微构件的尺寸效应及数值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(Micro-Electro-Mechanical Systems,简写为MEMS)器件具有高谐振频率、高的品质因数、超低功率等特性,故MEMS微构件在谐振器、混频器生物传感器等方面具有广阔的应用前景,是目前国际研究的热点课题之一。这些微型器件中的微机械构件根据形状尺寸与受力特点,可以简化为微梁、微板、微膜和微杆等力学模型。当微构件的几何尺寸在微米、亚微米或纳米等范畴时,微构件的力学性能与宏观尺寸下构件的力学性能有很大的不同。
     目前,在微小尺度实验中已经证实,当微构件的几何尺寸在微米、亚微米或纳米量级上时,微构件的力学性能具有明显的尺寸效应,而这种尺寸效应现象不能用经典的连续介质力学来描述。因此,发展和完善能够解释和描述微构件的尺寸效应现象的理论和模型就显得至关重要。应变梯度理论通过在本构关系中引入材料的内禀特征长度来考虑应变梯度的影响,为解释和描述微构件的尺寸效应提供了重要的力学理论基础。同时,如果不考虑应变梯度的影响,则应变梯度理论退化为经典的弹性理论。因此,应变梯度理论是经典弹性理论的推广和扩展。
     本论文以微机电系统中的微构件为研究对象,基于应变梯度理论建立微构件的尺寸效应模型以及微构件的数值方法,对微构件力学性能的尺寸效应进行深入的研究,研究工作的主要内容如下:
     基于应变梯度理论和哈密顿变分原理,建立非线性欧拉-伯努利微梁的尺寸效应模型。在该模型中,引入了材料的三个内禀特征长度参数,可以预测微梁力学性能的尺寸效应;同时,考虑中面伸长和残余应力的影响,可以预测中面伸长以及残余应力对微梁尺寸效应的影响。如果忽略膨胀梯度张量和拉伸梯度张量偏张量的影响,则新模型退化为偶应力欧拉-伯努利非线性微梁尺寸效应模型;如果忽略材料所有的内禀特征长度参数,则新模型退化为经典的欧拉-伯努利非线性微梁模型。结合简支梁和固支梁的特征尺寸,研究了非线性微梁的弯曲变形、屈曲载荷和频率的尺寸效应。研究结果表明:当微梁的特征尺寸与材料的内禀特征长度尺寸参数接近时,微梁的非线性力学特性表现出明显的尺寸效应,然而,随着微梁特征尺寸的增加,这种尺寸效应现象逐渐降低直至最终消失。微梁中的残余应力和中面伸长对微梁的力学性能尺寸效应影响显著,考虑中面伸长,微梁的尺寸效应现象降低;随着残余应力的增加,微梁的尺寸效应现象也显著降低。因此,该模型能够反映出非线性微梁弯曲变形、屈曲载荷和频率的尺寸效应,可以为微梁的结构设计和实验测试提供理论基础。
     基于应变梯度理论和哈密顿变分原理,推导并建立了曲线边界克希霍夫微板的尺寸效应模型。在该模型中,引入了材料的三个内禀特征长度参数,可以预测微板力学性能的尺寸效应,同时得到微板在曲线边界上的边界条件以及角点处应满足的边界条件。由于模型中不仅包含了应变张量和旋转梯度张量的影响,同时还包含了拉伸梯度偏斜张量以及膨胀梯度张量的影响,能全面地反映微板的弯曲变形和固有频率的尺寸效应。以固支圆板和简支圆板为研究对象,研究了圆板的弯曲变形和固有频率的尺寸效应,并将结果与偶应力微板模型和经典的微板模型进行比较。结果表明,圆形微板的无量纲弯曲变形和无量纲固有频率存在明显的尺寸效应,同时,不同约束形式的圆板尺寸效应也不同。
     基于应变梯度理论和哈密顿变分原理,建立了静电驱动非线性微梁吸合电压的尺寸效应模型。在该模型中,不但考虑了静电载荷固有的非线性特性,同时考虑微梁中面伸长的几何非线性特性。采用瑞利-利兹法近似处理静电载荷和中面伸长,利用变分法给出了确定微梁吸合电压的近似表达式,分析静电驱动非线性微梁的吸合电压的变化规律。结果表明:当微梁的特征尺寸与材料的内禀特征长度参数接近时,吸合电压呈现出明显的尺寸效应现象;当微梁内的残余应力增大时,其吸合电压的尺寸效应现象明显减弱,同时,中面伸长对微梁的吸合电压也有明显的影响。该模型可以为微机电系统中微梁结构的设计和实验验证提供重要的理论基础。
     基于应变梯度理论和哈密顿变分原理,建立了平面杆件系统中微梁的尺寸效应模型以及数值分析模型。该尺寸效应模型以及数值分析模型中包含了材料的内禀特征长度参数,可以分析平面杆件系统中微梁的尺寸效应。同时,基于该数值分析模型可以分析非线性微梁弯曲变形的尺寸效应以及静电吸合电压的尺寸效应。由于在微机电系统中存在大量的微型弹簧,因此,采用该数值模型对微弹簧的刚度进行分析,发现微弹簧的刚度具有明显的尺寸效应,为复杂微型弹簧的计算和设计提供理论和分析基础。
     本文所建立的微构件的尺寸效应模型能够反映微构件的弯曲变形、固有频率、屈曲载荷等力学性能的尺寸效应以及力电耦合环境下的吸合特性的尺寸效应,研究结果可以为微机电系统中微构件的设计和实验研究提供理论依据。
Attributed to the small mass and size, MEMS (Micro Electro Mechanical Systems, abbreviated as MEMS) come with high fundamental resonance frequencies, high quality factors and low power dissipation. MEMS have been widely used in the field of resonators, mixers, sensors and actuators. According to geometry and loaded forms of those devices and products, main structures can be simplified to be some typical structural forms, such as micro-beams, micro-plates, micro-membranes and micro-bars etc. In the micro scale range, the sub-micro scale range and the nano scale range, the mechanical properties of micro-component are very different from that in the macro scale range.
