via in situ polymerization[J]. J. Polym. Sci., Part B:Polym. Phys.,1998,36(5):789-795
    [23]Ash B J, Schadler L S, Siegel R W. Glass transition behavior of alumina/ polymethylmethacrylate nanocomposites[J]. Mater. Lett.,2002,55(1-2):83-87
    [24]Zhang Y, Zhou G E, Zhang Y H, et al. Preparation and optical absorption of dispersions of NANO-TiO2/PMMA(methylmethacrylate)[J]. Mater. Res. Bull.,1999, 34(5):701-709
    [25]Avella M, Errico M E, Martuseelli E. Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process[J]. Nano Lett.,2001,1(4): 213-217
    [26]Matijevic E. Preparation and Properties of Uniform Size Colloids[J]. Chem. Mater., 1993,5,412-426
    [27]Hanprasopwattana A, Srinivasan S, Sault AG, et al. Synthesis of nanosized gold-Silica core-shell particles, Langmuir,1996,12(18),4329-4335
    [28]Fleming M S, Mandal T K, Walt D R. Nanosphere-microsphere assembly:methods for core-shell materials preparation, Chem.Mater.,2001,13,2210-2216
    [29]Schneider J J. Magnetic Core/Shell and Quantum-Confined Semiconductor Nanoparticles via Chimie Douce Organometallic Synthesis[J]. Adv.Mater.,2001, 13(7):529-533
    [30]William T W, Tseng J, Lee S.Functional MBS impact modifier for PC/PBT alloy[J]. J Appl Polym Sci,2000,76:1280-1284
    [31]Pan M W, Zhang LC, Wan L Z. Preparation and characterization of composite resin by vinyl chloride grafted onto poly(BA-EHA)/poly(MMA-St)[J]. Polymer,2003,44: 7121-7129
    [32]Ma Guanghui(马光辉),SuZhiguo(苏志国)。New type of polymer material(新型高分子材料),Beijing:Chemical Industry Press(北京:化学工业出版社),2003,135-170
    [33]Espiard E, Guyot A, Perez J, et al. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:3 Morphology and mechanical properties of reinforced film[J]. Polymer,1995,36:4397-4403
    [34]Bougeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media:1. silica nanoparticles encapsulated by polystyrene[J]. J. Colloid Interface Sci,1998,197:293
    [35]Oyama H T,Sprycha R,Xie Y,et al. Coating of Uniform Inorganic Particles with Polymers, Ⅰ [J]. J. Colloid Interface Sci.1993,160(2):298-303
    [36]Bourgeat Lami E,Lang J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media:1. Silica Nanoparticles Encapsulated by Polystyrene [J]. J.Colloid Interface Sci.,1998,197(2):293-308
    [37]Freris I, Cristofori D, Riello P, et al. Encapsulation of submicrometer-sized silica particles by a thin shellof poly(methyl methacrylate)[J]. J. Colloid Interface Sci,2009, 331:351-355
    [38]Yamada Y D, Qiao K, Bao Q X. Preparation and catalytic use of silica-polymer core-shell microspheres with imidazolium-styrene copolymer shells[J]. Catal. Commun.,2009,11:227-231
    [39]Percy M J, Barthet C,Lobb J C, et al. Synthesis and Characterization of Vinyl Polymer-Silica Colloidal Nanocomposites[J]. Langmuir,2000,16:6913-6920
    [40]Sondi I, Fedynyshyn T H, Sinta R,et al. Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer[J]. Langmuir,2000,16(23):9031-9034
    [41]Carris C H M, Elven L P M, Herk A M. Polymerization of MMA at the surface of inorganic submicron particles[J], Br. Polym. J.1989,21:133-140
    [42]Mandal T K,Fleming M S Walt D R. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature[J]. Nano letters,2002,2:3-7
    [43]Partch R,Gangolli S G,Matijevic E,et al. Conducting polymer composites I. Surface-induced polymerization of pyrrole on iron(III) and cerium(IV) oxide particles [J]. J. Colliod Interface Sci.,1991,144(1):27-35
    [44]Huang C L,Matijevic E. Coating of uniform inorganic particles with polymers: Polypyrrole on different metal oxides[J]. Mater. Res.,1995,10:1327-1336
    [45]Yanase N, Noguchi H Asakura H, et al.Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid[J]. J Appl Polym Sci,1993,50:765-776
    [46]Quaroni L, Chumanov G. Preparation of polymer-coated functionalized silver nanoparticles[J]. J. Am. Chem. Soc.,1999,121:10642-10643
    [47]Ottewill R H,Schofield A B,Waters J A,et al. Preparation of core-shell polymer colloid particles by encapsulation[J], J. Colloid Polym.Sci.,1997,275:274-283
    [48]Pich A, Bhattacharya S, Adler H J P. Composite magnetic particles deposition of magnetite by heterocoagulation method[J]. Polymer 2005 46:1077-1086
