基于小波多尺度的无网格RF微器件建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RF微器件的制造融合了微加工、集成电路SI工艺等各种技术,其在工作中又受到多种物理因素(如初始应力、机械接触、温度、热弹性、电磁效应、高度)的耦合影响,因此其计算模型的建立和求解面临很大挑战。为了准确预测耦合效应下RF微器件的动作特性,近年来研究人员采用多种方法研究不同物理场之间的耦合机理,探寻快速分析与模拟RF微器件动作的方法,相继建立了能较全面描述多物理场耦合效应下RF微器件动作特性的有限元模型,但这种模型涉及大量自由度。
     本文以两种典型的RF微器件——静电驱动电容式开关和扭转微镜为研究对象,对其在多物理场耦合效应下的求解模型,算法理论和求解过程等方面进行了研究。本文给出了新的以较少自由度全面描述RF微器件动作特性的,基于无网格法的数值模拟计算格式和算法设计,实现了对RF微器件机械和电学性能的数值模拟,并与实际试验模型结果进行比较,优化了器件设计。同时,从另一个角度对RF微器件的仿真方法进行了补充、完善和提高。
     本文针对RF微器件多物理场耦合效应下的求解模型这一问题进行了一系列研究,主要的研究内容和创新成果如下:
     1、针对静电驱动电容式开关多尺度结构,提出了以小波尺度函数为形函数的一维无网格伽辽金法(Wavelet-EFG)求解模型;以无网格法的点适应性代替网格自适应性离散模型的控制方程,进行插值运算;解决了在一维结构分析中施加边界条件问题。实验证明该方法离散控制方程的过程直接,实现离散方程的算法简洁,提高了获取开关Pull-in电压的准确性。
     2、在考虑电容边缘场影响的情况下,针对光通信转换器件-扭转微镜多尺度结构,提出了以小波多尺度函数为形函数的无网格再生质点法(Wavelet-RKPM)求解模型;采用机械场-电场分步耦合的方法进行插值运算,求解控制方程;通过多尺度RKPM自适应算法来得到更精确的局部解。实验证明该方法简洁,易于算法实现。
     3、进行了微结构层面上基于小波多尺度函数的耦合域多尺度分析研究。根据需要改变分析尺度,实现局部化分析。该方法可以对开关和扭转微镜的临界电压、临界转角场函数梯度变化大的区域采用小的分析尺度,获得这两个参数更多的信息。该算法数值稳定性好,运算速度快,求解精度高。
It is a great challenge to build RF Micro Device's(RF MD) model because they are manufactured by micro-process, SI process etc. and be subject to multiple coupled physical phenomena at process level, such as initial stress, temperature, thermoelastic and electromagnetic effects. In order to accurately predict the characteristics of RF MD under the coupled effect, researchers study mechanism in the physical fields based on a variety of methods and have established more comprehensive multi-physics coupled finite element models which involve a large number of degrees of freedom(DF).
     The multi-physics coupled solution model, algorithm theory and the solution process on two typical RF MD-capacitive switch&torsional mirror in this paper. Propose the new numerical scheme and algorithm design method with less DF based on meshless.The mechanical and electrical properties of RF MD are studied in the numerical simulation that used to guide the design with comparison the theoretical model. Meanwhile RF MD simulation methods are supplement and improved.
     Coupled model of RF MD under the effect of multi-physics are studied and the main research content and innovations are as follows:
     1, Propose solving model of electrostatic droved capacitive switch based on Wavelet-EFG; Model equations are discreted with the non-adaptive grid instead of net grid adaptive. So do interpolation operations; One method is proposed to impose boundary conditions in one-dimensional structural analysis. Experiments confirmed that equations are discreted directly and discrete equations are achieved simply.
     2Considering the edge field, propose solving model of torsional mirror based on Wavelet-RKPM; Interpolate, solve equations at Mechanical field-electric field coupling step; More precise local solution is achieved through multi-scale RKPM adaptive algorithm. Experiments confirmed that the method is simple and easy.
     3, Coupled multi-scale analysis based on wavelet functions in the micro-structure level. The scales of analysis can be changed to achieve partial analysis to obtain more information of Pull-in and turn angle in capacitive switch&torsional mirror models.
引文
[1]Rebeiz, G.M., RF MEMS:Theory, Design, and Technolog. February 2003.
    [2]Hosseinzadeh, S., A.R. Zehtabchi, and M.H. Korayem. Determination the Effects of Structural Parameters on Pull Down Voltage of RF MEMS Switches, in Microwave Conference,2007. APMC 2007. Asia-Pacific.2007.
    [3]Larson, L.E., R.H. Hackett, M.A. Melendes, et al. Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits.1991: IEEE.
    [4]Lin, C.-W., Y.-J. Chen, C.-W. Lee, et al. High tuning range and low pull-in voltage MEMS tunable capacitors filled with liquid crystal materials, in Micro Electro Mechanical Systems (MEMS),2010 IEEE 23rd International Conference on.2010.