     At present, the size effects of the mechanical properties for the micro-component have been discovered in the mechanical properties experiments. The size effects of the micro-compoment cannot be described using classical continuum mechanics. Therefore, the creation of new theory which is able to explain and describe the effect of the micro-components is crucial. In order to describe and explain the size effect of the micro-components, the strain gradient is introduced into the strain gradient theory when the material intrinsic characteristic scale parameters are introduced into the constitutive relations in the new theory. At the same time, the strain gradient theory simplified as the classic elasticity theory when the material intrinsic characteristic scale parameters equal to zero. Therefore, the strain gradient theory is the expansion of the classical elasticity theory.
     In our paper, the micro-components in MEMS are mainly analyzed and the size effect models are established based on the strain gradient theory. The size effects of mechanical property are widely studied for the components in the micro scale range. Main content of our work are as follows:
     A nonlinear size effect model of micro-beam is established based on the strain gradient theory and the Hamiltonian variational principle. In the new model, the middle plane elongation and the residual stress are included while the three intrinsic characteristic scale paramenters are introduced. Therefore, the new model can predict not only the size effect of the micro-beams but also the effect of the middle plane elongation and the residual stress on the size effects. When the two material intrinsic characteristic scale parameters regarding as the dilatation gradient tensor and deviatoric stretch gradient tensor are zero, the new model can be simplified as the nonlinear model based on the couple stress theory. When the three material intrinsic characteristic scale parameters are zero, the new model can be simplified as the nonlinear model based on the classical theory. For the simply supported micro-beam and the clamped-clamped micro-beam, the size effects of the nonlinear static deformation, the nonlinear natural frequency and the nonlinear buckling load are analyzed. The size effect on the static deformation, the natural frequency and the buckling load of micro-beams are assessed when the feature size of the micro-beams approaches to the material intrinsic characteristic scale parameter. However, the size effect gradually reduced when the feature sizes of micro-beams are by far larger than the material intrinsic characteristic scale parameter. The effects of the middle plane elongation and the residual stress on the effect of micro-beams are significant. At the same time, the size effect phenomenon significantly reduced when the residual stress increases. The bending deformation, the buckling load and the nonlinear natural frequency based on the strain gradient theory are equal to the results based the classical theory when the feature size of the micro-beams are much larger than the material intrinsic characteristic length scales. Therefore, the new model can capture size effect on the nonlinear bending deformation, the nonlinear buckling load and the nonlinear natural frequency of micro-beams and can provide a theoretical basis for the structural design and experimental testing of the micro-beams.
