多酸基复合修饰电极的制备及其电催化和光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是指通过各种方法有目的地将具有优良物理∕化学性质的分子、离子、聚合物固定在电极表面,从而得到的具有某些特定功能的一类电极。化学修饰电极具有较高的灵敏度和优越的选择性,现已被广泛的用于电分析测试中。因而选用不同材料、不同修饰方法构筑的新型化学修饰电极必将为其在传感器、催化等领域的发展和应用奠定理论和实验基础。
     多金属氧酸盐(简称多酸)是一类具有独特的结构和丰富的物理化学性质的金属氧簇化合物。这类化合物的一个主要特点是可以经历一系列可逆的、多步的多电子转移过程。多酸具有丰富的氧化还原性质,非常适合作为修饰电极的材料和电催化剂。因此,设计和开发基于多酸的修饰电极,扩展多酸基修饰电极在电催化、光电催化方面的应用具有重要意义。
     本论文以多酸为活性组分,结合碳纳米管和纳米二氧化钛独特的物理化学性质,通过自组装技术和溶胶-凝胶技术构筑了新型多酸基化学修饰电极,并将其应用于化学小分子和生物活性分子的电催化、光电催化性能研究。具体内容如下:
     1.通过交替沉积自组装技术将钒取代的Dawson型钨磷酸K_8P_2W_(16)V_2O_(62)修饰到ITO电极表面。利用循环伏安法详细研究了该电极的电化学行为和稳定性。该电极同时具有对碘酸根的催化还原和对肼的催化氧化能力。计时电流法研究表明该电极对催化氧化肼的响应速度快,检出限低。该工作首次实现了利用多酸基修饰电极对肼的电催化作用,扩展了多酸基修饰电极在电催化方面的应用。
     2.利用杂多酸良好的电催化能力和碳纳米管优良的导电性,构建了基于杂多酸/碳纳米管的纳米复合膜修饰电极。文中首先通过动电位沉积法将Keggin型杂多酸H_2SiMo_(12)O_(40)修饰到玻碳电极表面,然后再利用电化学自组装法将碳纳米管修饰到电极上,并用紫外可见光谱和电化学方法对该修饰电极的形成过程进行了监测和表征。采用循环伏安法对复合膜修饰电极的电催化性能进行了研究。结果表明,该修饰电极的制备方法可以实现多酸在CNTs表面的有效固定,得到的修饰电极稳定性高,重现性好,并且具有较高的催化活性。
     3.首次将杂多钨酸盐(P2W18)和碳纳米管修饰到玻碳电极表面并可以保持良好的电化学和电催化活性。文中以壳聚糖为分散剂,得到了稳定的碳纳米管?壳聚糖复合物,然后通过静电自组装方法制备了P_2W_(18)/碳纳米管?壳聚糖修饰电极。采用循环伏安和交流阻抗谱详细研究了该复合物修饰电极的电化学性质及其对过硫酸根和碘酸根的电催化作用。研究表明,碳纳米管的引入增强了膜的导电性,增大了电极的比表面积,提高了P2W18的表面覆盖度。同时该方法极大的提高了多酸/碳纳米管修饰电极的灵敏度和稳定性。
     4.采用溶胶?凝胶法结合旋涂技术制备了钨磷酸?锐钛矿纳米复合膜(H_3PW_(12)O_(40)–TiO_2)修饰电极,研究了其在Na_2SO_4溶液中的光电化学性能。测试结果表明H_3PW_(12)O_(40)–TiO_2具有良好的光电化学性能。H_3PW_(12)O_(40)与TiO_2复合后,TiO_2表面的光生电子和空穴的快速复合被有效的抑制,从而提高了TiO2的光电性能。氨基酸是生物大分子蛋白质的基本组成单元,对其进行检测和光解研究具有重要意义。文中以门冬氨酸(Asp)为目标分子,研究了H_3PW_(12)O_(40_–TiO_2的光电氧化能力。结果表明,H_3PW_(12)O_(40)–TiO_2对Asp的光氧化动力学服从Langmuir–Hinshelwood动力学方程。
The aim of chemically modified electrodes is to carry out the molecular design on the electrode surface. In other words, some molecule, ion and polymer with excellent properties are immobilized on electrode surface and the electrode with specially chemical and physical properties is obtained. And it has been intensively used in electroanalysis due to their high sensitivity and excellent selectivity. Therefore, a new type of chemically modified electrode built by different materials and different strategies should provide a new ideas for its development and application in sensors, catalysis and other areas.
     Polyoxometalates (POMs), a well-known class of nanoclusters with much diversity in size, composition, and function, have attracted increasing attention worldwide. One of the most attractive features of POMs is that the metal-oxygen framework can undergo reversible and stepwise, multielectron-transfer reactions. Their very rich redox chemistry makes them suitable for electrode modification, electrocatalysis and electroanalysis. Thus, it has great significance that the design and development of modified electrode based on POMs, extend the application of POMs modified electrode in electrocatalysis and photoelectrocatalysis. In this paper, we focus on the preparation of chemically modified electrodes containing POMs, carbon nanotubes (CNTs) and nanotitanium dioxide by self-assembly and sol-gel technology. The electrocatalytic and photoelectrocatalytic activities for the chemically modified electrodes were investigated to detect small chemistry molecule and biological activity molecular.
     1. A new electrocatalytic multilayer films electrode, which shows bifunctional electrocatalysis on iodate and hydrazine, was obtained by the layer-by-layer self-assembly of vanadium-substituted phosphotungstate 1,2-K8P2W16V2O62?18H2O (P2W16V2) on ITO electrode. Electrocatlytic activity of P2W16V2 modified electrode towards hydrazine and IO3- was performed using cyclic voltammetry and Amperometry. The proposed modified electrode has high stability, fast response and low detection limit, which extends the application of POMs-based modified electrode in electrocatalysis.
     2. A novel composite film modified glassy carbon electrode (GCE) based on the heteropolyacid/CNTs was fabricated due to the good electrocatalytic ability of heteropoly acids and excellent electrochemical properties of CNTs. Keggin-type POM (H4SiMo12O40) was potentiodynamic deposited on GCE and then was used as matrix to form multilayer films by electrochemical growth method with the CNTs. Thus-prepared multilayer films and the electrochemical behavior of the composite film modified electrode were characterized by UV–vis spectroscopy and cyclic voltammetry in detail. The preparation process of the modified electrode is simple and convenient. The resulting multilayer films have high stability and good electrocatalytic activity, which opened up a new way for development POMs modified electrode in the actual application.
     3. We developed a facile strategy for the first time to fabricate heteropolytungstate (P2W18) and CNTs modified GCE. In this work, chitosan was used as a dispersant to form a stable CNTs?chitosan composite, and then prepared P2W18/CNTs?chitosan modified electrode by electrostatic interactions. The electrochemical and electrocatalytic activities for the P2W18/CNTs?chitosan electrode were investigated in detail. The results suggest that the presence of CNTs in the composite film not only enhances the conductivity of the film but also increases the surface area of the electrode and the surface coverage of P2W18. The developed composite electrode greatly enhances the sensitivity and stability of POMs/CNTs modified electrode.
     4. Phosphotungstic acid?anatase nanocomposite film (H_3PW_(12)O_(40)-TiO_2) was prepared using sol?gel technology, and their photoelectrochemical properties were examined in the Na2SO4 solution. The results demonstrated that H3PW12O40-TiO_2 films possess high photoelectrochemical performance. POMs as electron scavergers can retard effectively the fast electron-hole recombination on the suface of TiO_2, and consequently enhance the photoelectremical response. Amino acids are the basic components units of protein, so that fundamental photodecomposition study of amino acids is of importance.The photoelectrocatalytic property of H3PW12O40-TiO_2 electrode was evaluated by oxidation aspartate (Asp). The results show that Asp photooxidation kinetics obeys Langmuir-Hinshelwood kinetic equation.
引文
[1] Watkins B F, Behling J R, Kariv E, et al. Chiral electrode[J]. J Am. Chem. Soc., 1975, 97(12): 3549-3550.
    [2] Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode [J]. Anal. Chem., 1975, 47(12): 1882-1886.
    [3]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社, 2003.
    [4] Lanhard J R,Murray R W. Chemically modified electrodes: PartVII. Covalent bonding of a reversible electrode reactant to Pt electrode using an organosilane reagent[J]. J. Electroanal. Chem, 1977, 78(1): 195?201.
    [5] Untereker D F, Lennox J C, Wier L M, Moses P R, Murray R W. Chemically modified electrodes: PartIV. Evidence for formation of monolayers of bonded organosilane reagents[J]. J. Electroanal. Chem., 1977, 81(2): 309?318.