    [5]Brown, E.R., RF-MEMS switches for reconfigurable integrated circuits. Microwave Theory and Techniques, IEEE Transactions on,1998.46(11):p.1868-1880.
    [6]Rezazadeh, G., F. Khatami, and A. Tahmasebi, Investigation of the torsion and bending effects on static stability of electrostatic torsional micromirrors. Microsystem Technologies,2007.13(7):p.715-722.
    [7]SUMANT,#160, P. S., et al., A methodology for fast finite element modeling of electrostatically actuated MEMS. Vol.77.2009, Chichester, ROYAUME-UNI:Wiley.20.
    [8]Chih-Hsiang, K., I.L. Chiung, and H. Tsun-Che. RF characteristics of dual-actuation CMOS-MEMS RF switches, in Electronic Components and Technology Conference,2009. ECTC 2009.59th.2009.
    [9]Hanington, G, P.F. Chen, P.M. Asbeck.et al.. High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications. Microwave Theory and Techniques, IEEE Transactions on,1999.47(8):p.1471-1476.
    [10]Massad, J.E., H. Sumali, D.S. Epp, et al. Modeling, simulation, and testing of the mechanical dynamics of an RF MEMS switch, in MEMS, NANO and Smart Systems, 2005. Proceedings.2005 International Conference on.2005.
    [11]Goldsmith, C.L., Z. Yao, S. Eshelman, et al., Performance of low-loss RF MEMS capacitive switches. Microwave and Guided Wave Letters, IEEE,1998.8(8):p.269-271.
    [12]Huang, J.M., A.Q. Liu, C. Lu, et al., Mechanical characterization of micromachined capacitive switches:design consideration and experimental verification. Sensors and Actuators A:Physical,2003.108(1-3):p.36-48.
    [13]Marchetti, E., E. Volpi, F. Battini, et al. Modeling of an electrostatic torsional micromirror for laser projection system, in Design, Test, Integration & Packaging of MEMS/MOEMS,2009. MEMS/MOEMS'09. Symposium on.2009.
    [14]Petersen, K.E., Silicon torsional scanning mirror. IBM Journal of Research and Development,1980.24(5):p.631-637.
    [15]You, J., M. Packirisamy, and I. Stiharu, Study of an eletrostatically actuated torsional micromirror with compliant planar springs. Microsystem Technologies,2008.14(1):p. 7-16.
    [16]Wang, Z., W. Noell, M. Zickar, et al., A new scanning MEMS mirror. Microsystem Technologies,2007.13(11):p.1595-1599.
    [17]Ji, C.H., M. Choi, S.C. Kim, et al., An electrostatic scanning micromirror with diaphragm mirror plate and diamond-shaped reinforcement frame. Journal of Micromechanics and Microengineering,2006.16:p.1033.
    [18]Tsou, C, The design and simulation of a novel out-of-plane micro electrostatic actuator. Microsystem Technologies,2006.12(8):p.723-729.
    [19]Barillaro, G., A. Molfese, A. Nannini, et al., Analysis, simulation and relative performances of two kinds of serpentine springs. Journal of Micromechanics and Microengineering,2005.15:p.736.
    [20]Huang, J.M., A. Liu, Z. Deng, et al., A modeling and analysis of spring-shaped torsion micromirrors for low-voltage applications. International journal of mechanical sciences, 2006.48(6):p.650-661.
    [21]Aluru, N.R., A reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics,1999.23(4):p.324-338.
    [22]Peyrou, D., H. Achkar, F. Pennec, et al. A Macro Model Based On Finite Element Method To Investigate Temperature And Residual Stress Effects On RF MEMS Switch Actuation, in Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems,2007. EuroSime 2007. International Conference on. 2007.
    [23]Bobaru, F.,S. Rachakonda, E(FG)2:a new fixed-grid shape optimization method based on the element-free galerkin mesh-free analysis. Structural and Multidisciplinary Optimization,2006.32(3):p.215-228.
    [24]Liu, G.,Y. Gu, An introduction to meshfree methods and their programming.2005: Springer Berlin.
    [25]Kee, B., G. Liu, and C. Lu, A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis. Computational Mechanics,2007.40(5):p.837-853.
    [26]Lucy, L., A numerical approach to the testing of the fission hypothesis. The Astronomical Journal,1977.82:p.1013-1024.
    [27]Liu, G.,M. Liu, Smoothed particle hydrodynamics:a meshfree particle method.2003: World Scientific Pub Co Inc.
    [28]Liu, M.,G Liu, Smoothed Particle Hydrodynamics (SPH):an Overview and Recent Developments. Archives of Computational Methods in Engineering,2010.17(1):p.25-76.
    [29]Monaghan, J., An introduction to SPH. Computer Physics Communications,1988.48(1): p.89-96.
    [30]Monaghan, J., Smoothed particle hydrodynamics. Reports on Progress in Physics,2005. 68:p.1703.
    [31]Monaghan, J., Why particle methods work. SI AM Journal on Scientific and Statistical Computing,1982.3:p.422.