     Based on the strain gradient theory and Hamiltonian variational principle, the size effect model for arbitrary boundary shape micro-plates is derived. The new model can captured the size effect of the mechanical properties of the micro-plates based on the introduction of three material intrinsic characteristic scale parameters. At the same time, the boundary conditions are derived at the arbitrary shape boundary and the coner of the plate. The new model not only includes the effect of the strain tensor and rotation gradient tentor, but also contains the stretch gradient skew tensor and dilatation strain gradient tensor, can fully descrie the size effects of the static deformation and the natural frequency of the micro-plate. For the simply supported micro-plate and the clamped micro-plate, the size effects of the static and the natural frequency are analyzed. The numerical results are compared with that of the couple stress micro-plates and the classical micro-plates. The results show that the normalized static deformation and the normalized nature frequency of circular micro-plates have significant size effects. The size effect is different when the constraint of the circular plate is different.
     The size effect model of the electrostatically acturated nonlinear micro-beams is established based on the strain gradient theory and Hamiltonian variational principle. Taking into account size effect on mechanical propreties of materials and the inherent nonlinear property of electrostatic force and the middle plane elongation, approximate expression of the pull-in voltage of electrostatically actuated micro-beams are obtained by using the Rayleigh-Ritz method. The results show that the dimensionless pull-in voltage increases significantly with the dimensionless micro-beam thickness decreasing, showing a significant size effect. When the material intrinsic characteristic length increases, the size effect of the dimensionless pull-in voltage is more significantly, indicating that the effect of the strain gradient on the micro-beam pull-in voltage is remarkable. When the dimensionless micro-beam thickness decreases, the effect of the residual stress on the dimensionless pull-in voltage is significant. The size effect of the normalized pull-in voltage is weakened when the residual stress increases, indicating the residual stress can decrease the effect of the strain gradient on the pull-in voltage. The effect of the middle plane elongation on the pull-in voltage is reduced markedly when the strain gradient is considered. The results can prove the reference in the design of micro structures in MEMS.
     Based on the strain gradient theory and the Hamiltonian variational principle, the size effect model and the numerical simulation model of the micro-beam in the plane bar system are derived. The size effect model and the numerical simulation model can analyze the size effect of micro-beam in the plane bar system due to the introducation of the material intrinsic characteristic scale parameters. At the same time, the size effects of the static deformation and the electrostatic pull-in voltage for the nonlinear micro-beam can be analyzed based on the numerical model. Due to a large number of micro-springs are used in MEMS, the size effects of the stiffness of the plane micro-spring are analyzed. The results show that the stiffnesses of micro-spring have significant size effect and provide a theoretical basis for the analysis and design of complex plane micro-spring.
     The above mechanical models can capture size effect on the static deformation, the natural frequency, the buckling load and the pull-in voltage of the micro components. The research results can provide a theoretical guideline for the optimal design and experimental tests of the micro-components in MEMS devices.
引文
[1]Senturia S D. Micro-system design [M]. Kluwer Academic Publishers, New York, USA,2001.
    [2]高世桥,刘海鹏.微机电系统力学[M].国防工业出版社,北京,2008.
    [3]孟光,张文明.微机电系统动力学[M].科学出版社,北京,2008.
    [4]李德胜,关佳亮,石照耀.微纳米技术及其应用[M].科学出版社,北京,2008.
    [5]Liu C微机电系统基础[M].机械工业出版社,北京,2007.
    [6]徐泰然MEMS和微系统设计与制造[M].机械工业出版社,北京,2004.
    [7]温诗铸,丁建宁.微型机械设计基础研究[J].机械工程学报.2000,36(7):39-42.
    [8]梅涛,孔德义,张培强.微电子机械系统的力学性能与尺度效应[J].机械强度,2001,23(4):373-379.
    [9]余寿文.微电子机械系统的几个力学问题[J].机械强度.2001,23(4):380-384.
    [10]钱劲,刘徽,张大成.微电子机械系统中的残余应力问题[J].机械强度.2001,23(4):393-401.
    [11]余寿文.复杂微力-电系统的细微尺度力学[J].力学进展.1995,25(2):249-259.
    [12]魏悦广.机械微型化所面临的科学难题——尺度效应[J].世界科技研究与发展.2000,22(2):57-61.
    [13]魏悦广.固体尺度效应宏微关联理论和方法的研究进展[J].中国科学基金.2000,1(4):221-224.
    [14]Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity:theory and experiment [J]. Acta Metallurgica et Materialia.1994,42(2):475-487.
    [15]Stolken J S, Evans A G. A microbend test method for measuring the plasticity length scale [J]. Acta Materialia.1998,46(14):5109-5115.
    [16]郭香华,方岱宁,李喜德.用电子散斑法对纯镍薄片弯曲变形的测量[J].力学与实践.2005,27(2):22-25.