    [6] Brown A P, Anson F C. Electron transfer kinetics with both reactant and product attached to the electrode surface[J]. J. Electroanal. Chem., 1978, 92(2): 133?145.
    [7] Brown A P,Koval C,Anson F C. Illustrative electrochemical behavior of reactants irreversibly adsorbed on graphite electrode surfaces[J]. J. Electroanal. Chem., 1976, 72(3): 379?387.
    [8] White J H,Soriaga M P, Hubbard A T. Reaction mechanism of the benzoquinone/hydroquinone couple at platinum electrodes in aqueous solutions: Retardation and enhancement of electrode kinetics by single chemisorbed layers[J]. J. Electroanal. Chem., 1985, 185(2): 331?338.
    [9] White J H,Soriaga M P, Hubbard A T. Influence of oriented-chemisorbed monolayers on the electrode kinetics of unadsorbed nonionic redox couples[J]. J. Phys. Chem., 1985, 89(15): 3227?3232.
    [10] Soriaga M P,Stickney J L, Hubbard A T,Electrochemical oxidation of aromatic compounds adsorbed on platinum electrodes: The influence of molecular orientation[J]. J. Electroanal. Chem., 1983, 144(1-2): 207?215.
    [11] Pletcher D, Solis V. A further investigation of the catalysis by lead ad-atoms of formic acid oxidation at a platinum anode[J]. J. Electroanal. Chem. 1982, 131(8): 309-323.
    [12] Lorenz W J,Hermann H D,Wuthrich N,Hilbert F. The formation of monolayer metal films on electrodes[J]. J. Electrochem. Soc., 1974, 121(9): 1167-1177.
    [13]郭志坚,白燕,欧阳健明等.血红素LB膜的电化学行为[J].分析测试学报, 2002, 21(4): 71-73.
    [14]叶淑玉,郭渡,陆天虹等. LB膜修饰电极[J].分析化学, 1991, 19(5): 612?617.
    [15] Miyasaka T,Watanabe T,Fujishima A,Honda K. Highly efficient quantum conversion at chlorophyllα-lecithin mixed monolayer coated electrodes[J]. Nature,1979,277(5698): 638?640.
    [16]侯士峰,杨可盛,方惠群等.四氯苯酚自组装膜电子传递机制的研究[J].物理化学学报, 1998, 14(7): 640?644.
    [17]赵庆琦,陈实,邓锐.一氧化氮在大环铜配合物修饰电极上的电催化氧化及测定[J].分析测试学报, 2001, 20(3): 9?11.
    [18] Imisides M D, John R, Riley P J, et al. The use of electropolymerization to produce new sensing surfaces: A review emphasizing electrode position of heteroaromatic compounds [J]. Electroanalysis, 1991, 3(9): 879-889.
    [19]汪振辉,张岱,张岩等.聚对氨基吡啶化学修饰电极上酚磺乙胺的电化学行为及其溶出伏安法测定[J].分析化学研究简报, 2001, 29(1): 83-86.
    [20] Adams R N. Carbon paste electrodes[J]. Anal Chem, 1958, 30(9): 1576-1576.
    [21] Kalcher K. Chemically modified carbon paste electrodes in voltammetric analysis[J]. Electroanalysis, 1990, 2(6): 419-433.
    [22] Wang X L, Han Z B, Wang E B, et al. A Bifunctional Electrocatalyst Containing Tris(2,2'-bipyridine)Ruthenium(II) and 12-Molybdophosphate Bulk-Modified Carbon Paste Electrode[J]. Electroanalysis, 2003, 15(18): 1460?1464.
    [23]徐桂英,王凤平,唐丽娜.碳糊电极和化学修饰碳糊电极的制备及性能综述[J].化学研究, 2008, 19(3): 108-112.
    [24] Couper A M, Pletcher D,Walsh F C. Electrode materials for electrosynthesis[J]. Chem. Rev., 1990, 90(3): 837-865.
    [25] Wrighton M S. Surface Functionalization of Electrodes with Molecular Reagents[J]. Science, 1986, 231(4733): 32-37.
    [26] Itaya K, Shibayama K, Akahoshi H, et al. Prussian-blue-modified electrodes: An application for a stable electrochromic display device[J]. J. Appl. Phys., 1982, 53(1): 804-805.
    [27] White H S, Kittlesen G P, Wrighton M S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole:fabrication of a molecule-based transistor[J]. J. Am. Chem. Soc., 1984, 106(18): 5375-5377.
    [28] Majda M.,Faulkner L.R. A luminescence probe for measurements of electron-exchange rates in Polymer films on electrodes[J]. J. Electroanal. Chem., 1982, 137(1): 149-156.
    [29] Miller L L,Lau A N K.,Miller E K. Electrically stimulated release of neurotransmitters from a surface. An analog of the presynaptic terminal[J]. J. Am. Chem. Soc.,1982,104(19): 5242-5244.
    [30] Iijima S.Helical Microtubules of Graphitic Carbon[J].Nature, 1991, 354(7): 56-58.
    [31] Iijima S, Ichihashi T. Single Shell Carbon Nanotubes of l-nm Diameter[J].Nature, 1993, 363(6430): 603-605.
    [32] Mintmire J W, Dunlap B I, White C T. Are fullerene tubules metallic?[J]. Phys. Rev. Lett., 1992, 68(5): 631-634.
    [33] Hamada N, Sawada S I, Oshiyama A. New one-dimensional conductors: Graphitic microtubules[J]. Phys. Rev. Lett., 1992, 68(10): 1579-1581.
    [34] Ajayan P M, Ebbesen T W. Nanometer-size tubes of carbon [J]. Rep. Prog. Phys., 1997, 60(10): 1025-1062.
    [35] Ajayan P M. Nanotubes from Carbon [J]. Chem. Rev. 1999, 99(7): 1787?1799.
    [36] Yakabson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response[J]. Phys. Rev. Lett., 1996, 76(14): 2511-2514.
    [37] Treacy M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(6584): 678-680.
    [38] Britto P J, Santhanam K V, Rubio A, et al. Improved charge transfer at carbon nanotube electrodes[J]. Adv. Mater., 1999, 11(2): 154-157.
    [39] Hiura H, Ebbesen T W E, Tanigaki K. Opening and Purification of Carbon Nanotubes in High Yields[J]. Advanced Materials, 1995, 7(3): 275-276.
    [40] Sinnott S B. Chemical functionalization of carbon nanotubes[J]. J. Nanosci. Nanotech., 2002, 2(2):113-123.
    [41]蔡称心,陈静,包建春,陆天虹.碳纳米管在分析化学中的应用[J].分析化学, 2004, 32(3): 381?387.
    [42] Britto P J,Santhanam K S V,Ajayan P M. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochem Bioenerg, 1996, 41(l): 121-125.
    [43] Davis J J, Richard J C, Allen H, Hill O. Protein electrochemistry at carbon nanotube electrodes[J]. J Electroanal Chem, 1997, 440(l-2): 279 -282.
    [44] Lawrence N S,Deo R P,Wang J. Detection of homocysteine at carbon nanotube paste electrodes[J]. Talanta, 2004, 63(2): 443-449.
    [45] Luo H X, Shi Z J, Li N Q, Gu Z N, Zhuang Q K. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J]. Anal Chem, 2001, 73(5): 915-920.
    [46] Chen R S, Huang W H, Tong H, Wang Z L, Cheng J K. Carbon Fiber Nanoelectrodes Modified by Single-Walled Carbon Nanotubes[J]. Anal Chem, 2003, 75(22): 6341-6345.
    [47] Wang J,Musameh M,Randhir P D,et al. Carbon nanotube fiber microelectrodes[J]. J Am Chem Soc, 2003, 125(48): 14706-14707.
    [48] Gooding J J, Wibowo R, Liu J, Yang W, et al. Protein Electroehemistry Using Aligned Carbon Nanotube Arrays[J]. J Am Chem Soc, 2003, 125(30): 9006-9007.
    [49] Yu X, Chattopadhyay D, Galeska I, PapadimitrakoPoulos F, Rusling J F. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes[J]. Electrochem Commun, 2003, 5(5): 408-411.
    [50] Chen J, Bao J C, Cai X. Fabrication, Characterization and ElectroCAtalytic of an Ordered Carbon Nanotube Electrode[J]. Chinese Journal of Chemistry, 2003, 21, 665-669.
    [51] Wu K B,Hu S S,Fei J J,Bai W. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes[J]. Anal Chim Acta,2003, 489(2): 215-221.