    [32]Swegle, J., D. Hicks, and S. Attaway, Smoothed particle hydrodynamics stability analysis. Journal of Computational Physics,1995.116(1):p.123-134.
    [33]Dyka, C, R. Ingel, and N.R.L.W. DC, Addressing Tension Instability in SPH Methods. 1994.
    [34]Chen, J., J. Beraun, and C. Jih, An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics,1999.23(4):p.279-287.
    [35]Johnson, G.,S. Beissel, Normalized smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering,1996.39(16):p.2725-2741.
    [36]Vignjevic, R., J. Campbell, and L. Libersky, A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Computer Methods in Applied Mechanics and Engineering,2000.184(1):p.67-85.
    [37]Monaghan, J.,R. Gingold, Shock simulation by the particle method SPH. Journal of Computational Physics,1983.52(2):p.374-389.
    [38]Gingold, R.,J. Monaghan, Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of Computational Physics,1982.46(3):p.429-453.
    [39]Monaghan, J., Particle methods for hydrodynamics. Computer Physics Reports,1985.3: p.71-124.
    [40]Swegle, J.,S. Attaway, On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Computational Mechanics,1995.17(3):p.151-168.
    [41]Randles, P.,L. Libersky, Smoothed particle hydrodynamics:some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering,1996. 139(1-4):p.375-408.
    [42]Libersky, L., A. Petschek, T. Carney, et al.. High Strain Lagrangian Hydrodynamics::A Three-Dimensional SPH Code for Dynamic Material Response. Journal of Computational Physics,1993.109(1):p.67-75.
    [43]Johnson, G.,R. Stryk, Conversion of 3D distorted elements into meshless particles during dynamic deformation. International Journal of Impact Engineering,2003.28(9):p. 947-966.
    [44]Johnson, G., R. Stryk, S. Beissel, et al., An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation. International Journal of Impact Engineering,2002.27(10):p.997-1013.
    [45]Johnson, G., S. Beissel, and R. Stryk, A generalized particle algorithm for high velocity impact computations. Computational Mechanics,2000.25(2):p.245-256.
    [46]Johnson, G., R. Stryk, and S. Beissel, SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering,1996.139(1-4):p.347-373.
    [47]Nayroles, B., G. Touzot, and P. Villon, Generalizing the finite element method:diffuse approximation and diffuse elements. Computational Mechanics,1992.10(5):p.307-318.
    [48]Lancaster, P.,K. Salkauskas, Surfaces generated by moving least squares methods. Mathematics of computation,1981.37(155):p.141-158.
    [49]Belytschko, T., Y. Lu, and L. Gu, Element-free Galerkin methods. International Journal for Numerical Methods in Engineering,1994.37(2):p.229-256.
    [50]Duarte, C.,J. Oden, An hp adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering,1996.139(1-4):p.237-262.
    [51]Duarte, C.,J. Oden, Hp clouds-an hp meshless method. Numerical Methods for Partial Differential Equations,1996.12(6):p.673-705.
    [52]Duarte, C.,J. Oden, Hp clouds-a meshless method to solve boundary-value problems. TICAM report,1995.95(05).
    [53]Liszka, T., C. Duarte, and W. Tworzydlo, hp-Meshless cloud method. Computer Methods in Applied Mechanics and Engineering,1996.139(1-4):p.263-288.
    [54]Onate, E., S. Idelsohn, O. Zienkiewicz, et al., A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering, 1996.139(1-4):p.315-346.
    [55]Onate, E., S. Idelsohn, O. Zienkiewicz, et al., A finite point method in computational mechanics. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering,1996.39(22):p.3839-3866.
    [56]Zhu, T., J. Zhang, and S. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics.1998.21(3):p.223-235.
    [57]Atluri, S., J. Cho, and H. Kim, Analysis of thin beams, using the meshless local Petrov'CGalerkin method, with generalized moving least squares interpolations. Computational Mechanics,1999.24(5):p.334-347.
    [58]Atluri, S.,T. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Computational Mechanics.2000.25(2):p.169-179.
    [59]Atluri, S.,T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics,1998.22(2):p.117-127.
    [60]Mukherjee, Y.,S. Mukherjee, On boundary conditions in the element-free Galerkin method. Computational Mechanics,1997.19(4):p.264-270.
    [61]Lu, Y., T. Belytschko, and L. Gu, A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering,1994.113(3-4):p. 397-414.
    [62]Ventura, G., An augmented Lagrangian approach to essential boundary conditions in meshless methods. International Journal for Numerical Methods in Engineering,2002. 53(4):p.825-842.
    [63]Zhang, X., K. Song, M. Lu, et al., Meshless methods based on collocation with radial basis functions. Computational Mechanics,2000.26(4):p.333-343.
    [64]Krongauz, Y.,T. Belytschko, Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering,1996.131(1-2):p.133-145.