    [49]Decher G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites[J], Science,1997,277:1232-1237
    [50]Caruso F. Nanoengineering of Particle Surfaces[J], Adv. Mater.,2001,13(1):11-22
    [51]Sukhorukov G B, Donath E, Lichtenfeld H. Layer-by-layer selfassembly of polyelectrolytes on colloidal particles[J]. Colloids Surf.A,1998,137:253-266
    [52]Caruso F, Fiedler H, Haage K.Assembly of β-glucosidase multilayers on spherical colloidal particles and their use as active catalysis[J].Colloids Surf.A,2000,169: 287-293
    [53]Shenoy D B, Antipov A A, Sukhorukov G B. et al. Layer-by-Layer engineering of biocompatible,decomposable Core-Shell Structures[J].Biomacro.,2003,4(2):265-272
    [54]Caruso F, Susha A S, Giersig M,et al. Magnetic Core-shell particles:preparation of magnetite multilayers on polymer latex microspheres[J], Adv. Mater.,1999,11: 950-953
    [55]Caruso F, Lichtenfeld H, Giersig M,et al. Electrostatic self-Assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex Particles[J]. J. Am. Chem. Soc.,1998,120(33):8523-8524
    [56]Caruso F, Mohwald H.Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids[J]. Langmuir,1999,15(23):8276-8281
    [57]Caruso R A, Susha A, Caruso F. Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres [J]. Chem.Mater.,2001,13(2):400-409
    [58]Ji T, Lirtsman V G, Avny Y, et al. Preparation, characterization and application of Au-shell/polystyrene beads and Au-shell/magnetic beads [J], Adv. Mater.,2001, 13(16):1253-1256
    [59]刘润静,邹海魁,郭奋等,核壳结构型纳米CaCO3-SiO2-nH2O复合粒子的制备[J],材料研究学报,2001,15(1):61-64
    [60]Ocana M, Gonzale Elipe A R.Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds[J]. Colloids and Surfaces A: Physicochemical and Engineeing Aspects,1999,157:315-324
    [61]Sertchook H, Avnir D.Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process[J]. Chem. Mater.2003,15:1690-1694
    [62]Kawaguchi H, Fujimoto K, Nakazawa Y,et al.Modification and functionalization of hydrogel microspheres[J]. Colloids Surf. A,1996,109:147-154
    [63]Bamnolker H, Nitzan B, Gura S,et al.New solid and hollow, magnetic and non-magnetic,organic-inorganic monodispersed hybrid microspheres:synthesis and characterization [J]. J. Mater. Sci. Lett.,1997,16:1412-1415
    [64]Shiho H, Manabe Y, Kawahashi N, Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles[J]. J. Mater. Chem.,2000, 10:333-336
    [65]Chen J F, Ding H M, Wang J X, Shao L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application [J]. Biomaterials,2004,25: 723-727
    [66]Tissot I, Reymond J P, Lefebvre F, Bourgeat-Lami E. SiOH-functionalized polystyrene latexes.A step toward the synthesis of hollow silica nanoparticles[J]. Chem. Mater., 2002,14(3):1325-1331
    [67]Kim S W, Kim M, Lee W Y, Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions [J]. J. Am. Chem. Soc.,2002,124(26):7642-7643
    [68]Yoon S B, Sohn K, Kim J Y, et al. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures [J]. Adv. Mater.,2002,14(1):19-21
    [69]Marinakos S M, Shultz D, Feldheim D L. Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules [J]. Adv. Mater., 1999,11:34-37
    [70]Kawahashi N, Shiho H. Copper and copper compounds as coatings on polystyrene particles and as hollow spheres[J]. J. Mater. Chem.,2000,10:2294-2297
    [71]Zhang G, Yu Y, Chen X, et al. Silica nanobottles templated from functional polymer spheres[J]. J. Colloid Interface Sci.,2003,263:467-472
    [72]Wang X D, Yang W L, Tang Y, et al. Fabrication of hollow zeolite spheres [J]. Chen. Commun.,2000,21:2161-2163
    [73]Tartaj P, Gonzalez C T, Serna C J. Single-Step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties [J]. Adv. Mater.,2001, 13(21):1620-1624
    [74]Bertling J, Blomer J, Kummel R. Hollow microspheres [J]. Chem. Eng. Techn.,2004, 27(8):829-837
    [75]Lu Y F, Fan H Y, Stump A. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles[J]. Nature,1999,398(6724):223-226
    [76]Zhu J J, Xu S, Wang H, et al. Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route [J]. Adv. Mater.,2003,15(2):156-159