    [17]冯秀艳,郭香华,方岱宁.微薄梁三点弯曲的尺度效应研究[J].力学学报.2007,39(4):479-485.
    [18]Stelmashenko N A, Walls M G, Brown L M, et al. microindentations on W and Mo oriented single crystals:An STM study [J]. Acta Metallurgica et Materialia, 1993,41(10):2855-2865.
    [19]Ma Q, Clarke D R. Size dependent hardness of silver single crystals [J]. Journal of Materials Research.1995,10(4):853-863.
    [20]Poole W J, Ashby M F, Fleck N A. Micro-hardness of annealed an work hardened copper poly-crystals [J]. Scripta Materialia,1996,34(4):559-564.
    [21]McElhaney K W, Vlassak J J, Nix W D. Determination of indenter tip geometry and indentation contact area for depth sensing indentation experiments [J]. Journal of Materials Research.1998,13(5):1300-1306.
    [22]魏悦广,王学峥,武晓雷.微压痕尺度效应的理论和实践[J].中国科学A辑,2000,30(11):1025-1032.
    [23]Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. International Materials Reviews.1994,39(1):1-23.
    [24]Zhu H T, Zbib H M, Aifantis E C. Strain gradients and continuum modeling of size effect in metal matrix composites [J]. Acta Materialia.1997,121(1-4): 165-176.
    [25]Kiser M T, Zok F W, Wilkinson D S. Plastic flow and fracture of a particulate metal matrix composite [J]. Acta Materialia.1996,44(9):3465-3476.
    [26]Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity [J]. Journal of the Mechanics and Physics of Solids.2003, 51(8):1477-1508.
    [27]McFarland A W, Colton J S. Role of material micro-structure in plate stiffness with relevance to micro-cantilever sensors [J]. Journal of Micromechanics and Microengineering.2005,15(5):1060-1067.
    [28]Chong A C M, Lam D C C. Strain gradient plasticity effect in indentation hardness of polymers [J]. Journal of Materials Research.1999,14(10):4103-4110.
    [29]Chasotis I, Knauss W G. The mechanical strength of polysilicon films:Part 2. Size effects associated with elliptical and circular perforations [J]. Journal of the Mechanics and Physics of Solids.2003,51(8):1551-1572.
    [30]Busch J D, Johnson A D. Prototype micro-valve actuator [C]. Micro Electro Mechanical Systems,1990. Proceedings, an Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Napa Valley, CA, USA,1990. IEEE Xplore 1990.
    [31]Thaysen J, Yalcinkaya A D, Vestergaard R K, et al. SU-8 based piezoresistive mechanical sensor [C]. Proceedings of the IEEE Micro Electro Mechanical Systems, Las Vegas, NV, United States,2002. Institute of Electrical and Electronics Engineers Inc.,2002:320-323.
    [32]Dickinsion T A, White J, Kauer J S, et al. Chemical-detecting system based on a cross reactive optical sensor array [J]. Nature.1996,382(6593):697-697.
    [33]Lee D, Solgaard O. Pull-in analysis of torsional scanners actuated by electrostatic vertical combdrives [J]. Journal of Microelectromechanical Systems. 2008,17(5):1228-1238.
    [34]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和SG理论[J].机械强度.1999,21(2):81-87.
    [35]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论[J].机械强度.1999,21(3):161-165.
    [36]陈少华,王自强.应变梯度理论进展[J].力学进展.2003,33(2):207-216.
    [37]Voigt W. Theoretische Studien uber die Elasizitats-verhatnisse Krystalle [J]. Abhandlungen der Gesellschaft der Wissenschaften zu Goettingen.1887.
    [38]Cosserat E, Cosserat F. Theorie des Corps Deformables. Hermann, Paris,1909.
    [39]Toupin R A. Theories of elasticity with couple stress [J]. Archive for Rational Mechanics and Analysis.1964,17(2):85-112.
    [40]Toupin R A. Elastic materials with couple stress [J]. Archive for Rational Mechanics Analysis.1962,11(1):385-414.
    [41]Eringen A C. Nonlinear theory of continuous media [M]. McGraw-Hill, New York,1962.
    [42]Mindlin R D, Tiersten H F. Effects of couple stresses in linear elasticity [J]. Archive for Rational Mechanics Analysis.1962,11(1):415-448.
    [43]Mindlin R D. Influence of couple stresses on stress concentrations [J]. Experimental mechanics.1963,3(1):1-7.