    [65]Gosz, J.,W. Liu, Admissible approximations for essential boundary conditions in the reproducing kernel particle method. Computational Mechanics,1996.19(1):p.120-135.
    [66]G"'nther, F.,W. Liu, Implementation of boundary conditions for meshless methods. Computer Methods in Applied Mechanics and Engineering,1998.163(1-4):p.205-230.
    [67]Zhu, T.,S. Atluri, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics,1998.21(3):p.211-222.
    [68]Chen, J., C. Pan, C. Wu, et al., Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering,1996.139(1-4):p.195-227.
    [69]Zhang, X., X. Liu, M. Lu, et al., Imposition of essential boundary conditions by displacement constraint equations in meshless methods. Communications in numerical methods in engineering,2001.17(3):p.165-178.
    [70]Chen, J..H. Wang, New boundary condition treatments in meshfree computation of contact problems. Computer Methods in Applied Mechanics and Engineering,2000. 187(3-4):p.441-468.
    [71]Liu, G.,Y. Gu, A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. Journal of Sound and Vibration,2001.246(1):p.29-46.
    [72]Wang, J.,G. Liu, A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering,2002.54(11):p.1623-1648.
    [73]Liu, G., G. Zhang, K. Dai, et al., A linearly conforming point interpolation method (LC-P1M) for 2D solid mechanics problems. International Journal of Computational Methods,2005.2(4):p.645-666.
    [74]Liu, G.,Y. Gu, A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering,2001.50(4):p.937-951.
    [75]Jun, S., W. Liu, and T. Belytschko, Explicit reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering,1998. 41(1):p.137-166.
    [76]Liu, W.,S. Jun, Multiple-scale reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering,1998.41(7):p. 1339-1362.
    [77]Liu, X., G. Liu, K. Tai, et al., Radial point interpolation collocation method (RPICM) for partial differential equations. Computers & Mathematics with Applications,2005.50(8-9): p.1425-1442.
    [78]Y.T.Gu, G.R.L.,无网格法理论及程序设计.2007.
    [79]Glowinski, R., W. Lawton, M. Ravachol, et al., Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. Computing methods in applied sciences and engineering,1990:p.55-120.
    [80]陆文端,微分方程中的变分方法.1995:四川大学出版社.
    [81]Liu, W.K., S. Jun, and Y.F. Zhang, Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids,1995.20(8-9):p.1081-1106.
    [82]Liu, W.K., Y. Chen, C.T. Chang, et al., Advances in multiple scale kernel particle methods. Computational Mechanics,1996.18(2):p.73-111.
    [83]Liu, W., Y. Chen, S. Jun, et al., Overview and applications of the reproducing Kernel Particle methods. Archives of Computational Methods in Engineering,1996.3(1):p.3-80.
    [84]Liu, W., S. Jun, and Y. Zhang, Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids,1995.20(8-9):p.1081-1106.
    [85]Liu, W.K., W. Hao, Y. Chen, et al., Multiresolution reproducing kernel particle methods. Computational Mechanics,1997.20(4):p.295-309.
    [86]Uras, R., C. Chang, Y. Chen, et al., Multiresolution reproducing kernel particle methods in acoustics. Journal of Computational Acoustics,1997.5:p.71-94.
    [87]Chen, J.S., C. Pan, C.T. Wu, et al., Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering,1996.139(1-4):p.195-227.
    [88]Zhang, X., K. Sze, and S. Ma, An explicit material point finite element method for hyper-velocity impact. International Journal for Numerical Methods in Engineering,2006. 66(4):p.689-706.
    [89]Liu, W.K.,S. Jun, Multiple-scale reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering,1998. 41(7):p.1339-1362.
    [90]Liu, W.K., S. Jun, D.T. Sihling, et al., Multiresolution reproducing kernel particle method for computational fluid dynamics. International Journal for Numerical Methods in Fluids, 1997.24(12):p.1391-1415.
    [91]Gunther, F., W.K. Liu, D. Diachin, et al., Multi-scale meshfree parallel computations for viscous, compressible flows. Comput. Methods Appl. Mech. Eng,2000.190:p.279-303.
    [92]Hao, S., W.K. Liu, and C.T. Chang, Computer implementation of damage models by finite element and meshfree methods. Computer Methods in Applied Mechanics and Engineering,2000.187(3-4):p.401-440.
    [93]Liu, W.K., S. Hao, T. Belytschko, et al., Multiple scale meshfree methods for damage fracture and localization. Computational Materials Science,1999.16(1-4):p.197-205.
    [94]Zhang, L.T., W.K. Liu, S.F. Li, et al., Survey of multi-scale meshfree particle methods. Meshfree Methods for Partial Differential Equations,2002:p.44"C458.
    [95]刘更,刘天祥,and谢琴,无网格法及其应用.2005:西北工业大学出版社.
    [96]Abraham, F., J. Broughton, N. Bernstein, et al., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. EPL (Europhysics Letters),1998. 44:p.783.