    [77]Rana R K, Mastai Y, Gedanken A. Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles [J]. Adv. Mater.,2002,14:1414-1418
    [78]McDonald C J, Bouck K,Chaput A B. Emulsion polymerization of voided particles by encapsulation of a nonsolvent[J]. Macromolcules,2000,33(5):1593-1605
    [79]Tiarks F, Landfester K, Antonietti M. Preparation of Polymeric Nanocapsules by Miniemulsion Polymerization[J]. Langmuir,2001,17(3):908-918
    [80]Willert M, Landfester K. Amphiphilic Copolymers from Miniemulsified Systems[J]. Macromol Chem Phys,2002,203:825-836
    [81]Tissot I, Novat C, Lefebvre F, Bourgeat-Lami E. Hybrid Latex Particles Coated with Silica[J]. Macromolecules,2001,34(17):5737-5739
    [82]Ni K F, Shan G R, Weng Z X. Synthesis of Hybrid Nanocapsules by miniemulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane, Macromolecules 2006,39:2529-2535
    [83]Zhang F, WangC C. Preparation of p(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles[J]. Langmuir,2009,25(14):8255-8262
    [84]Ramsden W. Separation of solids in the surface-layers of solutions and suspensions (Observation on surface-membranes, bubbles, emulsions,and mechanical coagulation).-Preliminary account[J]. Proc. R. Soc. London, Ser.,1903-1904,72: 156-164
    [85]Pickering S U. Emulsions[J]. J. Chem.Soc.,1907,91,2001-2021
    [86]Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latex particles:Effects of particle size[J]. Langmuir,2001,17:4540-4547
    [87]Binks B P, Fletcher P D I, Particles adsorbed at the oil-water interface:A theoretical comparison between spheres of uniform wettability and janus particles[J]. Langmuir, 2001,17:4708-4710
    [88]Giermanska-Kahn J, Schmitt V, Binks B P, et al. A New method to prepare monodisperse Pickering emulsions [J]. Langmuir,2002,18,2515-2518
    [89]Hsu M F, Nikolaides M G, Dinsmore A D, et al. Self-assembled shells composed of colloidal particles:Fabrication and characterization[J]. Langmuir,2005,21:2963-2970
    [90]Yan N, Masliyah H. Characterization and demulsification of solids-stabilized oil-in-water emulsions Part1. Partitioning of clay particles and preparation of emulsions[J]. Colloids Surf. A,1995,96:229-242
    [91]Yan N, Masliyah H. Characterization and demulsification of solids-stabilized oil-in-water emulsions Part2. Demulsification by the addition of fresh oil[J]. Colloids Surf. A,1995,96:243-252
    [92]Yan N, Masliyah H. Demulsification of solid-stabilized oil-in-water emulsions[J]. Colloids Surf. A,1996,117:15-25
    [93]Yang F, Liu S Y, Sun D J. Pickering emulsions stabilized solely by layered double hydroxides Parricles:The effect of salt on emulsion formation and stability[J]. J.Colloid Interface Sci.,2006,302:159-169
    [94]Yang F, Niu Q, Sun D J,et al. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles[J]. J.Colloid Interface Sci.,2007,306:285-295
    [95]Lan Q, Liu C, Sun D J, Synthesis of bilayer oleic acid coated Fe3O4 nanoparticles and their application in PH-responsive Pickering emulsions[J]. J. Colloid Interface Sci. 2007,310:260-269
    [96]Lan Q, Yang F, Sun D J, Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions[J]. Colloid Surf. A 2007, 302:126-135
    [97]Duan H, Wang D, Sobal N S. Magnetic colloidosomes derived from nanoparticle interfacial self-assembly [J]. Nano Lett.,2005,5:949-952
    [98]Noble P F, Cayre O J, Alargova R G, et al. Fabrication of Hairy colloidosomes with shells of polymeric microrode[J]. J. Am. Chem. Soc.,2004,126:8092-8093
    [99]丁浩,卢寿慈,张克仁等.矿物表面改性研究的现状与前景展望(Ⅱ)-药剂与改性过程机理[J].矿产保护与利用,1996,4:25-29
    [100]毋伟,陈建峰,屈一新.硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响[J].硅酸盐学报,2004,32(5):570-575
    [101]丁浩,卢寿慈,张克仁等.矿物表面改性研究的现状与前景展望(Ⅰ)-方法与装置设备[J].矿产保护与利用,1996,3:27-29
    [102]Chibowski E, Holysz L.Use of the Washburn equation for surface free energy determination[J]. Langmuir,1992,8:710-716
    [103]Van Oss C J, Good R, Chaudhury M K. Additive and nonadditive surface tension components and the interpretation of contact angles[J]. Langmuir,1988,4:884-891
    [104]Kostakis T, Ettelaie R, Murray B S. Effect of high salt concentrations on the stabilization of bubbles by silica partieles[J]. Langmuir,2006,22:1273-1280