    [52] Wang Z H, Wang Y M, Luo G A. Carbon nanotube-modified electrodes for the simultaneousdetermination of dopamine and ascorbie acid[J]. Analyst, 2002, 127(5): 653-658.
    [53] Wang J X.; .Li M X, Shi Z J, et al. Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes[J]. Anal Chem, 2002, 74(9): 1993-1997.
    [54] Wang J, Liu G, Rasul M. Ultrasensitive Electrical Biosensing of proteins and DNA:Carbon-Nanotube Derived Amplifieation of the Recognition and Transduetion Events[J]. J Am Chem Soc, 2004, 126(10): 3010- 3011.
    [55] Cai H, Cao X, Jiang Y, He P, Fang Y. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection[J]. Anal Bioanal Chem, 2003, 375(2): 287-293.
    [56] Zhao G C, Zhang L, Wei X W, Yang Z S. Myoglobin on multi-walled carbon nanotubes modified electrode direct electrochemistry and electrocatalysis[J]. Electrochem Commun, 2003, 5(9): 825-829.
    [57] Musameh M,Wang J,Merkoei A,Y Lin. Low-potential stable NADH detection at carbon-nanotube modified glassy carbon electrodes[J]. Electrochem Commun, 2002, 4(10): 743-746.
    [58] Wang J, Carbon-nanotube based electrochemical biosensors: A review[J] Electroanlysis, 2005, 17(1): 7-14.
    [59]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社, 1998. 1.
    [60]王恩波,李阳光,鹿颖,王新龙.多酸化学概论[M].长春:东北师范大学出版社, 2009.7.
    [61] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer: Dordrecht, 2001. 1–10.
    [62] Hill C L. The effects of description, association, or combined description/association in exploring dream images [J]. Chem. Rev., 1998, 98 (1): 1-13.
    [63] Berzelius. [J]. J Pogg Ann, 1826, 6: 369.
    [64] Keggin. [J]. J F Proc R Soc, 1934, 144A: 75.
    [65]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社, 2000, 170.
    [66] Katsoulis D.E. A survey of applications of polyoxometalates[J]. Chem. Rev., 1998, 98(1): 359-387.
    [67] Müller A, Beckmann E, B?gge H, et al. Inorganic Chemistry Goes Protein Size: A Mo368 Nano–Hedgehog Initiating Nanochemistry by Symmetry Breaking[J]. Angew Chem Int Ed, 2002, 41(7): 1162–1167.
    [68] Ritorto M D, Anderson T M, Neiwert W A, et al. Decomposition of A–Type Sandwiches. Synthesis and Characterization of New Polyoxometalates Incorporating Multiple d–Electron–Centered Units[J]. Inorg Chem, 2004, 43(1): 44–49.
    [69] Fang X K, Anderson T M, Neiwert W A, et al. Synthesis and Characterization of a Carbonate–Encapsulated Sandwich–Type Complex[J]. Inorg Chem, 2003, 42(26): 8600–8602.
    [70] Nellutla S, Tol J V, Dalal N S, et al. Magnetism, Electron Paramagnetic Resonance, Electrochemistry, and Mass Spectrometry of the Pentacopper(II)–Substituted Tungstosilicate [Cu5 (OH)4(H2O)2(A–α–SiW8O33)2]10–, A Model Five–Spin Frustrated Cluster[J]. Inorg Chem, 2005, 44(26): 9795–9806.
    [71] Zimmermann M, Belai N, Butcher R J, et al. New Lanthanide–Containting Polytungstates Derived from the Cyclic P8W48 Anion: {Ln4(H2O)28 [KP8W48O184(H4W4O12)2Ln2(H2O)10]13–}x, Ln=La, Ce, Pr,Nd[J]. Inorg Chem, 2007, 46(5): 1737–1740.
    [72] Zheng S T, Yuan D Q, Jia H P, et al. Combination between lacunary polyoxometalates and high–nuclear transition metal clusters under hydrothermal conditions: I. From isolated cluster to 1–D chain[J]. Chem Commun, 2007, (18): 1858–1860.
    [73] Zhao J W, Jia H P, Zhang J, et al. A Combination of Lacunary Polyoxometalates and High–Nuclear Transition Metal Clusters under Hydrothermal Conditions. Part II: From Double Cluster, Dimer, and Tetramer to Three–Dimensional Frameworks[J]. Chem Eur J, 2007, 13(36): 10030–10045.
    [74] Tan H, Li Y, Zhang Z, et al. Chiral Polyoxometalate–Induced Enantiomerically 3D Architectures: A New Route for Synthesis of High–Dimensional Chiral Compounds[J]. J Am Chem Soc, 2007, 129(33): 10066–10067.
    [75] Peng Z H. Rational Synthesis of Covalently Bonded Organic–Inorganic Hybrids[J]. Angew Chem Int Ed, 2004, 43(8): 930–935.
    [76] Wei Y G, Xu B B, Barnes C L, et al. An Efficient and Convenient Reaction Protocol to Organoimido Derivatives of Polyoxometalates[J]. J Am Chem Soc, 2001, 123(17): 4083–4084.
    [77] Khan M I, Chen Q, Zubieta J, et al. Hexavanadium Polyoxo Akoxide Anion Clusters: Structures of the Mixed–Valence Species (Me3NH)[V5IVVVO7(OH)3{(OCH2)3CCH3}3] and of the Reduced Complex Na2[VIV6O7(OH)3{(OCH2)3CCH3}4][J]. Inorg Chem, 1992, 31(9): 1556–1558.
    [78] Khan M I, Chen Q, Goshorn D P, et al. Polyoxo Alkoxides of Vanadium: The Structure of the Decanuclear Vanadium(IV) Clusters [Vl0O16{CH3CH2C(CH2O)3}4]4– and [Vl0O13{CH3CH2C(CH2O)3}5]–[J]. J Am Chem Soc, 1992, 114(9): 3341–3346.
    [79] Gao G G, Li F Y, Xu L, Liu X Z, Yang Y Y. CO2 Coordination by Inorganic Polyoxoanion in Water[J] J. Am. Chem. Soc. 2008, 130(33): 10838–10839.
    [80] Mizuno N, Misono M. Heterogeneous Catalysis[J]. Chem Rev, 1998, 98(1): 199–217.
    [81] Weinstock I A. Homogeneous–Phase Electron–Transfer Reactions of Polyoxometalates[J]. Chem Rev, 1998, 98(1): 113–170.
    [82] Rhule J T, Hill C L, Judd D A. Polyoxometalates in Medieine[J]. Chem Rev, 1998, 98(1): 327-358.
    [83] Raynaud M, Chermann J C, Plata F, Jasmin C, MathéG. Inhibiteurs des virus du groupe leucémie-sarcome murins[J]. C. R. Acad. Sci., Ser. D. 1971, 272(2): 347-348.
    [84] Liu J F, Liu S X, Qu L Y, et al. Derivatives of the 21-tungsto-9-antimonate heteropolyanion Part 1. Inclusion of lanthanide cations[J]. Trans Met Chem, 1992, 17(4): 311-313.
    [85] Mitsui S, Ogata A, Yanagie H, Kasano H, Hisa T, Yamase T, Eriguchi M. Antitumor activity of polyoxomolybdate, [NH3Pri]6[Mo7O24]·3H2O, against, human gastric cancer model[J]. Biomed Pharmacother, 2006, 60(7): 353-358.
    [86] Wang X H, Liu J F, Li J X, et al. Synthesis and antitumor activity of cyclopentadienyltitanium substituted polyxotungstate [CoW11O39(CpTi)]7- (Cp = -η5-C5H5)[J]. J Inorg Biochem, 2003, 94(3): 279-284.
    [87] Hu D H, Shao C, Guan W, et al. Studies on the interactions of Ti-containing polyoxometalates (POMs)with SARS-CoV3CLpro by molecular modeling[J]. J Inorg Biochem, 2007, 101(1): 89-94.
    [88] Liu S X, Li Y X, Han Z B, et al. Synthesis, anti-HIV-1 activity and toxicity of new rare earth-containing heteropoly blues [J].Chem J Chin Univ (高等学校化学学报), 2002, 23(5): 777-782.
    [89] Ichinose I, Tagawa H, Mizuki S, Lvov Y, Kunitake T. Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations[J]. Langmuir, 1998, 14(1): 187-192.
    [90] Coronado E, Gómez-García C J. Polyoxometalate-based molecular materials[J]. Chem. Rev., 1998, 98(1): 273-296.
    [91] Yamase T. Photo-and Electrochromism of Polyoxometalates and Related Materials[J]. Chem. Rev., 1998, 98(1): 307?326.
    [92] Tell B, Wagner S. Electrochemichromic cells based on phosphotungstic acid[J]. Appl. Phys. Lett., 1978, 33(9): 837–838.