    [97]Broughton, J.Q., F.F. Abraham, N. Bernstein, et al., Concurrent coupling of length scales: methodology and application. Physical review B,1999.60(4):p.2391-2403.
    [98]Wagner, G.J.,W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics,2003.190(1):p. 249-274.
    [99]Belytschko, T.,S. Xiao, Coupling methods for continuum model with molecular model. International Journal for Multiscale Computational Engineering,2003.1(1):p.115-126.
    [100]Xiao, S.,T. Belytschko, A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering,2004. 193(17-20):p.1645-1669.
    [1]Zhang, L.T., W.K. Liu, S.F. Li, et al., Survey of multi-scale meshfree particle methods. Meshfree Methods for Partial Differential Equations,2002:p.441"C458.
    [2]Aluru, N.R., A reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics,1999.23(4):p.324-338.
    [3]Liu, W., Y. Chen, C. Chang, et al.. Advances in multiple scale kernel particle methods. Computational Mechanics,1996.18(2):p.73-111.
    [4]Aluru, N., A reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics,1999.23(4):p.324-338.
    [5]Chui, C.K., Wavelets:A tutorial in theory and applications (Wavelet analysis and its applications, vol.2).1992:Academic Press.
    [6]何正嘉,小波有限元理论及其工程应用.2006:科学出版社.
    [7]Chen, X., S. Yang, J. Ma, et al., The construction of wavelet finite element and its application. Finite Elements in Analysis and Design,2004.40(5-6):p.541-554.
    [8]Lancaster, P.,K. Salkauskas, Surfaces generated by moving least squares methods. Mathematics of computation,1981.37(155):p.141-158.
    [9]McLain, D.H., Drawing contours from arbitrary data points. The Computer Journal,1974. 17(4):p.318.
    [10]Gordon, W.J.,J.A. Wixom, Shepard's method ofmetric interpolation'to bivariate and multivariate interpolation. Mathematics of computation,1978.32(141):p.253-264.
    [11]Barnhill, R.E., Representation and approximation of surfaces. Mathematical Software, 1977.3:p.69"C120.
    [12]Belytschko, T., Y.Y. Lu, and L. Gu, Element(?)\free Galerkin methods. International Journal for Numerical Methods in Engineering,1994.37(2):p.229-256.
    [1]Fern"(?)ndez-Bola os, M., J. Perruisseau-Carrier, P. Dainesi, et al., RF MEMS capacitive switch on semi-suspended CPW using low-loss high-resistivity silicon substrate. Microelectronic Engineering,2008.85(5-6):p.1039-1042.
    [2]Herfst, R., P. Steeneken, and J. Schmitz. Identifying degradation mechanisms in RF MEMS capacitive switches.2008:IEEE.
    [3]Mahameed, R.,G.M. Rebeiz, A High-Power Temperature-Stable Electrostatic RF MEMS Capacitive Switch Based on a Thermal Buckle-Beam Design. Microelectromechanical Systems, Journal of,2010.19(4):p.816-826.
    [4]Mardivirin, D., A. Pothier, A. Crunteanu, et al., Charging in dielectricless capacitive RF-MEMS switches. Microwave Theory and Techniques, IEEE Transactions on,2009. 57(1):p.231-236.
    [5]Hung, E.,S. Senturia, Extending the travel range of analog-tuned electrostatic actuators. Microelectromechanical Systems. Journal of,2002.8(4):p.497-505.
    [6]Tilmans, H.,R. Legtenberg, Electrostatically driven vacuum-encapsulated polysilicon resonators::Part Ⅱ. Theory and performance. Sensors and Actuators A:Physical,1994. 45(1):p.67-84.
    [7]Palego, C., S. Hadler, B. Baloglu, et al. Microwave intermodulation technique for monitoring the mechanical stress in RF MEMS capacitive switches.2008:IEEE.
    [8]Goldsmith, C., A. Sumant. O. Auciello, et al. Charging characteristics of ultra-nano-crystalline diamond in RF MEMS capacitive switches.2010:IEEE.
    [9]Peng, Z., C. Palego, J.C.M. Hwang, et al. Effect of packaging on dielectric charging in RF MEMS capacitive switches.2009:IEEE.
    [10]Abdel-Rahman, E., M. Younis, and A. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering,2002.12:p.759.
    [11]Kuang, J.,C. Chen, Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. Journal of Micromechanics and Microengineering,2004. 14:p.647.
    [12]Landau, L., E. Lifshitz, J. Sykes, et al., Theory of Elasticity:Vol.7 of Course of Theoretical Physics. Physics Today,1960.13:p.44.
    [13]Funk, J., J. Korvink, J. Buhler, et al., SOLIDIS:A tool for microactuator simulation in 3-D. Microelectromechanical Systems, Journal of,2002.6(1):p.70-82.
    [14]Taylor, R., The finite element method, University of California.
    [15]Nathanson, H., W. Newell, R. Wickstrom, et al., The resonant gate transistor. Electron Devices, IEEE Transactions on,2005.14(3):p.117-133.