    [105]Wan J, WilsonJ L.Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media[J]. Water Reour. Res.,1994,30:11-23
    [106]Horvolgyi Z, Nemeth S, FendleR J H. Monoparticulate layers of silanized glass spheres at the water-air interface:Particle-particle and particle-subphase interactions[J]. Langmuir,1996,12:997-1004
    [107]Yan N, Maham Y, Masliyah J H, et.al. Meaasurement of contact angles for fumed silica nanospheres using enthalpy of immersion data[J]. J. Colloid Interface Sci.,2000, 228:1-6
    [108]Cayre O J, Paunov V N. Contact angles of colloid silica and gold partieles at air-water and oil-water interfaces determined with the gel trapping technique. Langmuir,2004, 20,9594-9599
    [109]Paunov V N. Novel method for determining the three-phase contact angle of colloid particles adsorbed at air-water and oil-water interfaces, Langmuir,2003,19, 7970-7976
    [110]Yakubov G E, Vinogradova OI, Butt H J. Contact angle on hydrophobic microparticles at water-air and water-hexadecane interfaces [J]. J. Adhes. Sci. TechnoL2000,14: 1783-1799
    [111]Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir,2000,16,8622-8631
    [112]Binks B P, Fletcher P D I. Particles adsorbed at the oil-water interface:A theoretical comparison between spheres of uniform wettability and "janus" particles[J]. Langmuir 2001,17,4708-4710
    [113]Reineke F, Hickey S G, Kegel W K,et al. Spontaneous assembly of amonolayer of charged gold nanocrystals at the water/Oil interface[J]. Angew. Chem. Int. Ed.2004, 43:458-462
    [114]Duan H, Wang D, Kurth D G, et al. Directing self-assembly of nanoparticles at water/oil interfaces[J]. Angew. Chem. Int. Ed.2004,43:5639-5642
    [115]Wang D, Duan H.Mohwald H. The water/oil interface:the emerging horizon for self-assembly of nanoparticles [J]. Soft Matter,2005,1:412-416
    [116]Saleh N, Sarbu T, Tilton R D. Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles[J]. Langmuir,2005,21,9873-9878
    [117]Beattie J K, Djerdjev A M. The pristine oil/water interface:Surfactant-free hydroxide-charged emulsions[J]. Angew. Chem. Int Ed.2004,43:3568-3571
    [118]Franks G V, Djerdjev A M, Beattie J K. The absence of cation or anion effects at low salt concentrations on the charge at the oil/water interface[J]. Langmuir,2005,21: 8670-8674
    [119]Williams F D, Berg J C. The aggregation of colloidal particles at the air-water interface[J]. J. Colloid Interface Sci.1992,152:218-229
    [120]Abdel Fattah A I, EI Genk M S. Sorption of hydrophobic, negatively charged microspheres onto a stagnant air/water interface[J].J.Colloid Interface Sci.1998,202: 417-429
    [121]Velev O D, Furusawa K, Nagayama K. Assembly of latex particles by using emulsion droplets as templates.1.Microstructured hollow Spheres[J]. Langmuir,1996,12: 2374-2384
    [122]Simovic S,Prestidge C A. Hydrophilic silica nanoparticles at the PDMS droplet-Water interface[J]. Langmuir,2003,19:3785-3792
    [123]Mayya K S, Sastry M A. New technique for the spontaneous growth of colloidal nanoparticle superlattices[J]. Langmuir 1999,15:1902-1904
    [124]Umemura Y, Yamagishi A, Shoonheydt R, et al. Fabrication of Hybrid Films of alkylammonium cations and a smectite clay by the langmuir-blodgett method[J]. Langmuir,2001,17:449-455
    [125]Dinsmore A D, Hsu M F, Nikolaides M G,et al. Colloidosomes:Selectively permeable capsules composed of colloid particles[J]. Science,2002,298,1006-1009
    [126]Chen T, Colver P J, Bon S A F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization[J]. Adv. Mater.,2007,19, 2286-2289
    [127]Kulkarni S A, Ogale S B, Vijayamohanan K P. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers[J]. J. Colloid Interface Sci.,2008,318,372-379
    [128]倪克钒.(细)乳液聚合法制备有机-无机杂化纳米颗粒和微胶囊[D].杭州:浙江大学,2006
    [129]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能[J].硅酸盐学报,2007,3(35):373-376
    [130]王雨松,戴干策.硅烷表面处理对粉体悬浮液流变性的影响[J].硅酸盐学报,2005,33(5):644-649
    [131]张秀菊,陈鸣才,冯嘉春,等.稀土偶联剂对PP/云母体系性能的影响[J].塑料工业,2003,31(1):3637
    [132]Binks B P, Lumsdon S O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J]. Langmuir,2000,16,2539-2547