    [93] Liu S Q, M?hwald H, Volkmer D, et al. Polyoxometalate–Based Electro– and Photochromic Dual–Mode Devices[J]. Langmuir, 2006, 22(5): 1949–1951.
    [94] Gao G G, Xu L, Wang W J, et al. Electrochromic Multilayer Films of Tunable Color by Combination of Copper or Iron Complex and Monolacunary Dawson–Type Polyoxometalate[J]. J. Phys. Chem. B, 2005, 109(18): 8948–8953.
    [95] Xu B, Xu L, Gao G G, et al. Polyoxometalate-based gasochromic silica[J]. New Journal of Chemistry, 2008, 32(6): 1008-1013.
    [96] Song In K, Barteau M A. Redox properties of Keggin-type heteropolyacid (HPA) catalysts: effect of counter-cation, heteroatom, and polyatom substitution[J]. J. Mol. Catal. A: Chem., 2004, 212(1-2): 229–236.
    [97] Sadadane M.,Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem. Rev., 1998, 98(1): 219?237.
    [98] Keita B, Nadjo L. New aspects of the electrochemistry of heteropolyacids: Part IV. Acidity dependent cyclic voltammetric behaviour of phosphotungstic and silicotungstic heteropolyanions in water and N,N-dimethylformamide[J]. J Electroanal. Chem. 1987, 227(1-2): 77?98.
    [99] Keita B, Nadjo L, Haeussler J P. Distribution of oxometalates on polymer-covered electrodes:Compared catalytic activity of these new polymers and the corresponding oxometalates in solution[J]. J Electroanal. Chem., 1988, 243(2): 481?491.
    [100] Keita B, Nadjo L. New aspects of the electrochemistry of heteropolyacids: part II. Coupled electron and proton transfers in the reduction of silicotungstic species[J]. J. Electroanal. Chem. 1987, 217(2): 287?304
    [101] Dong S, Xi X D, Tian M. Study of the electrocatalytic reduction of nitrite with silicotungstic heteropolyanion[J]. J Electroanal. Chem. 1995, 385(2): 227?233.
    [102] Unoura K, Iwashita A, Itabashi E, Tanaka N. Catalytic Effects of Chlorate Ions on the Electrode Reaction Processes of 12-Molybdophosphate and 12-Molybdosilicate[J]. Bull. Chem. Soc. Jpn. 1984,57(2): 597-598.
    [103] Keita B, Belhouari A, Nadjo L, Contant R. Electrocatalysis by polyoxometalate/vbpolymer systems: Reduction of nitrite and nitric oxide[J]. J. Electroanal. Chem. 1995, 381(1-2): 243-250.
    [104] Xi X D, Dong S J. Electrocatalytic reduction of nitrite using Dawson-type tungstodiphosphate anions in aqueous solutions, adsorbed on a glassy carbon electrode and doped in polypyrrole film[J]. J. Mol. Catal. A: Chemical, 1996, 114(1-3): 257-265.
    [105] Toth J E; Anson F C. Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates[J]. J. Am. Chem. Soc. 1989, 111(7): 2444-2451.
    [106] Toth J E, Melton J D, Cabelli D, Bielski B H J, Anson F C. Electrochemistry and redox chemistry of aquaferrotungstosilicate, H2OFeIIISiW11O395- in the presence of hydrogen peroxide and hydroxyl[J]. Inorg. Chem. 1990, 29(10): 1952-1957.
    [107] Dong S J, Liu M J. Electrochemical and electrocatalytic properties of iron(III)-substituted Dawson-type tungstophosphate anion[J]. J Electroanal. Chem. 1994, 372(1-2): 95-100.
    [108] Rong C Y, Pope M T. Lacunary Polyoxometalate anions areπ-acceptor ligands. Characterization of some tungstoruthenate(II, III, IV, V) heteropolyanions and their atom-transfer reactivity[J]. J Am. Chem. Soc.1992, 114(8): 2932-2938.
    [109] Xi X D, Wang G, Liu B F, Dong S J. Electrochemical behavior of Bis(2: 17-arsenotungstate) lanthanates and their electrocatalytic reduction for Nitrite [J]. Electrochim. Acta 1995, 40(8): 1025?1029.
    [110] Cheng L, Zhang X, Xi X, Liu B, Dong S. Electrochemical behavior of the molybdotungstate heteropoly complex with neodymium, K10H3[Nd(SiMo7W4O39)2]·xH2O in aqueous solution[J]. J. Electroanal. Chem. 1996, 407(1-2): 97?103.
    [111] Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines[J]. Angew. Chem. Int. Ed. Engl. 1991, 30(1): 34?48.
    [112] Neumann R, Abu-Gnim C. Alkene oxidation catalyzed by a ruthenium-substituted heteropolyanion SiRu(L)W11O39: the mechanism of the Periodate mediated oxidative cleavage[J]. J Am. Chem. Soc. 1990, 112(16): 6025?6031.
    [113] Keita B, Essaadi K, Nadjo L, Contant R, Justum Y. Oxidation kineties of NADH by heteropolyanions[J]. J. Electroanal. Chem. 1996, 404(2): 271?279.
    [114] Keita B., Nadjo L. Electrocatalysis by electrodeposited heteropolyanions and isopolyanions[J]. J. Electroanal.Chem. 1987, 227(1-2): 265-270.
    [115]. Rong C Y, Anson, F C. Spontaneous adsorption of heteropolytungstates and heteropolymolybdates on the surfaces of solid electrodes and the electrocatalytic activity of the adsorbed anions[J]. Inorganica Chimica Acta, 1996, 242(1-2): 11?16.
    [116]. Martel D, Kuhn A. Electrocatalytic reduction of H2O2 at P2Mo18O626- modified glassy carbon[J]. Electrochimica Acta 2000, 45(11): 1829–1836.
    [117] Barth M, Lapkowski M,Lefrant S. Electrochemical behaviour of polyaniline films doped with heteropolyanions of Keggin structure[J]. Electrochimica Acta, 1999, 44(12): 2117-2123.
    [118] Chang Y T, Lin K C, Chen S M. Preparation, characterization and electrocatalytic properties of poly(luminol) and polyoxometalate hybrid film modified electrodes[J]. Electrochimica Acta, 2005, 51(3): 450-461.
    [119] Balamurugan A, Chen S M. Silicomolybdate-Doped PEDOT Modified Electrode: Electrocatalytic Reduction of Bromate and Oxidation of Ascorbic Acid [J]. Electroanalysis, 2007, 199(15): 1616?1622.
    [120] Tao W Y, Li Z F, Pan D W, Nie L H, Yao S Z. Preparation, Structure, and Electrochemistry of a Polypyrrole Film Doped with Manganese(III)-Substituted Dawson-Type Phosphopolyoxotungstate[J]. J. Phys. Chem. B, 2005, 109 (7): 2666–2672.
    [121] Turdean G L, Curulli A, Popescu I C, et al. Electropolymerized Architecture Entrapping a Trilacunary Keggin-Type Polyoxometalate for Assembling a Glucose Biosensor[J]. Electroanalysis, 2002, 14(22): 1550-1556
    [122] Clemente-León M,Mingotaud C, Agricole B, et al. Application of the langmuir-blodgett technique to polyoxometalates: towards new magnetic films[J]. Angew. Chem. Int. Ed. Engl., 1997, 36(10): 1114?1116.
    [123] Jiang M, Zhai X D, Liu M H. Hybrid molecular films of gemini amphiphiles and Keggin-type polyoxometalates: Effect of the spacer length on the electrochemical properties[J] J. Mater. Chem. 2007, 17(2): 193?200.
    [124] Moriguchi I,Fendler J F. Characterizationand Electrochromic properties of Ultrathin Films Self-Assembled from Poly (diallyldimethylammonium) Chloride and Sodiurn Decatungstate[J]. Chem. Mater, 1998, 10(8): 2205?2211.
    [125] Bi L H, Foster K, McCormac T, et al. Preparation of multilayer films containing a crown heteropolyanion and an osmium functionalised pyrrole monomer[J]. J Electroanal Chem, 2007, 605(1): 24?30.
    [126] Fan D W, Hao J C. Fabrication and Electrocatalytic Properties of Chitosan and Keplerate-Type Polyoxometalate {Mo72Fe30} Hybrid Films[J]. J. Phys. Chem. B 2009, 113(21): 7513–7516.
    [127] Long D L, Tsunashima R, Cronin L. Polyoxometalates: Building Blocks for Functional Nanoscale Systems[J]. Angew. Chem. Int. Ed. 2010, 49(10): 1736–1758.