    [16]Osterberg, P.,S. Senturia, M-TEST:A test chip for MEMS material property measurement using electrostatically actuated test structures. Microelectromechanical Systems, Journal of,2002.6(2):p.107-118.
    [17]Duarte, C.,J. Oden, An hp adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering,1996.139(1-4):p.237-262.
    [18]Zhu, T., J. Zhang, and S. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics,1998.21(3):p.223-235.
    [19]Pamidighantam, S.,et al., Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. Journal of Micromechanics and Microengineering,2002.12(4):p.458.
    [20]Harrington, R., Field computation by moment methods.1993:Wiley-IEEE Press.
    [21]Younis, M., E. Abdel-Rahman. and A. Nayfeh, A reduced-order model for electrically actuated microbeam-based M1:.MS. Microelectromechanical Systems, Journal of.2003. 12(5):p.672-680.
    [22]Tilmans, H., Micro-mechanical sensors using encapsulated built-in resonant strain gauges.1993:Enschede.
    [23]Morgenthaler, F.R., Theoretical Studies of Microstrip Antennas. Volume II. Analysis and Synthesis of Multi-Frequency Elements. SEP 1979.
    [24]S. Timoshenko, Theory of Plates and Shells.1987.
    [25]何正嘉,小波有限元理论及其工程应用.2006:科学出版社.
    [26]Glowinski, R., W. Lawton, M. Ravachol, et al., Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. Computing methods in applied sciences and engineering,1990:p.55-120.
    [27]陆文端,微分方程中的变分方法.1995:四川大学出版社.
    [28]Huang, J.M., A.Q. Liu, C. Lu, et al., Mechanical characterization of micromachined capacitive switches:design consideration and experimental verification. Sensors and Actuators A:Physical,2003.108(1-3):p.36-48.
    [29]Y.T.Gu, G.R.L.,无网格法理论及程序设计.2007.
    [1]Ma, Y. MicroElectroMechanical Systems (MEMS) Based Wavelength-Selective Building Block in a Transparent Network Architecture.2008:IEEE.
    [2]Edwards, C.L., B.G. Boone, W.S. Levine, et al. First principles jitter characterization of two-axis MEMS mirrors.2008:SPIE.
    [3]Mu, C, F. Zhang, and Y. Wu, Novel large-scale electromagnetically actuated MEMS optical scanning mirror. Bandaoti Xuebao(Chinese Journal of Semiconductors),2008. 29(3):p.583-587.
    [4]Wu, W., Q. Chen, G. Yan, et al., Micro torsion mirror actuated by compound electrostatic driving structure. Sensors and Actuators A:Physical,2007.135(2):p.758-764.
    [5]Kardak, A.A., P.K. Patnaik, T. Srinivas, et al., Design and Analysis of the performance of a Torsional Micromirror for an Optical switching system.2008.
    [6]Fraz o, O., S. Silva, J. Baptista, et al., Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber. Applied optics,2008.47(27):p.4841-4848.
    [7]Wu, M.C., O. Solgaard, and J.E. Ford, Optical MEMS for lightwave communication. Lightwave Technology, Journal of,2006.24(12):p.4433-4454.
    [8]Pan, Y.J., Y. Ma, and S. Islam. Electrostatic torsional micromirror:Its active control and applications in optical network.2008:IEEE.
    [9]Koh, K..H., T. Kobayashi, and C. Lee, Low-Voltage Driven MEMS VOA Using Torsional Attenuation Mechanism Based on Piezoelectric Beam Actuators. Photonics Technology Letters, IEEE,2010.22(18):p.1355-1357.
    [10]Raulli, M.,K. Maute, Reliability Based Design Optimization of MEMS Considering Pull-In. Journal of Mechanical Design,2009.131:p.061014.
    [11]Lee, D.,O. Solgaard, Pull-in analysis of torsional scanners actuated by electrostatic vertical combdrives. Microelectromechanical Systems, Journal of,2008.17(5):p. 1228-1238.
    [12]Huang, J., A. Liu, Z. Deng, et al., An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors. Sensors and Actuators A:Physical,2004. 115(1):p.159-167.
    [13]Wetsel, G.,K. Strozewski, Dynamical model of microscale electromechanical spatial light modulator. Journal of Applied Physics,2009.73(11):p.7120-7124.
    [14]Sattler, R., F. Plotz, G. Fattinger, et al., Modeling of an electrostatic torsional actuator: demonstrated with an RF MEMS switch. Sensors and Actuators A:Physical,2002.97:p. 337-346.
    [15]Sane, H., N. Yazdi, and C. Mastrangelo. Application of sliding mode control to electrostatically actuated two-axis gimbaled micromirrors.2003:IEEE.
    [16]Osterberg, P., Electrostatically actuated microelectromechanical test structures for material property measurement.1995.
    [17]Hornbeck, L. Deformable-mirror spatial light modulators.1990.
    [18]Ataman, C.,H. Urey, Modeling and characterization of comb-actuated resonant microscanners. Journal of Micromechanics and Microengineering,2006.16:p.9.