    [133]Vignati E, Piazza R. Pickering Emulsions:Interfacial tension, colloidal layer morphology, and trapped-particle motion[J]. Langmuir,2003,19,6650-6656
    [134]Finkle P, Draper H D, Hildebrand J H. The theory of emulsification [J]. J. Am. Chem. Soc.,1923,45(12):2780-2788
    [135]Yan N, Masliyah J H. Effect of pH on adsorption and desorption of clay particles at oil-water interface [J]. J. Colloid Interface Sci.,1996,181(1):20-27
    [136]Binks B P, Clint J H. Solid wettability from surface energy components:relevance to Pickering emulsions[J]. Langmuir,2002,18,1270-1273
    [137]Binks B P, Fletcher P D I, Particles adsorbed at the oil-water interface:A theoretical comparison between spheres of uniform wettability and janus particles[J]. Langmuir, 2001,17:4708-4710
    [138]Paunov V N, Binks B P, Ashby N P. Adsorption of charged colloid particles to charged liquid surfaces[J]. Langmuir,2002,18,6946-6955
    [139]Giermanska-Kahn J, Schmitt V, Binks B P, F, et al, A new method to prepare monodisperse Pickering emulsions[J]. Langmuir,2002,18,2515-2518
    [140]Binks B P, Lumsdon S O, Pickering emulsions stabilized by monodisperse latex particles:Effects of particle size[J]. Langmuir,17 (2001) 4540-4547
    [141]B.P. Binks, J.A. Rodrigues, Types of phase inversion of silica particle stabilized emulsions containing triglyceride oil[J]. Langmuir 19 (2003) 4905-4912
    [142]B.P. Binks, J. Philip, J.A. Rodrigues, Inversion of silica-stabilized emulsions induced by particle concentration[J]. Langmuir 21 (2005) 3296-3302
    [143]Ngai T, Auweter H, Behrens S H. Environmental responsiveness of microgel particles and particle-stabilized emulsions[J]. Macromolecules,2006,39,8171-8177
    [144]Kaiser A, Liu T, Richtering W, Schmidt A M. Magnetic capsules and Pickering emulsions stabilized by core-shell particles[J]. Langmuir,2009,25 (13):7335-7341
    [145]Gelot A, Friesen W, Hamza H A, Emulsifieation of oil and water in the presenee of finely divided solids and surface-active agents[J], Colloid Surf.1984,12(3-4):271-303
    [146]Yan N, Masliyah J H, Charaeterization and demulsification of solids-stabilized oil-in-water emuisions. Part1. Partitioning of clay particles and preparation of emulsions[J] Colloid surf. A 1995,96:229-242
    [147]张贻瑞.王建基础材料与新材料[M].天津大学出版社,1994
    [148]Partch P, Gangolli S G, Matijevic E, et al. Conducting polymer composites surface-induced polymerization of pyrrole on iron(III) and cerium(IV) oxide
    particles[J]. J. Colloid Interface Sci.,1991:144,27-35
    [149]Huang C L,Matijevic E.Coating of uniform inorganic particles with polymers:Ⅲ, Polypyrrole on different metaloxides[J]. J. Mater. Res.,1995,10:1327-1336
    [150]Yang C S, Liu Q, Kauzlarich S M, et al. Synthesis and characterization of Sn/R, Sn/Si-R, and Sn/SiO2 core/Shell nanoparticles[J]. Chem.Mater.,2000,12:983-988
    [151]Hall S R, Davis S A, Mann S. et al. Co-condensation of organosilica hybrid shells on nanoparticle templates:a direct synthetic route to functionalized core-shell colloids[J]. Langmuir,2000,16:1454-1456
    [152]Liz-Marzan M,Philipse A P. Synthesis and optical properties of gold-labelled silica particles[J]. J. Colloid Interface Sci.,1995,176:459-466
    [153]Hardikar V V,Matijevic E. Coating of nanosize silver particles with silica[J]. J. Colloid Interface Sci.,2000,221:133-136
    [154]Dokoutchaev A, James J T, Koene S C, et al. Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres[J]. Chem. Mater.,1999,11:2389-2399
    [155]Ji T, Lirtsman V G, Avny Y, et al. Preparation, characterization,and application of Au-shell/polystyrene beads and Au-shell/magnetic beads[J], Adv. Mater.,2001,13(16): 1253-1256
    [156]Caruso F.. Nanoengineering of particle surfaces[J]. Adv. Mater.,2001,13(1):11-22
    [157]Barthet C., Hickey AJ, Cairns, et al. Synthesis of novel polymer-silica colloidal nanocomposites via free-Radical polymerization of vinyl monomers[J]. AdV. Mater. 1999,11,408-410
    [158]Percy M J, Barthet C, Lobb B J C,et al. Synthesis and characterization of vinyl polymer-silica colloidal nanocomposites [J]. Langmuir 2000,16,6913-6920
