仿生扑翼机器人气动理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扑翼飞行是自然界飞行生物普遍采用的飞行模式,与固定翼和旋翼飞行模式相比,扑翼飞行仅依靠翼面的扑动即可同时产生升力和推力,具有飞行效率高,机动性好,结构紧凑的优点。仿生扑翼飞行机器人是一种模拟飞行生物的扑翼飞行模式,集成微机电系统、微动力系统、微控制系统等多种前沿技术于一体的先进微小飞行机器人,能够在军事领域和民用领域发挥巨大作用,是近年来研究的热点。然而,实现飞行性能接近或完全达到飞行生物的微小仿生扑翼飞行机器人目前还面临诸多问题,这不仅体现在微精密制造技术、高强度超轻材料技术、新能源技术等方面,更重要的是扑翼飞行的空气动力学机理发生了很大的变化。这是一种低雷诺数非定常粘性流场,传统的适用于固定翼或旋翼的稳态空气动力学原理已经不能适用。
     为了揭示扑翼飞行非定常空气动力学理论,并将其应用到仿生扑翼飞行机器人,本文从传统固定翼和旋翼空气动力学理论出发,从仿生学、空气动力学和机构学等方面,对仿生扑翼飞行气动机理、翼型结构及其运动形式、翼面气动特性和扑翼机器人机构等进行了深入细致的研究,主要包括以下内容:
     针对自然界飞行生物的扑翼飞行原理,以鸟类为研究重点,从身体构造、羽毛结构、运动方式、阻力消除、能耗利用等方面系统全面地阐述了鸟类飞行的高升力机理,提出减重、增升、减阻、节能是确保高效飞行的关键所在,也是未来仿生扑翼飞行机器人需要解决的关键问题。
     建立了扑翼不可压非定常粘性流场的控制方程,并进行了空间域离散和时间域离散,给出了基于有限体积法的求解方法。在此基础上,给出了几种典型翼型流场的数值求解过程,获取了关于不同翼型几何形状及俯仰角、飞行速度、扑动频率等运动参数下的流场状态,给出了这些因素对扑翼飞行气动特性的影响规律。
     提出了一种仿鸟扑翼机器人的运动模型和气动模型,并给出了采用改进的叶素理论对其进行整机翼面气动力的求解方法,将仿真结果与气动力测试实验结果进行了对比,在气动力变化趋势和周期内平均气动力数值方面均基本一致。在对小型样机进行气动力测试的基础上,又制作了大型扑翼飞行机器人,进行了实际飞行测试,实验结果与理论分析结果保持一致。
     根据扑翼飞行的运动规律和扑翼飞行机器人的机构设计要求,提出了两种实现不同扑翼运动的机构。一种为具有“8”字形翼尖运动轨迹的仿小型鸟类和昆虫的扑翼机构,一种为翼面上扑可折叠的仿中大型鸟类的扑翼机构。三维模型仿真和运动分析结果表明两种机构均能实现高效扑翼运动。
Flapping wing flight is the common used flight mode by flying creatures of nature.Compared with the fixed-wing and rotary-wing flight mode, flapping-wing flight can generatelift and thrust simultaneously just relying on the wing’s flapp motion, but has the uniqueadvantages of high flight efficiency, high maneuverability and compact structure. Biomimeticflapping-wing robot is a new kind of micro air vehicle which imitates the flapping wing flightmode of flying creature, with integrating of micro electro mechanical system, micro powersystem, micro control system and other advanced technologies. It becomes the researchhotspot in recent years with the wide application prospects military or civilian field. However,to achieve a micro biomimetic flapping-wing flying robot with full flight performance offlying creatures is still unavailable, not only in terms of miniaturization of manufacturingtechnology, lightweight high-strength materials, new energy technology, the most important isthat the aerodynamics characteristics of flapping-wing flight are quite different. Flappingwing flow field is a low Reynolds number unsteady viscous flow, so the traditional steadyaerodynamics for fixed-wing or rotary-wing can no longer be used directly.
     Aimed to reveal flapping-wing flight unsteady aerodynamic theory, and apply it to thebiomimetic flapping-wing robot, the fundamental issues of flapping wing flight, airfoilaerodynamic characteristics and flapping-wing mechanism are studied systematically in thepaper. The main contributions of the paper are as follows:
     The aerodynamic performance for flapping wing flying creatures in nature is studied. Inbirds, as an example, from the body structure, feather structure, motion posture, drag control,and energy utilization, this paper comprehensively expounded the bird flying high liftperformance. The weight control, lift improvement, drag reduction and energy conservationare key issues in biomimetic flapping-wing flying robots design.