    [44]Koiter W T. Couple stress in the theory of elasticity I and II [J]. Proc. Kon. Nederl. Akad. Wetensch.1964, B 67(1):17-44.
    [45]Anthoine A. Effect of couple-stresses on the elastic bending of beams [J]. International Journal of Solids and Structures.2000,37(7):1003-1018.
    [46]周慎杰,李兆前.微杆扭转静动态特性的尺度效应[J].山东工业大学学报.2001,31(5):401-407.
    [47]康新,席占稳.基于Cosserat理论的微梁振动特性的尺度效应[J].机械强度.2007,29(1):1-4.
    [48]Reddy J.N., Jessica Berry. Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress [J]. Composite Structures.2012,94:3664-3668.
    [49]Yang F, Chong A C M, Lam D C C, et al. Couple stress based strain gradient theory for elasticity [J]. International Journal of Solids and Structures,2002, 39(10):2731-2743.
    [50]Park S K, Gao X L. Variational formulation of a modified couple stress theory and its application to a simple shear problem [J]. Zeitschrift fur Angewandte Mathematik und Physik.2008,59(5):904-917.
    [51]Park S K, Gao X L. Bernoulli-Euler beam model based on a modified couple stress theory [J]. Journal of Micromechanics and Microengineering.2006,16(11): 2355-2359.
    [52]Ma H M, Gao X L, Reddy J N. A microstructure dependent Timoshenko beam model based on a modified couple stress theory [J]. Journal of the Mechanics and Physics of Solids.2008,56(12):3379-3391.
    [53]Asghari M, Kahrobaiyan M H, Ahmadian M T. A nonlinear Timoshenko beam formulation based on the modified couple stress theory [J]. International Journal of Engineering Science.2010,48(12):1749-1761.
    [54]Li Y, Qin Q, Lin W, et al. Vibration analysis of microscale plates based on modified couple stress theory [J]. Acta Mechanica Solida Sinica.2010,23(5): 386-393.
    [55]Akgoz B, Civalek O. Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro scaled beams [J]. International Journal of Engineering Science.2011,49(11):1268-1280.
    [56]Ansari R, Gholami R, Sahmani S. Free vibration analysis of size dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory [J]. Composite Structures.2011,94(1):221-228.
    [57]Ke L L, Wang Y S. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory [J]. Composite Structures. 2011,93(2):342-350.
    [58]Ke L L, Wang Y S. Flow induced vibration and instability of embedded double walled carbon nanotubes based on a modified couple stress theory [J]. Physica E: Low dimensional Systems and Nanostructures.2011,43(5):1031-1039.
    [59]Tsiatas G C, Katsikadelis J T. A new microstructure dependent Saint Venant torsion model based on a modified couple stress theory [J]. European Journal of Mechanics A/Solids.2011,30(5):741-747.
    [60]Mindlin R D. Micro-structure in linear elasticity [J]. Archive for Rational Mechanics and Analysis.1964,16(1):51-78.
    [61]Mindlin R D, Eshel N N. On first strain gradient theories in linear elasticity [J]. International Journal of Solids and Structures.1968,4(1):109-124.
    [62]Zhao J D, Pedroso D. Strain gradient theory in orthogonal curvilinear coordinates [J]. International Journal of Solids and Structures.2008,45(11-12): 3507-3520.
    [63]Kong S L, Zhou S J, Nie Z F, et al. Static and dynamic analysis of micro beams based on strain gradient elasticity theory [J]. International Journal of Engineering Science.2009,47(4):487-498.
    [64]Wang B L, Zhao J F, Zhou S J. A micro scale Timoshenko beam model based on strain gradient elasticity theory [J]. European Journal of Mechanics A/Solids. 2010,29(4):591-599.
    [65]Akgoz B, Civalek O. Application of strain gradient elasticity theory for buckling analysis of protein microtubules [J]. Current Applied Physics.2011,11(5): 1133-1138.
    [66]Kahrobaiyan M H, Tajalli S A, Movahhedy M R, et al. Torsion of strain gradient bars [J]. International Journal of Engineering Science.2011,49(9):856-866.
    [67]Wang B L, Zhou S J, Zhao J F, et al. A size dependent Kirchhoff micro plate model based on strain gradient elasticity theory [J]. European Journal of mechanics A/Solids.2011,30(4):517-524.
    [68]Yin L, Qian Q, Wang L. Strain gradient beam model for dynamics of microscale pipes coveying fluid [J]. Applied Mathematical Modelling.2011,35(6): 2864-2873.