    [159]Chen M,Wu L,Zhou S, You B. Synthesis of raspberry-like PMMA/SiO2 nanocomposite particles via a surfactant-free method [J]. Macromolecules,2004,37, 9613-9619
    [160]Bon S A F, Colver P J. Pickering miniemulsion polymerization using laponite clay as a stabilizer[J]. Langmuir,2007,23 8316-8322
    [161]Chen T, Colver P J, Bon S A F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization [J]. Adv. Mater.2007,19, 2286-2289
    [162]Bon S A F, Cauvin S, Colver P J. Colloidosomes as micron-sized polymerisation vessels to create supracolloidal interpenetrating polymer network reinforced capsules[J]. Soft Matter,2007,3:194-199
    [163]He Y J. Nanostructured CeO2 microspheres synthesized by a novel surfactant-free emulsion[J]. Powder Technol.,2005,155(1):1-4
    [164]He Y J. Preparation of polyaniline/nano-ZnO composites via a novel Pickering emulsion route [J]. Powder Technol.,2004,147 (1):59-63
    [165]Li X, Cao Z, Zhang Z, Dang H. Surface-modification in situ of nano-SiO2 and its structure and tribological properties, Appl. Surf. Sci.,2006,252:7856-7861
    [166]Yang F, Niu Q, Lan Q, Sun. D. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles [J]. J. Colloid Interface Sci.,2006,306:285-295
    [167]Deng Z, Chen M, Gu G, Wu L. A facile method to fabricate ZnO hollow spheres and their photocatalytic property[J]. J. Phys. Chem. B,2008,112:16-22
    [168]Deng Z, Chen M, Zhou S, You B, Wu L. A novel method for the fabrication of monodisperse hollow silica spheres[J]. Langmuir,2006,22:6403-6407
    [169]Cheng X, Chen M, Wu L, Gu G. Novel and facile method for the preparation of monodispersed titania hollow spheres[J]. Langmuir,2006,22:3858-3863
    [170]Ma G, Li J. Compromise between dominant polymerization mechanisms in preparation of polymer microspheres[J]. Chem. Eng. Sci.59 (2004) 1711-1721
    [171]Disher B M, Won Y Y, Ege D S, et al. Polymersomes:Tough vesicles made from diblock copolymers[J]. Science,1999,284:1143-1146
    [172]Huang H, Remsen E E, Kowalewski T, Wooley K L. Nanocages derived from shell cross-linked micelle templates[J]. J. Am. Chem. Soc.,1999,121:3805-3806
    [173]Wendland M S, Zimmerman S C. Synthesis of Cored Dendrimers[J]. J. Am. Chem. Soc.,1999,121:1389-1390
    [174]Pazirandeh M, Baral S, Campbell J R. Metallized nanotubules derived from bacteria[J]. Biomimetics,1992,1:41-50
    [175]Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science,1998,282:1111-1114
    [176]Chen J F, Ding H M, Wang J X, Shao L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application [J]. Biomaterials,2004,25: 723-727
    [177]Kim S S, Zhang W Z, Pinnavaia T J. Ultrastable mesostructured silica vesicles[J]. Science,1998,282:1302-1305
    [178]Tissot I, Reymond J P, Lefebvre F, Bourgeat-Lami E. SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles[J]. Chem. Mater., 2002,14(3):1325-1331
    [179]Wu W, Decoster M A, Daniel B M, et al. One-step synthesis of magnetic hollow silica and their application for nanomedicine[J]. J. Appl. Phys.,2006,99:1-3
    [180]Kim S W, Kim M, Lee W Y, Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions[J]. J. Am. Chem. Soc.,2002,124(26):7642-7643
    [181]Lootens D, Vautrin C, Damme H V, et al. Facetted hollow silica vesicles made by templating catanionic surfactant vesicles[J]. J. Mater. Chem.,2003,13(9):2072-2074
    [182]Li W J, Sha X X, Dong W J, et al. Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion[J]. Chem. Commun.,2002,2(20): 2434-2435
    [183]Strohm H, Lobmann P. Porous TiO2 hollow spheres by liquid phase deposition on polystyrene latex-stabilised Pickering emulsions[J]. J. Mater. Chem.,2004,14: 2667-2673
    [184]Tiarks F, Landfester K, Antonietti M. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization[J]. Langmuir,2001,17:5775-5780
    [185]Voorn D J, Ming W, van Herk A M. Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets[J]. Macromolecules,2006,39:2137-2143
    [186]He Y J. MgO nanostructured microspheres synthesized by an interfacial reaction in a
    solid-stabilized emulsion[J]. Mater. Lett.,2006,60:3511-3513
    [187]Chen T, Colver P J, Bon S A F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization[J]. Adv. Mater.2007, 19:2286-2289