    [128] Liu S Q,Tang Z Y, Shi Z, Niu L, Wang E K, Dong S J. Electrochemical preparation and characterization of silicotungstic heteropolyanion monolayer electrostatically linked aminophenyl on carbon electrode suface[J]. Langmuir, 1999, 15(21): 7268–7275.
    [129] Liu J Y, Cheng L, Liu B F, Dong S J. Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films[J] Langmuir, 2000, 16(19): 7471–7476.
    [130] Keita B,Belhouari A,Nadjo L. Oxometalate-clay-modified electrodes: synthesis and properties of anionic clays pillared by metatungstate[J]. J. Electroanal. Chem., 1993, 355(1-2): 235-251.
    [131] Li Y C, Bu W F, Wu L X, Sun C Q. A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol–gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method[J]. Sensors and Actuators B, 2005, 107(2):921–928.
    [132] Wang P, Yuan Y, Han Z B, Zhu G Y. Sol–gel-derived graphite organosilicate composite electrodes bulk-modified with Keggin-typeα-germanomolybdic acid[J] J. Mater. Chem., 2001, 11(2): 549–553.
    [133] Wang X L, Wang E B, Lan Y, Hu C W. Renewable PMo12-Based Inorganic-Organic Hybrid Material Bulk-Modified Carbon Paste Electrode: Preparation, Electrochemistry and Electrocatalysis[J]. Electroanalysis, 2002, 14(15-16): 1116-1121.
    [134] Tang Z Y, Liu S Q, Wang E K, Dong S J. Preparation, Structures, and Electrochemistry of a New Polyoxometalate-Based Organic/Inorganic Film on Carbon Surfaces [J] Langmuir, 2000, 16(13): 5806-5813.
    [135] Prodromidis M I., Veltsistas P G., Efstathiou C E., Karayannis M I. Amperometric Detection of Periodate Using a Graphite Electrode Modified with a Novel-Keggin-Type Silicotungstic Acid Salt and Determination of Ethylene Glycol in Antifreeze Fluids [J] Electroanalysis, 2001, 13 (11): 960-966.
    [136] Shen Y, Liu J Y, Jiang J G, Dong S J. Fabrication of Metalloporphyrin-Polyoxometalyte Hybrid Film by Layer-by-Layer Method and Its Catalysis for Dioxygen Reduction [J] Electroanalysis, 2002, 14 (22): 1557-1563.
    [137] Wang X L, Kang Z H, Wang E B, Hu C W. Inorganic–organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode: preparation, electrochemistry and electrocatalysis [J] J. Electroanal. Chem. 2002, 523: 142–149.
    [138] Ernst A Z, Zoladek S, Wiaderek K, Cox J A. Network films of conducting polymer-linked polyoxometalate-modified gold nanoparticles: Preparation and electrochemical characterization[J]. Electrochimica Acta 2008, 53: 3924–3931
    [139] Zhou M, Guo L P, Lin F Y, Liu H X. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode [J]. Anal. Chim. Acta, 2007, 587 (1): 124-131.
    [140] Vinodgnpa K,Hotchandan S,Kamat P V. Electrochemically Assisted Photocatalysis. TiO2 Particulate Films Electrodes for Photocatalytic Degradation of 4-Chlorophenol[J]. J. Phys. Chem. 1993, 97(35): 9040?9044.
    [141] Socha A, Sochocka E, Podsiadly R, et al. Electrochemical and photoelectrochemical degradation of direct dyes[J]. Color. Technol. 2006, 122(4): 207-212.
    [142]姚清照,刘正宝.光电催化降解染料废水[J].工业水处理,1999, 19(6): 15?16.
    [143] Waldner G,Pourmodjib M,Bauer R,et al. Photoelectrocatalytic degradation of 4–clorophenol and oxalic acid on titanium dioxide electrodes[J]. Chemosphere, 2003, 50(8): 989-98.
    [144] Taghizadeh A,Lawrence M F,Miller L. Photoelectrochemical behavior of selected organic compounds on TiO2 electrodes. Overall relevance to heterogeneous photocatalysis[J]. J. Photoch. Photobio. A, 2000, 130(2-3): 145-156.
    [145] Xu C K,Shaban Y A,Ingler W B. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient Water splitting[J]. Solar Energy Materials Solar Cells, 2007, 91(10): 938-943.
    [146] Selcuk H,Anderson M A. Effect of pH, charge separation and oxygen concentration in photoelectrocatalytic systems: active chlorine production and chlorate formation[J]. Desalination 2005, 176(1-3): 219-227.
    [147] Avellaneda C O,Bulh?es L O S,Pawlicka A. The CeO2–TiO2–ZrO2 sol–gel film: a counter-electrode for electrochromic devices[J].Thin Solid Films, 2005, 471(1-2): 100–104.
    [148]符小荣,张校刚. TiO2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学, 1997, 14(4): 77?79.
    [149] Misono M, Okuhara T, Ichiki T, et al, Pesudoliquid behavior of heteropoly compound catalysts, unusual pressure dependences of the rate and selectivity for ethanol dehydration[J]. J Am Chem Soc, 1987, 109(18): 5535?5536.
    [150] Hiskia A, Mylonas A, Papaconstantinou E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles[J]. Chem. Soc. Rev., 2001, 30(1): 62–69.
    [151] Park H, Choi W Y. Photoelectrochemical Investigation on Electron Transfer Mediating Behaviors of Polyoxometalate in UV-Illuminated Suspensions of TiO2 and Pt/TiO2[J]. J. Phys. Chem. B, 2003, 107(16): 3885 -3890.
    [152] Gu C K, Shannon C. Investigation of the photocatalytic activity of TiO2–polyoxometalate systems for the oxidation of methanol[J]. J Mol. Catal. A: Chemical 2007, 262(1-2): 185–189.
    [153] Xie Y B, Zhou L M, Huang H T. Enhanced photoelectrocatalytic performance of polyoxometalate-titania nanocomposite photoanode [J]. Applied Catalysis B: Environmental, 2007, 76(1-2): 15–23.
    [154] Parayil S K, Lee Y M, Yoon M J. Photoelectrochemical solar cell properties of heteropolytungstic acid-incorporated TiO2 nanodisc thin films[J]. Electrochem. Commun, 2009, 11(6): 1211–1216.
    [155] Sun Z X, Xu L, Guo W H, et al. Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates[J]. J. Phys. Chem. C, 2010, 114(11):5211-5216.
    [1] Golabi S M, Zare H R. Eleetrocatalytic oxidation of Hydrazine at a Chlorogenie Acid (CGA) Modified Glassy Carbon Electrode [J].J Electroanal. Chem., 1999, 465:168-176.
    [2] Ensafi A A,Mirmomtaz E. Electrocatalytic Oxidation of Hydrazine with Pyrogallol Red as a Mediator on Glassy Carbon Electrode [J]. J Electroanal. Chem., 2005,583:176-183.
    [3] Garrod S, Bollard M E, Nicholls A W, Conner S C, Connelly J, Nicholson J K, et al. Integrated Metabonomic Analysis of the Multiorgan Effects of Hydrazine Toxicity in the Rat[J]. Chem. Res. Toxicol. 2005, 18 (2): 115-122.
    [4] Safavi A, Ensafi A A. Kinetic spectrophotometric determination of hydrazine [J]. Anal. Chim. Acta 1995, 300 (1-3) 307-311.
    [5] Ensafi A A, Rezaei B. Flow injection determination of hydrazine with ?uorimetric detection [J]. Talanta 1998, 47 (3): 645-649.
    [6] Safavi A, Baezzat M R. Flow injection chemiluminescence determination of hydrazine [J]. Anal. Chim. Acta, 1998, 358 (2): 121-125.
    [7] Mo J W, Ogorevc B, Zhang X, Pihlar B. Cobalt and Copper Hexacyanoferrate Modified Carbon Fiber Microelectrode as an All-Solid Potentiometric Microsensor for Hydrazine[J]. Electroanalysis, 2000, 12 (1): 48-54.
    [8] Jayasri D, Narayanan S S. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode [J]. J. Hazard. Mater. 2007, 144 (1-2): 348-354.
    [9] Zare H R, Nasirizadeh N. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine [J]. Electrochim. Acta, 2007, 52 (12): 4153-4160.
    [10] Revenga-Parra M, Lorenzo E, Pariente F. Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: application to the construction of hydrazine sensors[J]. Sens. Actuators. B 2005, 107 (2): 678-687.
    [11] Zheng L, Song J F. Ni(II)–baicalein complex modified multi-wall carbon nanotube paste electrode toward electrocatalytic oxidation of hydrazine[J]. Talanta 2009, 79 (2): 319-326.