     Incompressible unsteady viscous flow equations for flapping wing are established, andthe discrete solution methods in spatial domain and time domain are given based on the finitevolume method. According to the solution methods, several typical flapping wing airfoil flowfields with different shapes and motion parameters, such as pitch angle, flight speed, flapfrequency, are calculated in detail. In order to obtain high flight performance, differentparameters and their combination are given according to different flight condition or attitude.
     Kinematic model and aerodynamic model for a biomimetic flapping wing robot imitatingbird are built up, and the improved strip theory is proposed to solve the aerodynamic force forflapping wing robot. The results of experiments and simulations coincide to each other basically and show the similar tendency of aerodynamics forces during downstroke andupstroke. The larger size flapping-wing flying robot flight tests also give the similarconclusion.
     According to the different movements of flapping wings of insects and birds, twoflapping wing mechanisms are designed. One is with the "8"-shaped tip trajectory imitatingsmall birds or insects. The other is a foldable flapping wing mechanisim during upstroke.Three-dimensional model simulation and motion analysis results show that the twomechanisms can produce high efficient flapping-wing movement.
引文
[1]王玮.富兰克林、莱特兄弟[M].冶金工业出版社,2003:176-190
    [2] Hollingum J. Military Look to Flying Insect Robots[J]. Industrial Robot,1998,25(2):124-128
    [3] McMichael J.M., Francis M.S. Micro Air Vehicles-toward a New Dimension in Flight[R].US:DARPA/TTO,1997
    [4]朱越利.墨子·鲁问[M].辽宁教育出版社,1997:123-124
    [5]姜长英.中国航空史(中国航空史料·中国近代航空史稿)[M].西北工业大学出版社,1987:4-11
    [6] Chanute O. Progress in Flying Machines[M]. Dover Publications Inc.,1997:11-55
    [7] Development, Theory and Practice of Large Ornithopter Models [EB/OL]. http://www.ornithopter.de/english/index_en.htm,2010.09
    [8] Gibbs-Smith C.H. A History of Flying[M]. B.T.Batsford,1953:171-173
    [9] Lippisch A.M. Man Powered Flight in1929[J]. Journal of the Royal Aeronautical Society,1960,64:395-398
    [10] DeLaurier J.D. An Ornithopter Wing Design[J]. Canadian Aeronautics and Space Journal,1994,40(1):10-18
    [11] Herzog K. Flapping Wing Flight in Nature and Science[J]. Aeromodeller Annual,1964-1965:44-57
    [12] DeLaurier J.D., Harris J.M. A Study of Mechanical Flapping Wing Flight[J]. The AeronauticalJournal of the Royal Aeronautical Society,1993,97:277-286
    [13] DeLaurier J.D. The Development of an Efficient Ornithopter Wing[J]. Aeronautical Journal,1993,97:153-162
    [14] Larijani R.F., DeLaurier J.D. A Nonlinear Aeroelastic Model for the Study of Flapping WingFlight[J]. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,2001:399-428
    [15] Human-Powered Aircraft Flaps Wings in Flying First[EB/OL]. http://www.livescience.com/technology/snowbird-ornithopter-human-powered-aricraft-flaps-wings-flying-100923.html,2011
    [16] Pornsin-Sirirak T.N., Tai Y.C., Ho C.M., et al. Microbat: A Palm-sized Electrically PoweredOrnithopter[C].2001NASA/JPL Workshop on Biomorphic Robotics,2001:1-13
    [17] Pornsin-Sirirak T.N., Lee S.W., Nassef H., et al. MEMS Wing Technology for a Battery-powered Ornithopter[C]. The13th IEEE Annual International Conference on MEMS,2000:799-804