    [19]Gupta, R.K., Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS).1998, Citeseer.
    [20]Nemirovsky, Y.,O. Bochobza-Degani, A methodology and model for the pull-in parameters of electrostatic actuators. Microelectromechanical Systems, Journal of,2002. 10(4):p.601-615.
    [21]Degani, O., E. Socher, A. Lipson, et al., Pull-in study of an electrostatic torsion microactuator. Microelectromechanical Systems, Journal of,1998.7(4):p.373-379.
    [22]Degani, O.,Y. Nemirovsky, Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions. Microelectromechanical Systems, Journal of,2002.11(1):p.20-26.
    [23]Zhang, X., F. Chau, C. Quan, et al. Modeling of the optical torsion micromirror.1999.
    [24]Zhang, X., F. Chau, C. Quan, et al., A study of the static characteristics of a torsional micromirror. Sensors and Actuators A:Physical,2001.90(1-2):p.73-81.
    [25]Bochobza-Degani, O.,Y. Nemirovsky, Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model. Sensors and Actuators A:Physical,2002.97:p.569-578.
    [26]Ping Zhao, J., H. Ling Chen, J. Ming Huang, et al., A study of dynamic characteristics and simulation of MEMS torsional micromirrors. Sensors and Actuators A:Physical, 2005.120(1):p.199-210.
    [27]Degani-Bochobza, O., D. Elata, and Y. Nemirovsky, An efficient D1PIE algorithm for CAD of electrostatically actuated MEMS devices. J. Microelectromech. Syst,2002.11:p. 612X620.
    [28]Elata, D., O. Bochobza-Degani, and Y. Nemirovsky, Analytical approach and numerical [A-lines method for pull-in hyper-surface extraction of electrostatic actuators with multiple uncoupled voltage sources. Microelectromechanical Systems, Journal of,2003. 12(5):p.681-691.
    [29]Bochobza-Degani, O.,Y. Nemirovsky, Experimental verification of a design methodology for torsion actuators based on a rapid pull-in solver. Microelectromechanical Systems, Journal of,2004.13(1):p.121-130.
    [30]Bochobza-Degani, O., D. Elata, and Y. Nemirovsky, An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices. Microelectromechanical Systems, Journal of,2002.11(5):p.612-620.
    [31]Zhou, G., F.E.H. Tay, and F.S. Chau, Macro-modelling of a double-gimballed electrostatic torsional micromirror. Journal of Micromechanics and Microengineering, 2003.13:p.532.
    [32]Kassimali, A., Matrix analysis of structures.1999:Brooks/Cole.
    [33]Lorenz, G.,R. Neul. Network-type modeling of micromachined sensor systems.1998.
    [34]Soutas-Little, R.W., D.J. Inman, and D.S. Balint, Engineering Mechanics:Dynamics. 2008:Thomson Engineering.
    [35]Rochus, V., D.J. Rixen, and J.C. Golinval, Modeling of electro-mechanical coupling problem using the finite element formulation.2003.
    [36]周进雄,再生核质点法研究进展.力学进展,2002.32(4).
    [37]Senturia, S.D., Microsystem design.2001:Springer Netherlands.
    [38]Daqaq, M., E. Abdel-Rahman, and A. Nayfeh, Towards a stable low-voltage torsional microscanner. Microsystem Technologies,2008.14(6):p.725-737.
    [39]Rochus, V., D.J. Rixen, and J.C. Golinval, Monolithic modelling of electr(?)\mechanical coupling in micr(?)\structures. International Journal for Numerical Methods in Engineering,2006.65(4):p.461-493.
    [40]Gyimesi, M., I. Avdeev, and D. Ostergaard. Finite-element simulation of micro-electromechanical systems (MEMS) by strongly coupled electromechanical transducers. Magnetics, IEEE Transactions on,2004.40(2):p.557-560.
    [41]Liu. W.K., S. Jun, S. Li, et al., Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering,1995.38(10):p. 1655-1680.
    [42]Liu. W.K., S. Jun, D.T. Sihling, et al., Multiresolution reproducing kernel particle method for computational fluid dynamics. International Journal for Numerical Methods in Fluids, 1997.24(12):p.1391-141.5.
    [43]H, A.C.a.U., Experimental characterization of MEMS microscanners. IEEE Trans. Meas. Autom. submitted,2005.
    [44]Huang, J.M., A.Q. Liu, Z.L. Deng, et al.. An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors. Sensors and Actuators A: Physical,2004.115(1):p.159-167.
    [45]Y.T.Gu, G.R.L.,无网格法理论及程序设计.2007.
    [I]Liu, Y.,Z. Cen. Daubechies Wavelet Meshless Method for 2-D Elastic Problems*. Tsinghua Science & Technology,2008.13(5):p.605-608.
    [2]Wu, D.F., T. Xu, R.H. Sun, et al., Meshless method based on wavelet basis function. Journal of Jilin Universiry(Engineering and Technology Edition).2010.40(3):p.740-744.