    [12] Zheng L, Song J F. Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine [J].Sens. Actuators. B 2009, 135 (2): 650-655.
    [13] Maleki N, Safavi A, Farjami E, Tajabadi F. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine[J]. Anal. Chim. Acta 2008, 611 (2): 151-155.
    [14] Keita B, Mbomekalle I M, Nadjo L, Oliveira P, Ranjbari A, Contant R. Vanadium-substituted Dawson-type polyoxometalates as versatile electrocatalysts [J]. C. R. Chimie 2005, 8 (6-7): 1057-1066.
    [15] Abbessi M, Contant R, Thouvenot R, Hervi G. Dawson type heteropolyanions. 1. Multinuclear(phosphorus-31, vanadium-51, tungsten-183) NMR structural investigations of octadeca(molybdotungstovanado)diphosphatesα-1,2,3-[P2MM'2W15O62]n- (M, M' = Mo, V, W): syntheses of new related compounds [J]. Inorg. Chem. 1991, 30(8): 1695-1702.
    [16] Pope M T. Heteropoly and Isopoly Oxometalates. Springer, New York, 1983.
    [17] Tarola A, Dini D, Salatelli E, Andreani F, Decker F. Electrochemical impedance spectroscopy of polyalkylterthiophenes [J]. Electrochim. Acta 1999, 44 (24): 4189-4193.
    [18] Huang M H, Bi L H, Shen Y, Liu B F, Dong S J. Nanocomposite multilayer film of preyssler-type polyoxometalates with fine tunable electrocatalytic activities[J]. J. Phys. Chem. B, 2004, 108 (28): 9780-9786.
    [19] Bi L H, McCormac T, Beloshapkin S, Dempsey E. Electrochemical Behavior and Multilayer Assembly Films with Fine Functional Activities of the Sandwich-Type Polyoxometallate [Sb2W20Fe2O70(H2O)6]8-[J]. Electroanalysis 2008, 20 (1): 38-46.
    [20] Cheng L, Pacey G E, Cox J A. Preparation and electrocatalytic applications of a multilayer nanocomposite consisting of phosphomolybdate and poly(amidoamine) [J]. Electrochim. Acta. 2001, 46 (26-27): 4223-4228.
    [21] Skoog A D , Holler F J, Nieman T A. Principles of Instrumental Analysis, 5th ed., Harcourt Brace, Philadelphia, 1998.
    [1] Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354(7): 56-58.
    [2] Ajayan P M. Nanotubes from Carbon [J]. Chem. Rev. 1999, 99 (7): 1787-1800
    [3] Sinnott S B. Chemical functionalization of carbon nanotubes[J]. J. Nanosci. Nanotech., 2002, 2(2):113-123.
    [4] Yan XX, Pang DW, Lu ZX, Lu JQ, Tong H. Electrochemical behavior of L-dopa at single-wall carbon nanotube-modified glassy carbon electrodes [J]. J. Electroanal. Chem. 2004, 569 (1): 47-52.
    [5] Salimi A, Hallage R. Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: Applications to amperometric detection of thiocytosine, l-cysteine and glutathione[J]. Talanta 2005, 66(4): 967-975
    [6] Salimi A, Banks C E, Compton R G. Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine [J]. Analyst, 2004, 129(3): 225-228
    [7] Girishkumar G, Vinodgopal K, Kamat PV. Carbon nanostructures in portable fuel cells: Single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction[J]. J Phys Chem B 2004, 108(52): 19960-19966
    [8] Liu J, Tian S, Knoll W. Properties of polyaniline/carbon nanotube multilayer films in neutral solution and their application for stable low-potential detection of reducedβ-nicotinamide adenine dinucleotide[J]. Langmuir 2005, 21(12): 5596-5599.
    [9] Gong K, Dong Y, Xiong S, Chen Y, Mao L. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes [J]. Biosens. Bioelectron. 2004, 20(2): 253-259
    [10] Deo RP, Wang J. Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes [J]. Electrochem. Commun. 2004, 6(3): 284-287
    [11] Musameh M, Wang J, Merkoci A, Lin Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes[J]. Electrochem. Commun. 2002, 4(10): 743-746
    [12] Qian L, Yang X R. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor [J]. Talanta, 2006, 68 (3): 721–727.
    [13] Keita B, Nadjo L. Polyoxometalate-based homogeneous catalysis of electrode reactions: Recent achievements[J]. J. Mol. Catal. A: Chem., 2007, 262 (1-2): 190-215.
    [14] Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts [J]. Chem. Rev., 1998, 98 (1): 219-237.
    [15] Keita B, Bouaziz D, Nadjo L, Deronzier A. Surface functionalization with oxometallates entrapped inpolymeric matrices: Part 2. Substituted pyrrole-based ion-exchange polymers[J]. J. Electroanal. Chem. 1990, 279 (1-2): 187-203.
    [16] Reybier K, Malugani J P, Fantini S, Herlem M, Fahys B. Electrodeposition of Keggin-type heteropolyanions on different electrode surfaces from nonaqueous media [J]. J. Electrochem. Soc., 2002, 149 (3): E96-E101.
    [17] Dong S, Wang B. Electrochemical study of isopoly- and heteropolyoxometallates film modified microelectrodes-I. Pretreatment and modification of the Mo8O264- modified carbon fiber microelectrode [J]. Electrochim. Acta, 1992, 37 (1): 11-16.
    [18] Ca D V, Sun L, Cox J A. Optimization of the dispersion of gold and platinum nanoparticles on indium tin oxide for the electrocatalytic oxidation of cysteine and arsenite[J]. Electrochim. Acta, 2006, 51 (11): 2188-2194.
    [19] Liu M, Dong S. Electrochemical behavior of molibdosilicic heteropoly complex with dysprosium and its doped polypyrrole film modified electrode [J]. Electrochim. Acta, 1995, 40 (2): 197-200.
    [20] Bidan G, Genies E M, Lapkowski M J. Polypyrrole and poly(N-methylpyrrole) films doped with Keggin-type heteropolyanions: preparation and properties[J]. J. Electroanal. Chem., 1998, 251 (2): 297-306.
    [21] McCormac T, Farrell D, Drennan D, Bidan G. Immobilization of a Series of Dawson Type Heteropolyanions [J]. Electroanalysis, 2001, 13 (10): 836-842.
    [22] Wang S, Du D. Preparation and electrochemical properties of Keggin-type phosphomolybdic anions in electrostaticly linked L-cysteine self-assembled monolayers[J]. Sens. Actuators B, 2003, 94 (3): 282-289.
    [23] Xu L, Zhang J S. Stable multilayer films based on photoinduced interaction between polyoxometalates and diazo resin[J]. Materials letters, 2004, 58(27-28): 3441-3446.
    [24] Wang P, Wang X P, Bi L H. Sol-gel derivedα2-P2W17VO62/graphite/ organoceramic composite as the electrode material for a renewable amperometric hydrogen peroxide sensor [J]. J Electroanal Chem, 2000, 495(1): 51-56.
    [25] Qian L, Yang X. Preparation and characterization of network composite film containing polyoxometallates and carbon nanotubes [J]. Electrochem. Commun., 2005, 7 (5): 547-551.
    [26] Pan D W, Chen J H, Tao W Y, Nie L H, Yao S Z. Polyoxometalate-modified carbon nanotubes: New catalyst support for methanol electro-oxidation [J]. Langmuir, 2006, 22 (13): 5872-5876.
    [27] Qu J Y, Zou X Q, Liu B F, Dong S J. Assembly of polyoxometalates on carbon nanotubes paste electrode and its catalytic behaviors [J]. Anal. Chim. Acta, 2007, 599 (1): 51-57.
    [28] Li Z F, Chen J H, Pan D W, Tao W Y, Nie L H, Yao S Z. A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film [J]. Electrochim. Acta, 2006, 51 (20): 4255-4261.
    [29] Rocchiccioli-deltcheff C, Fournier M, Franck R, Thouvenot R Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI)compounds related to the Keggin structure [J]. Inorg. Chem. 1983, 22(2): 207-216.
    [30] Kim B, Sigmund W M. Functionalized multiwall carbon nanotube/gold nanoparticle composites [J]. Langmuir, 2004, 20 (19): 8239-8242.
    [31] Cheng L, Niu L, Gong J, Dong S J. Electrochemical Growth and Characterization of Polyoxometalate-Containing Monolayers and Multilayers on Alkanethiol Monolayers Self-Assembled on Gold Electrodes [J]. Chem Mater. 1999, 11(6): 1465-1475.