    [69]Ashby M F. the deformation of plastically non-homogeneous materials [J]. Philosophical Magazine.1970,21(1):399-424.
    [70]Fleck N A, Hutchinson J W. Strain gradient plasiticity [J]. Advances in Applied Mechanics.1997,33(1):296-358.
    [71]Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.2001,49(10):2245-2271.
    [72]Aifantis E. On the role of gradients in the localization of deformation and fracture [J]. International Journal of Engineering Science.1992,30(10): 1279-1299.
    [73]Gao H, Huang Y, Nix W D, et al. Mechanism based strain gradient plasticity-I. Theory [J]. Journal of the Mechanics and Physics of Solids.1999, 47(6):1239-1263.
    [74]Huang Y, Gao H, Nix W D, et al. Mechanism based strain gradient plasticity-Ⅱ. Analysis [J]. Journal of the Mechanics and Physics of Solids.2000,48(1):99-128.
    [75]Acharya A, Bassani J L. Lattice incompatibility and a gradient theory of crystal plasticity [J]. Journal of the Mechanics and Physics of Solids.2000,48(8): 1565-1595.
    [76]Menzel A, Steinmann P. On the continuum formulation of higher gradient plasticity for single and polycrystals [J]. Journal of the Mechanics and Physics of Solids.2000,48(8):1777-1796.
    [77]Gurtin M E. On the plasticity of single crystals:Free energy, microforces, plastic strain gradients [J]. Journal of the Mechanics and Physics of Solids.2000, 48(5):989-1036.
    [78]Gurtin M E. A gradient theory of single crystal viscoplasticity that accounts for geometrically necessary dislocations [J]. Journal of the Mechanics and Physics of Solids.2002,50(1):5-32.
    [79]Chen S H, Wang T C. New hardening law for strain gradient plasticity [J]. Acta Materialia.2000,48(16):3997-4005.
    [80]Cedric Xia Z, Hutchinson J W. Crack tip fields in strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.1996,44(10):1621-1648.
    [81]Wei Y, Hutchinson J W. Steady state crack growth and work of fracture for solids characterized by strain gradient plasticity [J]. Journal of the mechanics and Physics of Solids.1997,45(8):1253-1273.
    [82]Shu J Y, Fleck N A. Prediction of a size effect in micro-indentation [J]. International Journal of solids and Structures.1998,35(13):1363-1383.
    [83]Begley M R, Hutchinson J W. Mechanics of size dependent indentation [J]. Journal of the Mechanics and Physics of Solids.1998,46(10):2049-2068.
    [84]Xue Z, Saif M T A, Huang Y. The strain gradient effect in micro electro mechanical system (MEMS) [J]. Journal of Microelectromechanical Systems. 2002, 11(1):27-35.
    [85]Timans H A, Legtenberg R. Electrostatically driven vacuum encapsulated polysilicon resonators:part Ⅱ. Theory and Performance [J]. Sensor and Actuator A-Physics.1994,45(1):67-84.
    [86]Osterberg P M, Senturia S D. M-test:a test chip for MEMS material property measurement using electrostatically actuated test structures [J]. Journal of Microelectromechanical Systems.1997,6(2):107-118.
    [87]Osterberg P M. Electrostatically actuated microelectromechanical test structures for material property measurements [D]. Cambridge, MA:Massachusetts Institute of Technology,1995:26-125.
    [88]Pamidighantam S, Puers R, Baert K, et al. Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions [J]. Journal of Micromechanics and Microengineering.2002,12(4): 458-464.
    [89]Younis M I, Alsaleem F, Jordy D. The response of clamped-clamped microbeams under mechanical shock [J]. International Journal of Non-linear Mechanics.2007, 42(4):643-657.
    [90]O'Mahony C, Hill M, Duane R, et al. Analysis of electromechanical boundary effects on the pull-in of micromachined fixed-fixed beams [J]. Journal of Micromechanics and Microengineering.2003,13(4):S75-S80.
    [91]Bochobza D O, Nemirovsky Y. Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model [J]. Sensors and Actuators A:physical,2004,97-98(1):569-578.
    [92]Choi B, Lovell E G. Improved analysis of microbeam under mechanical and electrostatic loads [J]. Journal Micromechanics and Microengineering,1997,7(2): 4-9.
    [93]Lishchynska M, Cordero N, Slattery O, et al. Modelling electrostatic behaviour of microcantilevers incorporating residual stress gradient and non-ideal anchors [J]. Journal Micromechanics and Microengineering,2005,15(7):S10-S14.