    [3]Zhu, X., Q. Zhang, D. Liu, et al. An Edge Extraction Algorithm of Thenar Palmprint Image Based on Wavelet Multi-scale.2010:IEEE.
    [4]Peracaula, M., J. Mart"8, J. Freixenet, et al., Multi-Scale Image Analysis Applied to Radioastronomical Interferometric Data. Pattern Recognition and Image Analysis,2009:p. 192-199.
    [5]Lei, J., S. Liu, and X. Wang, Generalised multi-scale image reconstruction algorithm for electrical capacitance tomography. Imaging Science Journal, The,2011.59(3):p.134-153.
    [6]Zhang, L., G. Xiong, H. Liu, et al., Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Systems with Applications,2010.37(8):p. 6077-6085.
    [7]Guan, Y.P., Wavelet multi-scale transform based foreground segmentation and shadow elimination. The Open Signal Processing Journal,2008.1(6):p.1-6.
    [8]Liang, W., G. Cui, and G. Chen, A Method for Characteristic Edge Detection Based on Wavelet Multi-Scale Correlation. Electronics Optics & Control,2009.
    [9]Peng, F., D. Yu, and J. Luo, Sparse signal decomposition method based on multi-scale chirplet and its application to the fault diagnosis of gearboxes. Mechanical Systems and Signal Processing,2011.25(2):p.549-557.
    [10]Li, B., P. Zhang, S. Mi, et al., Multi-scale fractal dimension based on morphological covering for gear fault diagnosis. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2011.
    [11]Huang, Y., D. Meyer, and S. Nemat-Nasser, Damage detection with spatially distributed 2D Continuous Wavelet Transform. Mechanics of Materials,2009.41(10):p.1096-1107.
    [12]Liu, Y., L. Sun, and Z. Cen, Multi-scale B-spline method for 2-D elastic problems. Applied Mathematical Modelling,2011.
    [13]Guo, C.,T. Wang, Crack image enhancement of track beam surface based on nonsubsampled contourlet transform. Life System Modeling and Intelligent Computing, 2010:p.333-341.
    [14]Lu, C, Y. Zhang. M. Han, et al. The Application multi-scale characteristics of the rubber gasket image edge detection by using wavelet.2008:IEEE.
    [15]Grzesik, W..S. Brol. Wavelet and fractal approach to surface roughness characterization after finish turning of different workpiece materials. Journal of Materials Processing Technology,2009.209(5):p.2522-2531.
    [16]Mauri, G., G. Williams-Jones, and G. Saracco, Depth determinations of shallow hydrothermal systems by self-potential and multi-scale wavelet tomography. Journal of Volcanology and Geothermal Research,2010.191(3-4):p.233-244.
    [17]Liu, Y.,Z. Cen. Multi-scale Daubechies wavelet-based method for 2-D elastic problems. Finite Elements in Analysis and Design,2011.47(4):p.334-341.
    [18]Xia, Z., Y. Tian, and N. Jiang, Wavelet spectrum analysis on energy transfer of multi-scale structures in wall turbulence. Applied Mathematics and Mechanics,2009. 30(4):p.435-443.
    [19]Liu, Y., L. Sun, F. Xu, et al., B spline-based method for 2-D large deformation analysis. Engineering Analysis with Boundary Elements,2011.35(5):p.761-767.
    [20]Efendiev, Y..T.Y. Hou, Multiscale finite element methods:Springer.
    [21]Liu, W.K., E.G. Karpov, and H.S. Park, Nano mechanics and materials.2006:Wiley Online Library.
    [22]Sagaut, P., S. Deck, and M. Terracol, Multiscale and multiresolution approaches in turbulence.2006:Imperial College Pr.
    [23]Hou, T.Y., X.H. Wu, and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of computation,1999. 68(227):p.913-943.
    [24]何正嘉,小波有限元理论及其工程应用.2006:科学出版社.
    [25]Ainsworth, M.,J.T. Oden, A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering.1997.142(1-2):p.1-88.
    [26]Zienkiewicz, O., B. Boroomand, and J. Zhu, Recovery procedures in error estimation and adaptivity Part I:Adaptivity in linear problems. Computer Methods in Applied Mechanics and Engineering,1999.176(1-4):p.111-125.
    [27]Oswald, P., Multilevel solvers for elliptic problems on domains. Wavelet Analysis and Its Applications,1997.6:p.3-58.
    [28]Cohen, A., Numerical analysis of wavelet methods.2003:JAI Press.
    [29]Boggess, A.,F.J. Narcowich, A first course in wavelets with Fourier analysis.2009: Wiley.
    [30]陈雪峰.李兵.胡桥,et al.,基于小波有限元的裂纹故障诊断.西安交通大学学报,2004.38(3):p.295-298.
    [31]Hong-Feng. G..R. Ya-Fei. Experimental Research on Multi-scale Particle filtering of MEMS Gyroscope.2009:IEEE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700