    [32] Wu J G. Technology and Applications of Fourier Transform Infrared Spectroscopy[M]. Scientific and Technical Documents Publishing House, 1994.
    [33] Zhang M N, Su L, Mao L Q. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid [J]. Carbon 2006, 44(2): 276-283.
    [34] Dong S J, Cheng L, Zhang X M. Electrochemical studies of a lanthanide heteropoly tungstate/molybdate complex in polypyrrole film electrode and its electrocatalytic reduction of bromate [J]. Electrochim. Acta 1997, 43(5-6): 563-568.
    [35] Brett C M A, Brett A M O. Electrochemistry Principles, Methods, and Applications[M]. Oxford University Press, pp. 25, 1993.
    [36] Wang J. Analytical Electrochemistry[M]. VCH, New York ,1994.
    [37] Miller P L, Vasudevan D, Gschwend P M, Roberts A L. Transformation of hexachloroethane in a sulfidic natural water [J]. Environ. Sci. Technol., 1998, 32 (9): 1269-1275.
    [1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (7): 56-58.
    [2] Ajayan P M. Nanotubes from Carbon [J]Chem. Rev., 1999, 99 (7): 1787-1800
    [3] Sinnott S B. Chemical functionalization of carbon nanotubes[J]. J. Nanosci. Nanotech.,2002, 2(2): 113-123.
    [4] Yan X X, Pang D W, Lu Z X, Lu J Q, Tong H. Electrochemical behavior of L-dopa at single-wall carbon nanotube-modified glassy carbon electrodes [J]. J. Electroanal. Chem., 2004, 569 (1): 47-52.
    [5] Salimi A, Hallage R. Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: Applications to amperometric detection of thiocytosine, l-cysteine and glutathione[J]. Talanta, 2005, 66(4): 967-975
    [6] Zhang M, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system [J]. J. Am. Chem. Soc., 2005, 127 (7): 2058-2059.
    [7] Girishkumar G, Vinodgopal K, Kamat P V. Carbon nanostructures in portable fuel cells: Single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction[J]. J. Phys. Chem. B., 2004,108 (52): 19960-19966.
    [8] Liu J, Tian S, Knoll W. Properties of polyaniline/carbon nanotube multilayer films in neutral solution and their application for stable low-potential detection of reducedβ-nicotinamide adenine dinucleotide[J]. Langmuir, 2005, 21(12): 5596-5599.
    [9] Tkac J, Whittaker J W, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor[J]. Biosens. Bioelectron., 2007, 22 (8): 1820-1824.
    [10] Tkac J, Ruzgas T. Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection[J]. Electrochem. Commun., 2006, 8 (5): 899-903.
    [11] Zhou Q M, Xie Q J, Fu Y C, Su Z H, Jia X E, Yao S Z. Electrodeposition of Carbon Nanotubes?Chitosan?Glucose Oxidase Biosensing Composite Films Triggered by Reduction of p-Benzoquinone or H2O2[J]. J. Phys. Chem. B., 2007, 111 (38): 11276-11284.
    [12] Bollo S, Ferreyra N F, Rivas G A. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan[J]. Electroanalysis, 2007, 19 (7-8): 833-840.
    [13] Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite[J]. Biosens. Bioelectron., 2006, 21 (12): 2195-2201.
    [14] Zhang M G, Smith A, Gorshi W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes [J]. Anal. Chem., 2004, 76 (17): 5045-5050.
    [15] Luo X L, Xu J J, Wang J L, Chen H Y. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application [J]. Chem. Commun., 2005, 16: 2169-2171.
    [16] Chen S H, Yuan R, Chai Y Q, Yin B, Xu Y. Multilayer assembly of hemoglobin and colloidal gold nanoparticles on multiwall carbon nanotubes/chitosan composite for detecting hydrogen peroxide [J]. Electroanalysis, 2008, 20 (19): 2141-2147.
    [17] Jie G, Zhang J, Wang D, Cheng C, Chen H Y, Zhu J J. Electrochemiluminescence immunosensor based on CdSe nanocomposites [J]. Anal. Chem. 2008, 80 (11): 4033-4039.
    [18] Hill C L. The effects of description, association, or combined description/association in exploring dream images [J]. Chem. Rev., 1998, 98 (1): 1-13.
    [19] Liu T, Diemann E, Li H, Dress A, Müller A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles [J]. Nature, 2003, 426 (6962): 59-62.
    [20] Gao G G, Xu L, Wang W J, An W J, Qiu Y F, Wang Z Q, Wang E. Electrochromic multilayer films of tunable color by combination of copper or iron complex and monolacunary dawson-type polyoxometalate[J]. J. Phys. Chem. B., 2005, 109 (18): 8948-8953.
    [21] Gao G G, Li F Y, Xu L, Liu X Z, Yang Y Y. CO2 coordination by inorganic polyoxoanion in water [J]. J. Am. Chem. Soc., 2008, 130 (33): 10838-10839.
    [22] Keita B, Nadjo L. Polyoxometalate-based homogeneous catalysis of electrode reactions: Recent achievements[J]. J. Mol. Catal. A: Chem., 2007, 262 (1-2): 190-215.
    [23] Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts [J]. Chem. Rev., 1998, 98 (1): 219-237.
    [24] Keita B, Nadjo L, Contant R. New electroactive metal oxides electrodeposited from selected Keggin and Dawson-type heteropolyanions [J]. J. Electroanal. Chem., 1998, 443 (2): 168-174.
    [25] Reybier K, Malugani J P, Fantini S, Herlem M, Fahys B. Electrodeposition of Keggin-type heteropolyanions on different electrode surfaces from nonaqueous media [J]. J. Electrochem. Soc., 2002, 149 (3): E96-E101.
    [26] Dong S, Wang B. Electrochemical study of isopoly- and heteropolyoxometallates film modified microelectrodes-I. Pretreatment and modification of the Mo8O264- modified carbon fiber microelectrode [J]. Electrochim. Acta, 1992, 37 (1): 11-16.
    [27] Ca D V, Sun L, Cox J A. Optimization of the dispersion of gold and platinum nanoparticles on indium tin oxide for the electrocatalytic oxidation of cysteine and arsenite[J]. Electrochim. Acta, 2006, 51 (11): 2188-2194.
    [28] Liu M, Dong S. Electrochemical behavior of molibdosilicic heteropoly complex with dysprosium and its doped polypyrrole film modified electrode [J]. Electrochim. Acta, 1995, 40 (2): 197-200.
    [29] Bidan G, Genies E M, Lapkowski M J. Polypyrrole and poly(N-methylpyrrole) films doped with Keggin-type heteropolyanions: preparation and properties[J]. J. Electroanal. Chem., 1998, 251 (2): 297-306.
    [30] McCormac T, Farrell D, Drennan D, Bidan G. Immobilization of a Series of Dawson Type Heteropolyanions [J]. Electroanalysis, 2001, 13 (10): 836-842.
    [31] Wang S, Du D. Preparation and electrochemical properties of Keggin-type phosphomolybdic anions in electrostaticly linked L-cysteine self-assembled monolayers[J]. Sens. Actuators B, 2003, 94 (3): 282-289.
    [32] Wang P, Wang X, Bi L, Zhu G. Renewable-surface amperometric nitrite sensor based on sol-gel-derived silicomolybdate-methylsilicate-graphite composite material[J]. Analyst, 2000, 125 (7): 1291-1294.
    [33] Wang X L, Han Z B, Wang E B, Zhang H, Hu C W. A Bifunctional Electrocatalyst Containing Tris(2,2′-bipyridine) Ruthenium(II) and 12-Molybdophosphate Bulk-Modified Carbon Paste Electrode [J]. Electroanalysis, 2003, 15 (18): 1460-1464.
    [34] Wildgoose G G, Banks C E, Leventis H C, Compton R G. Chemically modified carbon nanotubes for use in electroanalysis [J]. Microchim Acta, 2006, 152 (3-4): 187-214.
    [35] Qian L, Yang X. Preparation and characterization of network composite film containing polyoxometallates and carbon nanotubes [J]. Electrochem. Commun., 2005, 7 (5): 547-551.
    [36] Pan D W, Chen J H, Tao W Y, Nie L H, Yao S Z. Polyoxometalate-modified carbon nanotubes: New catalyst support for methanol electro-oxidation [J]. Langmuir, 2006, 22 (13): 5872-5876.
    [37] Qu J Y, Zou X Q, Liu B F, Dong S J. Assembly of polyoxometalates on carbon nanotubes paste electrode and its catalytic behaviors [J]. Anal. Chim. Acta, 2007, 599 (1): 51-57.