    [94]Younis M I, Abdel-Rahman E M, Nayfeh A H. A reduced-order model for electrically actuated microbeam-based MEMS [J]. Journal Microelectro mechanical System,2003,12(5):672-680.
    [95]Lin Xie Zhao, Ying Ji. Analytical model of Electrostatic fixed-fixed microbeam for pull-in voltage[C]. International Conference on Advanced Intelligent Mechatronics. Xi'an China,2008:803-807.
    [96]Zhang L X, Zhao Y P. Electromechanical model of RF MEMS switches [J]. Microsystem Technologies,2003,9(6-7):420-426.
    [97]Lin W H, Zhao Y P. Pull-in instability of micro-switch actuators:model review [J]. International of Nonlinear Sciences and Numerical Simulation,2008,9(2): 175-183.
    [98]Batra R C, Porfiri M, Spinello D. Vibrations of narrow microbeams predeformed by an electric field [J]. Journal of Sound and Vibration.2008,309(3-5):600-612.
    [99]孔胜利.微梁力学性能尺寸效应的研究[D].山东大学博士论文.山东,济南,2009.
    [100]Rahaeifard M., Kahrobaiyan M.H., Asghari M., et al. Static pull-in analysis of microcantilevers based on the modified couple stress theory [J]. Sensors and Actuators A:Physical.2011,171:370-374.
    [101]Wang B L, Zhou S J, Zhao J F, et al. Size dependent pull-in instability of electrostatically actuated microbeam based MEMS [J]. Journal of Micromechanics and Microengineering.2011,21(2):027001-027006.
    [102]Zhao X P, Abdel-Rahman E M, Nayfeh A H. A reduced order model for electrically actuated microplates [J]. Journal of Micromechanics and Microengineering.2004,14(7):900-906.
    [103]Vogl G W, Nayfeh A H. A reduced order model for electrically actuated clamped circular plates [J]. Journal of Micromechanics and Microengineering. 2005,15(4):684-690.
    [104]Nayfeh A H, Younis M I, Abdel-Rahman E M. Dynamic pull-in phenomenon in MEMS resonators [J]. Nonlinear Dynamics.2007,48(1-2):153-163.
    [105]Batra R C, Porfiri M, Spinello D. Reduced order models for micro electro mechanical rectangular and circular plates incorporating the casimir force [J]. International Journal of Solids and Structures.2008,45(11-12):3558-3583.
    [106]Wang B L, Zhou S J, Zhao J F, et al. Pull-in instability analysis of electrostatically actuated microplate with rectangular shape [J]. International Journal of Precision Engineering and Manufacturing.2011,12(6):1085-1094.
    [107]Lun F Y, Zhang P. Gao F B, et al. Design and fabrication of micro optomechanical vibration sensor [J]. Microfabrication Techanology.2006,120(1): 61-64.
    [108]Tsai N C, Sue C Y. Experimental analysis and characterization of electrostatic drive tri-axis micro-gyroscope [J]. Sensors and Actuators A:Physical.2010, 158(2):231-239.
    [109]Cook S M, Schaffer T E, Chynoweth K M, et al. Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants [J]. Nanotechnology.2006,17(9):2135-2145.
    [110]Wang W L, Hu S J. Modal response and frequency shift of the cantilever in a noncontact atomic force microscope [J]. Applied Physics Letters.2005, 87(18):183506.
    [111]Li X F, Wang B L, Lee K Y. Size effect in the mechanical response of nanobeams [J]. Journal of advanced research in mechanical engineering.2010, 1(1):4-16.
    [112]Gupta P K, Electrostatic pull-in test structure design for in situ mechanical property measurements of Micro-Electro-Mechanical Systems (MEMS) [D]. Thesis, the Massachusetts Institute of Technology, USA,1997.
    [113]Qian J, Liu C, Zhang D C, et al, Residual stresses in micro-electro mechanical systems [J]. Journal of mechanical strength.2001,23(4):393-401.
    [114]Abdel-Rahman E M, Younis M I, Nayfeh A H. Characterization of the mechanical behavior of an electrically actuated microbeam [J]. Journal Micromechanics Microengineering.2002,12(6):759-766.
    [115]Sadeghian H, Rezazadeh G, Osterberg P M. Application of the generalized differential quadrature method to the study of pull-In phenomena of MEMS switches [J]. Journal of Microelectromechanical Systems.2007,16(6):1334-1340.
    [116]Bert C W, Malik M. Differential quadrature method in computational mechanics:a review [J]. Applied Mechanics Reviews.1996,49(1):1-27.