    [188]Yu L, Gao Y Q Yue X L, Liu S Q, Dai Z F. Novel hollow microcapsules based on iron-heparin complex multilayers [J]. Langmuir2008,24:13723-13729
    [189]Caruso F, Spasova M, Susha A, Giersig M, Caruso R A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chem. Mater.,2001,13:109-116
    [190]Lan Q, Liu C, Sun D J. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J]. J. Colloid Interface Sci., 2007,310:260-269
    [191]Faridi-Majidi R, Sharifi-Sanjani N, Agend F. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization[J]. Thin Solid Films,2006,515:368-374
    [192]Li Z Z, Xu S A, Wen L X, et al. Controlled release of avermectin from porous hollow silica nanoparticles:Influence of shell thickness on loading efficiency, UV-shielding property and release[J]. J. Control. Release,2006,111:81-88
    [193]Lai E P C, Wong B, Vandernoot V A. Preservation of solid mercuric dithizonate samples with polyvinyl chloride for determination of mercury(Ⅱ) in environmental waters by photochromism-induced photoacoustic spectrome-try[J]. Talanta,1993,40: 1097-1105
    [194]Liu J R, Valsaraj K T, Devai I, DeLaune R D. Immobilization of aqueous Hg(II) by mackinawit (FeS)[J] J. Hazard. Mater.,2008,157:432-440
    [195]Matlock M M, Howerton B S, Robertson J D,et al. Gold ore column studies with a new mercury precipitant[J]. Ind. Eng. Chem. Res.,2002,41:5278-5282
    [196]Yavuz H, Denizli A, Giingunes H, et al. Biosorption of mercury on magnetically modified yeast cells[J]. Sep. Purif. Technol.,2006,52:253-260
    [197]Barron-Zambrano J, Laborie S, Viers Ph, et al. Mercury removal and recovery from aqueous solutions by coupled complexation-ultrafiltration and electrolysis[J]. J. Membr. Sci.,2004,229; 179-186
    [198]Gash A E, Spain A L, Dysleski L M, et al. Efficient recovery of elemental mercury from Hg(II)-contaminated aqueous media using a redox-recyclable ion-exchange material[J]. Environ. Sci. Technol.,1998,32:1007-1012
    [199]Huebra M, Elizalde M P, Almela A. Hg(II) extraction by LIX 34. Mercury removal from sludge[J]. Hydrometallurgy,2003,68:33-42
    [200]Zhao Y, Chen Y, Li M. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite[J]. J. Hazard. Mater.,2009,171:640-646
    [201]杨振华,李红波,刘明东.光度分析法测定饮料中微量汞的研究[J].南昌大学学报(工科版),1996,18(4):22-25
    [202]Levine S, Bowen B D, Partridge S J. Stabilization of emulsions by fine particles. I. Partitioning of particles between continuous phase and oil/water interface[J]. Colloids Surf. A,1989,38:325-343
    [203]TiarksF, Landfester K, Antonietti M. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization[J]. Langmuir,2001,17:5775-5780
    [204]Querol X, Alastuey A, Moreno N, et al. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash[J]. Chemosphere,2006,62(2):171-180
    [205]Wang J M, Ban H, Teng X J, et al. Impacts of pH and ammonia on the leaching of Cu (II) and Cd (II) from coal fly ash[J]. Chemosphere,2006,64(11):1892-1898
    [206]Kobya M, et al. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone[J]. Bioresource Technol.,2005,96(13):1518-1521
    [207]Utrilla J R, Toledo I B, Garcia M A F, et al. Bioadsorption of Pb (Ⅱ), Cd (Ⅱ), and Cr (Ⅵ) on activated carbon from aqueous solutions [J]. Carbon,2003,41(2):323-330
    [208]Unuabonah E I, Adebowale K O, Olu-Owolabi B I. Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay[J]. J. Hazardous Mater.,2007,144(1-2):386-395
    [209]Vengris T, Binkien R, Sveikauskait A. Nickel, copper and zinc removal from waste water by a modified clay sorbent[J]. Appl. Clay Sci.,2001,18(3-4):183-190
    [210]Yoshitake H, Yokoi T, Tatsumi T. Adsorption behavior of arsenate at transition metal cations captured by amino-functionalized mesoporous silicas[J]. Chem. Mater.,2003, 15(8):1713-1721
    [211]Ebner A D, Ritter J A, Navratil J D. Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite-silica composite[J]. Ind. Eng. Chem. Res.,2001,40(7): 1615-1623
    [212]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. J.Am. Chem. Soc.,1918,40:1361-1403
    [213]S. Lagergren. About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, Handlingar,1989,24(4):1-39.