    [38] Li Z F, Chen J H, Pan D W, Tao W Y, Nie L H, Yao S Z. A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film [J]. Electrochim. Acta, 2006, 51 (20): 4255-4261.
    [39] Guo W H, Xu L, Xu B B, Yang Y Y, Sun Z X, Liu S P. A modified composite film electrode of polyoxometalate/carbon nanotubes and its electrocatalytic reduction[J]. J Appl Electrochem, 2009, 39(5): 647-652.
    [40] Salimi A, Korani A, Hallaj R, Khoshnavazi R. Modification of glassy carbon electrode with single-walled carbon nanotubes andα-silicomolybdate: Application to Sb(III) detection [J]. Electroanalysis, 2008, 20 (23): 2509-2517.
    [41] Wu H. CONTRIBUTION TO THE CHEMISTRY OF PHOSPHOMOLYBDIC ACIDS, PHOSPHOTUNGSTIC ACIDS, AND ALLIED SUBSTANCES [J]. J. Biol. Chem. 1920, 43 (1): 189-220.
    [42] Kim B, Sigmund W M. Functionalized multiwall carbon nanotube/gold nanoparticle composites [J].Langmuir, 2004, 20 (19): 8239-8242.
    [43] Wan Y, Wu H, Yu A, Wen D. Biodegradable polylactide/chitosan blend membranes[J]. Biomacromolecules, 2006, 7 (4): 1362-1372.
    [44] Luo H X, Shi Z J, Li N Q, Gu Z N, Zhuang Q K. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J]. Anal. Chem., 2001, 73 (5): 915-920.
    [45] Qian L, Yang X R. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor[J]. Talanta, 2006, 68 (3): 721–727.
    [46] Xu Z A, Gao N, Dong S J. Preparation and layer-by-layer self-assembly of positively charged multiwall carbon nanotubes[J]. Talanta 2006, 68 (3): 753-758.
    [47] Huang M H, Bi L H, Shen Y, Liu B F, Dong S J. Nanocomposite multilayer film of preyssler-type polyoxometalates with fine tunable electrocatalytic activities[J]. J. Phys. Chem. B, 2004, 108 (28): 9780-9786.
    [48] Murry RW. Chemically modified electrodes. In Electroanalytical Chemistry; A.J. Bard, Ed.; Marcel Dekker: New York, 1986; Vol.13, pp 191-386.
    [49] Brett C M A, Brett A M O. Electrochemistry Principles, Methods, and Applications, Oxford University Press, 1993, pp. 25
    [50] Wang J. Analytical Electrochemistry, VCH, New York, 1994.
    [51] Cheng L, Dong S. Comparative studies on electrochemical behavior and electrocatalytic properties of heteropolyanion-containing multilayer films prepared by two methods [J]. J. Electroanal. Chem., 2000, 481 (2): 168-176.
    [52] Miller P L, Vasudevan D, Gschwend P M, Roberts A L. Transformation of hexachloroethane in a sulfidic natural water [J]. Environ. Sci. Technol., 1998, 32 (9): 1269-1275.
    [53] Skoog D A, Holler F J, Nieman T A. Principles of Instrumental Analysis, fifth ed., Harcourt Brace, Philadelphia, 1998.
    [54] Zhou M, Guo L P, Lin F Y, Liu H X. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode [J]. Anal. Chim. Acta, 2007, 587 (1): 124-131.
    [55] Li Y, Bu W, Wu L, Sun C. A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol-gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method [J]. Sens. Actuators B, 2005, 107 (2): 921-928.
    [1] Argazzi R, Bignozzi C A, Heimer T A, et al. Enhanced Spectral Sensitivity from Ruthenium(II) Polypyridyl Based Photovoltaic Devices [J]. Inorg. Chem. 1994, 33(25): 5741–5749.
    [2] Ferrere S, Gregg B A. Photosensitization of TiO2 by [FeII(2,2'-bipyridine-4,4'-dicarboxylic acid)2(CN)2]: Band Selective Electron Injection from Ultra-Short-Lived Excited States [J].J. Am. Chem. Soc. 1998, 120(4): 843–844.
    [3] Nakade S, Kanzaki T, Kubo W, et al. Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple [J]. J. Phys. Chem. B, 2005, 109(8): 3480–3487.
    [4] Hoffmann M R, Martin ST, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis [J]. Chem. Rev. 1995, 95(1): 69–96.
    [5] Zhao H J, Jiang, D L, Zhang S Q, Catterall K, John R. Development of a Direct Photoelectrochemical Method for Determination of Chemical Oxygen Demand [J]. Anal. Chem., 2004, 76(1): 155–160.
    [6] Brown G N, Birks J W, Koval C A. Development and characterization of a titanium dioxide-based semiconductor photoelectrochemical detector [J]. Anal. Chem., 1992, 64(4): 427–434.
    [7] Song X M, Wu J M, Tang M Z, Qi B, Yan M. Enhanced Photoelectrochemical Response of a Composite Titania Thin Film with Single-Crystalline Rutile Nanorods Embedded in Anatase Aggregates [J]. J. Phys.Chem. C, 2008, 112(49): 19484-19492.
    [8] Zhang H, Wang G, Chen D, Lv X J, Li J H. Tuning Photoelectrochemical Performances of Ag?TiO2 Nanocomposites via Reduction/Oxidation of Ag [J].Chem. Mater. 2008, 20(20): 6543-6549.
    [9] Chen H, Chen S, Quan X, Yu H T, Zhao H M, Zhang Y B. Fabrication of TiO2?Pt Coaxial Nanotube Array Schottky Structures for Enhanced Photocatalytic Degradation of Phenol in Aqueous Solution [J]. J. Phys. Chem. C, 2008, 112(25): 9285-9290.
    [10] Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J]. Adv. Funct. Mater. 2009, 19(5): 805-811.
    [11] Cozzoli P D, Curri M L, Agostiano A. Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems [J]. Chem. Commun. 2005, (25): 3186-3188.
    [12] Liu G Q, Jin Z G, Liu X X, et al. Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant[J]. J Sol-Gel Sci. Technol., 2007, 41(1):49-55.
    [13] Zhu A M, Nie LH. Wu Q H, Zhang X L, Yang X F, Xu Y, Shi C. Crystalline, Uniform-Sized TiO2 Nanosphere Films by a Novel Plasma CVD Process at Atmospheric Pressure and Room Temperature [J]. Chem. Vap. Deposition 2007, 13(4): 141-144.
    [14] GomeZ M, Magnusson E, OIsson E, et al. Nanocrystalline Ti-oxide-based solar cells made by sputterdeposition and dye sensitization: Efficiency versus film thickness[J]. Sol. Energy Mater. Sol.Cells, 2000, 62(3): 259-263.
    [15] Kim S H, Park O.-H, Nederberg F, et al. Application of Block-Copolymer Supramolecular Assembly for the Fabrication of Complex TiO2 Nanostructures [J].Small 2008, 4(12): 2162-2165.
    [16] Yanagida S, Nakajima A, Sasaki T, Kameshima Y, Okada K. Processing and Photocatalytic Properties of Transparent 12 Tungsto(VI) Phosphoric Acid?TiO2 Hybrid Films[J]. Chem Mater 2008, 20 (11): 3757-3764
    [17] Su Y, Yu J, Lin J. Vapor-thermal preparation of highly crystallized TiO2 powder and its photocatalytic activity[J]. J Solid State Chem, 2007, 180(7): 2080-2087.
    [18] Wang H, Quan X, Yu H, Chen S. Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability[J]. Carbon 2008, 46(8): 1126-1132.
    [19] López-Luke T, Wolcott A, Xu L P, et al. Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO2 Films for Solar Energy Conversion Applications[J]. J. Phys. Chem. C 2008, 112(4): 1282-1292.
    [20] Liu H, Li X Z, Leng Y J, et.al. An Alternative Approach to Ascertain the Rate-Determining Steps of TiO2 Photoelectrocatalytic Reaction by Electrochemical Impedance Spectroscopy[J]. J. Phys. Chem. B, 2003, 107 (34): 8988–8996
    [21] Naskar S, Pillay S A, Chanda M. Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet [J]. J. Photochem. Photobiol. A: Chem. 1998. 113(3): 257–264.
    [22] Gan W Y, Lee M W, Amal R, Zhao H, Chiang K. Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol–gel method with tri-block copolymer as structure directing agent [J]. J Appl Electrochem 2008, 38(5): 703–712
    [23] Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack[J]. J. Catal. 1990, 122 (1): 178-192.
    [24] Georgieva J, Armyanov S, Valova E, Poulios I, Sotiropoulos S. Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates [J]. Electrochim. Acta 2006, 51(10): 2076-2087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700