    [18] Send W., Fischer M., Jebens K., et al. Artificial Hinged-wing Bird with Active Torsion andPartially Linear Kinematics[C].28th International Congress of the Aeronautical Sciences.Brisbane, ICAS,2012:1-10
    [19] AeroVironment仿蜂鸟机器人[EB/OL]. http://www.rtage.com/news/qyjs/2011/0530/2488.html,2011
    [20] Nano Air Vehicle-Outdoor/Indoor Flight[EB/OL]. http://www.avinc.com/media_gallery/,2012
    [21] Fearing R.S., Chiang K.H., Dickinson M.H., et al. Wing Transmission for a MicromechanicalFlying Insect[C]. IEEE Conference on Robotics and Automation2000, Citeseer,2000:1509-1516
    [22] Deng X., Schenato L., Wu W.C., et al. Flapping Flight for Biomimetic Robotic Insects: PartI-System Modeling[J]. IEEE Transactions on Robotics,2006,22(4):776-788
    [23] Deng X., Schenato L., Sastry S.S. Flapping Flight for Biomimetic Robotic Insects: PartII-Flight Control Design[J]. IEEE Transactions on Robotics,2006,22(4):789-803
    [24] Micromechanical Flying Insect (MFI) Project[EB/OL]. http://robotics.eecs.berkeley.edu/~ronf/MFI/index.html,2013
    [25] Steltz E., Avadhanula S., Fearing R.S. High Lift Force with275Hz Wing Beat in MFI[C].Intelligent Robots and Systems(IROS). IEEE,2007:3987-3992
    [26] Wood R.J. The First Takeoff of a Biologically Inspired At-scale Robotic Insect[J]. IEEETransactions on Robotics,2008,24(2):341-347
    [27] Shang J.K., Combes S.A., Finio B.M., et al. Artificial Insect Wings of Diverse Morphology forFlapping-wing Micro Air Vehicles[J]. Bioinspiration&Biomimetics,2009,4:1-6
    [28] Flapping-wing Microrobots[EB/OL]. http://micro.seas.harvard.edu/research.html,2013
    [29] De Croon G., De Clercq K.M.E., Ruijsink R., et al. Design, Aerodynamics, and Vision-basedControl of the DelFly[J]. International Journal of Micro Air Vehicles,2009,1(2):71-97
    [30] Percin M., Hu Y., Van Oudheusden B.W., et al. Wing Flexibility Effects in Clap-and-fling[C].International Micro Air Vehicles Conference2011.2011:217-228
    [31] De Clercq K.M.E., de Kat R., Remes B., et al. Aerodynamic Experiments on DelFly II:Unsteady Lift Enhancement[J]. International Journal of Micro Air Vehicles,2009,1(4):255-262
    [32] Tanaka H., Matsumoto K., Shimoyama I. Design and Performance of Micromolded PlasticButterfly Wings on Butterfly Ornithopter[C].2008IEEE/RSJ International Conference onIntelligent Robots and Systems, Nice, France, IEEE,2008:3095-3100
    [33] Tanaka H., Hoshino K., Matsumoto K., et al. Flight Dynamics of a Butterfly-type Ornithopter
    [C]. IEEE IRS/RSJ International Conference on Intelligent Robots and Systems, IROS2005,Edmonton, AB, Canada, IEEE Computer Society,2005:310-315
    [34] Fujikawa T., Hirakawa K., Okuma S., et al. Development of a Small Flapping Robot:: MotionAnalysis During Takeoff by Numerical Simulation and Experiment[J]. Mechanical Systems andSignal Processing,2008,22(6):1304-1315
    [35]吴江浩,王济康,孙茂.蜜蜂悬停飞行控制的仿生力学研究[J].航空学报,2007,28(04):776-782
    [36]孙茂,熊燕.微型飞行器的仿生力学——蜜蜂悬停飞行的动稳定性研究[J].航空学报,2005,26(04):385-391
    [37]孙茂,黄华.微型飞行器的仿生力学——蝴蝶飞行的气动力特性[J].北京航空航天大学学报,2006,32(10):1146-1151
    [38]宗光华,贾明,毕树生等.扑翼式微型飞行器的升力测量与分析[J].机械工程学报,2005,41(08):120-124
    [39]徐一村,宗光华,毕树生等.空间曲柄摇杆扑翼机构设计分析[J].航空动力学报,2009,24(01):204-208
    [40]徐一村,毕树生,宗光华.扑翼飞行器柔性翼的动力分析与实验[J].航空动力学报,2008,23(10):1892-1895