    [214]Ho Y S, Mckay G. Pseudo-second order model for sorption processes[J]. Process Biochem.,1999,34:451-465
    [215]Okano T, Bae Y H, Jacobs H, Kim S W. Thermally on-off switching polymers for drug permeation and release[J]. J. Control. Release,1990,11:255-265
    [216]Kono K, Kawakami K, MorimotoK, Takagisshi T. Effect of hydrophobic units on the pH-responsive release property of polyelectrolyte complex capsules[J]. J. Appl. Polym. Sci.,1999,72:1763-1773
    [217]Kidchob T, Kimura S, Imanishi Y. PH-responsive release from polypeptide microcapsules[J]. J. Appl. Polym. Sci.,1997,63:453-458
    [218]Okahata Y, Noguchi H, Seki T. Thermoselective permeation from a polymer-grafted capsule membrane[J]. Macromolecules,1986,19:493-494
    [219]Xie D H, Ye X D, Ding Y W, et al. Multistep thermosensitivity of Poly (N-n-propylacrylamide)-block-poly (N-isopropylacrylamide)-block-poly (N, N-ethylmethylacrylamide) triblock terpolymers in aqueous solutions as studied by static and dynamic light scattering[J]. Macromolecules,2009,42:2715-2720
    [220]Wu T, Zhang Y F, Wang X F, Liu S Y. Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive Poly (N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization[J]. Chem. Mater.,2008,20:101-109
    [221]Hoffman A S, Affrassiabi A, Dong L C. Thermally reversible hydrogels. Ⅱ. Delivery and selective removal of substances from aqueous solution[J]. J. Control. Release, 1986,4:213-222
    [222]Bae Y H, Okano T, Kim S W. Thermo-sensitive polymers as on-off switches for drug release[J]. Makromol. Chem., Rapid Commun.,1987,8:481-485
    [223]Duan L L, Chen M, Zhou S X, Wu L M. Synthesis and characterization of Poly (N-isopropylacrylamide)/silica composite microspheres via inverse Pickering suspension polymerization[J]. Langmuir,2009,25:3467-3472
    [224]Horecha M, Senkovskyy V, Stamm M, Kiriy A. One-Pot synthesis of thermoresponsive PNIPAM hydrogel microcapsules designed to function in apolar media[J]. Macromolecules,2009,42:5811-5817
    [225]Sun Q, Deng Y. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization[J]. J. Am. Chem. Soc.,2005,127:8274-8275
    [226]Gupta A K, Madan S, Majumdar D K, Maitra A. Ketorolac entrapped in polymeric micelles:preparation, characterisation and ocular anti-inflammatory studies[J]. Int. J. Pharm.,2000,209,1-14
    [227]Zhang F, Wang C. Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles[J]. Langmuir,2009,25:8255-8262
    [228]Rubio-Retama J, Zafeiropoulos N E, Serafinelli C, et al. Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic γ-Fe2O3 nanoparticles[J]. Langmuir,2007,23:10280-10285
    [229]Pich A, Bhattacharya S, Lu Y, Boyko V, Adler H P, Temperature-sensitive hybrid microgels with magnetic properties[J]. Langmuir,2004,20:10706-10711
    [230]Zhang X., Zhuo R. Synthesis and properties of thermosensitive poly (N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response[J]. Mater. Lett.,2002,52:5-9
    [231]陈建峰.超重力技术及应用——新一代反应与分离技术[M].北京:化学工业出版社,2002
    [232]Chen J F, Shao L, Guo F, et al. Synthesis of nano-fibers of aluminum hydroxide in novel rotating packed bed reactor[J]. Chem. Eng.& Sci.,2003,58:569-575
    [233]Wang D G, Guo F, Chen J F, et al. Preparation of nano aluminium trihydroxide by high gravity reactive precipitation[J]. Chem. Eng. J.,2006,121:109-114
    [234]刘骥,向阳,郑冲.旋转填充床内液-液法制备碳酸锶纳米粉体[J].化工科技,1999,7(4):11-14
    [235]Chen J F, Wang Y H, Guo F, et al. Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation[J]. Ind. Eng. Chem. Res.,2000,39(4):948-954
    [236]Chen J F, Shao L. Mass production of nanoparticles by high gravity reactive precipitation technology with low cost[J]. China Particuology,2003,1(2):64-69
    [237]Chen J F, Zhou M Y, Shao L, et al. Feasibility of preparing nanodrugs by high-gravity reactive precipitation [J]. Int. J. Pharm.,2004,269:267-274
    [238]Wang M, Zou H K, Chen J F, et al. Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment[J]. Powder Technology,2004,142: 166-174
    [239]Shen Z G, Chen J F, Yun J. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method[J]. Crystal Growth,2004,267:325-335
    [240]周绪美,郭锴,王玉红.超重力场技术用于油田注水脱氧的工业研究[J].石油化工,1994,23(12):807-812
    [241]万东梅.超重机技术用于工业尾气脱硫化学吸收过程的研究[D].北京:北京化工大学,1995
    [242]Lin C C, Liu W T. Ozone oxidation in a rotating packed bed[J]. Chem. Biotechnol, 2003,78:138-141
    [243]Chen Y H, Chiu C Y, Chang C Y, et al. Modeling ozonation process with pollutant in a rotating packed bed[J]. Ind. Eng. Chem. Res.,2005,44(1):21-29
    [244]张健.旋转床超重力场分离气溶胶的研究[D].北京:北京化工大学,1994
    [245]孟晓丽,刘有智,焦纬洲,等.旋转填料床净化磷肥尾气中的氨气[J].化L进展,2008,27(2):308-310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700