    [117]倪国熙,常用的矩阵理论及方法[M].上海科学技术出版社,上海,1984.
    [118]Chen W, Zhong T. The study on the nonlinear computations of the DQ and DC methods [J]. Numerical Methods for Partial Differential Equations.1997,13(1): 57-75.
    [119]Xia W, Wang L, Yin L. Nonlinear non-classical microscale beams:static bending, postbuckling and free vibration [J]. International Journal of Engineering Science.2010,48(12):2044-2053.
    [120]Kong S L, Zhou S J, Nie Z F, et al. Size effect on the buckling loads of slender columns based on a modified couple stress theory [J], Journal of Mechanical Strength.2009,31(1):136-139.
    [121]Kong S L, Zhou S J, Nie Z F, et al. The size-dependent natural frequency of Bernoulli-Euler micro-beams [J]. International Journal of Engineering Science, 2008,46(5):427-437.
    [122]Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. John Wiley, New York, 1979.
    [123]Foda M A. On non-linear free vibrations of a beam with pinned ends [J], Journal of King Saud University, Engineering Sciences.1995,7(1):93-107.
    [124]Papargyri-Beskou S, Beskos D E. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates [J]. Archive of Applied Mechanics.2008, 78(8):625-635.
    [125]Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells, second edition [M]. McGraw-Hill Book Company, New York,1959.
    [126]Jomehzadeh E, Noori H R, Saidi A R. The size dependent vibration analysis of micro-plates based on a modified couple stress theory [J]. Physica E.2010,43(4): 877-883.
    [127]Zou Q B, Li Z J, Liu L T. New methods for measuring mechanical properties of thin films in micromachining:beam pull-in voltage method and long beam defection (LBD) method [J]. Sensors and Actuators A,1995,48:137-143.
    [128]Park J Y, Kim G H, Chung K W, et al. Mololithically integrated micro machined RF MEMS Capacitive switches [J]. Sensors and Actuators A:Physical. 2001,89(1-2):88-94.
    [129]Luo J K, Flewitt A J, Spearing S M, et al. Three types of planar structure microspring electro-thermal actuators with insulating beam constraints [J]. Journal of Micromechanics and Microengineering.2005,15(8):1527-1535.
    [130]Lu Y, ji H F. Fabrication of microcoil/microsprings for novel chemical and biological sensing [J]. Sensors and Actuators B:Chemical.2007,123(2):937-941.
    [131]Vujanic A, Adamovic N, Jakovljevic M, et al. Silicon microstructure for precise measurements of mechanical moments [J]. Microelectronics Journal.2000, 31(11-12):975-980.
    [132]Barillaro G, Molfese A, Nannini A, et al. Analysis, simulation and relative performances of two kinds of serpentine springs [J]. Journal of Micro-electromechnics System.2005,15(4):736-746.
    [133]Kohl M, Skrobanek K D. Linear micro-actuators based on the shape memory effect [J]. Sensors and Actuators A:Physical.1998,70(1-2):104-111.
    [134]Seidemann V, Butefisch S, Biittgenbach S. Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers [J]. Sensors and Actuators A:Physical.2002,97-98: 457-461.
    [135]Bachmann D, Kuhne S, Hierold C. Fabrication process of polymeric springs for MEMS applications [C]. The 13th International Conference on Solid-State Sensors, Actuators and Microsystem, Seoul, Korea, June 5-9,2005,1412: 1416-1419.
    [136]Lishchynska M, O'Mahony C, Slattery O, et al. Comprehensive spring constant modelling of tethered micromechanical plates [J]. Journal of Micro-mechanics and Microengineering.2006,16(6):S61-S67.
    [137]You J, Packirisamy M, Stiharu I. Study of an electrostatically actuated torsional micro-mirror with compliant planar springs [J]. Microsystem Technology. 2008,14(1):7-16.
    [138]Li H, Gengchen S. Analysis of application patterns of Z-type MEMS microspring [J]. Microsystem Technology.2008,15(4):527-533.
    [139]Rong H, Huang Q A, Nie M, et al. An analytical model for pull-in voltage of clamped-clamped multilayer beams [J]. Sensors and Actuators A,2004,116:15-21.
    [140]Hossein R, Rudolf J S, Abbas S M, et al. Analytical closed form solutions for size dependent static pull in behavior in electrostatic micro actuators via Fredholm integral equation [J]. Sensors and Actuators A,2013,190:32-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700