    [41]贾明,毕树生,宗光华等.仿生扑翼机构的设计与运动学分析[J].北京航空航天大学学报,2006,(09):1087-1090
    [42]杨淑利.适用于突风环境的微型扑翼飞行器柔性翼气动特性研究[D].西安:西北工业大学,2007
    [43]张亚锋,宋文萍,宋笔锋等.扑翼机翼气动力和惯性力对翼杆结构变形研究[J].航空动力学报,2010,25(07):1561-1566
    [44]张亚锋,宋笔锋,袁昌盛等.微型扑翼飞行器升力特性研究[J].空气动力学学报,2008,26(04):519-522
    [45]张亚锋,宋笔锋,袁昌盛等.微型扑翼飞行器推力特性试验[J].航空动力学报,2007,22(12):2078-2082
    [46]曾锐,昂海松,梅源等.扑翼柔性及其对气动特性的影响[J].计算力学学报,2005,(06):750-754
    [47]曾锐,昂海松.仿鸟复合振动的扑翼气动分析[J].南京航空航天大学学报,2003,35(01):6-12
    [48]昂海松,曾锐,段文博等.柔性扑翼微型飞行器升力和推力机理的风洞试验和飞行试验[J].航空动力学报,2007,(11):1838-1845
    [49]曾锐.仿鸟微型扑翼飞行器的气动特性研究[D].南京:南京航空航天大学,2005
    [50]迟鹏程,张卫平,陈文元等.基于MEMS技术的SU-8仿昆虫微扑翼飞行器设计及制作[J].机器人,2011,33(03):366-370
    [51]周建华,颜景平,王姝歆等.微型仿昆飞行机器人翅运动模型及气动力分析[J].扬州大学学报(自然科学版),2004,7(01):36-39
    [52]周建华,王姝歆,颜景平.拍翅式微型飞行器运动学的研究[J].机械设计,2005,22(09):17-19
    [53]周建华,王姝歆,颜景平.微型仿昆飞行机器人驻飞时动力学分析和仿真[J].扬州大学学报(自然科学版),2005,8(02):49-52
    [54]周建华.微型拍翅式飞行机器人翅运动及控制系统研究[D].南京:东南大学,2005
    [55] WowWee FlyTech Dragonfly[EB/OL]. http://www.wowwee.com/en/products/toys/flight/flytech/dragonfly,2013
    [56] Lingane P.J., Schenectady N.Y. The Design and Fabrication of a Micro MechanicalDragonfly[R]. Schenectady, NY:Union College2009
    [57] Ifly Series Toys Developed by Interactive Toy Concepts Ltd.[EB/OL]. http://inter activetoy.com/IATC1011/home/ifly.html,2013
    [58] Ornithopter Toy Rubber Band Powered Flying Bird308[EB/OL]. http://www.huayiinc.com/176-ornithopter-toy-rubber-band-powered-flying-bird-308.html,2014
    [59] Knoller R. Die Gesetze des Luftwiderstandes[J]. Flug-und Motortechnik (Wien),1909,3(21):1-7
    [60] Albert B. Ein Beitrag zur Erklaerung des Segelfluges[J]. Zeitschrift für Flugtechnik undMotorluftschiffahrt,1912,3:269-272
    [61] Katzmayr R. Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils[M].NACA,1922
    [62] Birnbaum W. Das ebene Problem des schlagenden Flügels[J]. Journal of Applied Mathematicsand Mechanics,1924,4(4):277-292
    [63] Theodorsen T. General Theory of Aerodynamic Instability and the Mechanism of Flutter[M].NACA,1935
    [64] Von Karman T., Burgers J.M."General Aerodynamic Theory,"Aerodynamic Theory: A GeneralReview of Progress[M]. Springer,1935
    [65] Garrick I.E. Propulsion of a Flapping and Oscillation Aerofoil[R]. NACA Report No.567,1936
    [66] Bratt J.B. Flow Patterns in the Wake of an Oscillating Airfoil[R]. Aeronautical ResearchCouncil R&M,2773,1953
    [67] Jones K.D., Dohring C.M., Platzer M.F. Experimental and Computational Investigation of theKnoller-Betz Effect[J]. AIAA Journal,1998,36(7)
    [68] Jones K.D., Duggan S.J., Platzer M.F. Flapping-wing Propulsion for a Micro Air Vehicle[J].AIAA Journal2000-0897,2001:1-14
    [69] Jones K.D., Dohring C.M., Platzer M.F. Wake Structures Behind Plunging Airfoils: aComparison of Numerical and Experimental Results[J]. AIAA Journal96-0078,1996
    [70]章社生,王献孚,吴秀恒. Weis-Fogh机构流体力学[M].国防工业出版社,2002
    [71] DeLaurier J.D. An Aerodynamic Model for Flapping-Wing Flight[J]. Aeronautical Journal,1993,97(964):125-130
    [72] Shyy W., Berg M., Ljungqvist D. Flapping and Flexible Wings for Biological and Micro AirVehicles[J]. Progress in Aerospace Sciences,1999,35(5):455-505
    [73] Vest M.S., Katz J. Unsteady Aerodynamic Model of Flapping Wings[J]. AIAA Journal,1996,34(7):1435-1440
    [74] Smith M.J.C. Simulating Moth Wing Aerodynamics: Towards the Development ofFlapping-wing Technology[J]. AIAA Journal,1996,34(7):1348-1355
    [75] Smith M.J.C. The Effects of Flexibility on the Aerodynamics of Moth Wings: Towards theDevelopment of Flapping Wing Technology[J]. AIAA Journal95-0743,1995
    [76] Tuncer I.H., Kaya M. Thrust Generation Caused by Flapping Airfoils in a BiplaneConfiguration[J]. Journal of Aircraft,2003,40(3):509-515
    [77] Tuncer I.H., Platzer M.F. Thrust Generation due to Airfoil Flapping[J]. AIAA Journal,1996,34(2)
    [78] Platzer M.F., Jones K.D. The Unsteady Aerodynamics of Flapping-foil Propellers[C].Proceedings of9th International Symposium on Unsteady Aerodynamics Lyon, France,Springer, Heidelberg,2000:1-24
    [79] Platzer M.F., NEACE K., PANG C. Aerodynamic Analysis of Flapping Wing Propulsion[J].1993,
    [80] Jones K.D., Platzer M.F. Experimental Investigation of the Aerodynamic Characteristics ofFlapping-wing Micro Air Vehicles[J]. AIAA Journal2003-0418,2003:1-8
    [81] Jones K.D., Platzer M.F. Numerical Computation of Flapping-wing Propulsion and PowerExtraction[J]. AIAA Journal97-0826,1997:1-8
    [82] Jones K.D., Castro B.M., Mahmoud O., et al. A Collaborative Numerical and ExperimentalInvestigation of Flapping-wing Propulsion[J]. AIAA Journal2002-0706,2002:1-14
    [83] Tuncer I.H., Kaya M. Optimization of Flapping Airfoils for Maximum Thrust and PropulsiveEfficiency[J]. AIAA Journal,2005,43(11):2329-2336
    [84] Isogai K., Shinmoto Y. Study on Aerodynamic Mechanism of Hovering Insects[J]. AIAAJournal2001-2470,2001:1-8
    [85] Isogai K., Shinmoto Y., Watanabe Y. Effects of Dynamic Stall on Propulsive Efficiency andThrust of Fapping Airfoil[J]. AIAA Journal,2000,37(10):1145-1151
    [86] Ramamurti R., Sandberg W., L hner R. Simulation of the Dynamics of Micro Air Vehicles[J].AIAA Journal,2000-0896,2000:1-9
    [87] Willmott A.P., Ellington C.P. The Mechanics of Flight in the Hawkmoth Manduca Sexta. II.Aerodynamic Consequences of Kinematic and Morphological Variation[J]. Journal ofExperimental Biology,1997,200(21):2723
    [88] Willmott A.P., Ellington C.P. The Mechanics of Flight in the Hawkmoth Manduca Sexta. I.Kinematics of Hovering and Forward Flight[J]. Journal of Experimental Biology,1997,200(21):2705
    [89] Ellington C.P. The Novel Aerodynamics of Insect Flight: Applications to Micro-air Vehicles[J].Journal of Experimental Biology,1999,202(23):3439-3448
    [90] Sunada S., Ellington C.P. A New Method for Explaining the Generation of Aerodynamic Forcesin Flapping Flight[J]. Mathematical Methods in the Applied Sciences,2001,24(17-18):1377-1386
    [91] Ellington C.P. The Aerodynamics of Hovering Insect flight. I. The Quasi-steady Analysis[J].Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,1984,305(1122):1-15
    [92] Ellington C.P. The Aerodynamics of Hovering Insect Flight. VI. Lift and PowerRequirements[J]. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences,1984,305(1122):145-181
    [93] Ellington C.P. The Aerodynamics of Hovering Insect Flight. IV. Aeorodynamic Mechanisms[J].Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,1984,305(1122):79-113
    [94] Ellington C.P. The Aerodynamics of Hovering Insect Flight. III. Kinematics[J]. PhilosophicalTransactions B,1984,305(1122):41
    [95] Sane S.P. The Aerodynamics of Insect Flight[J]. Journal of Experimental Biology,2003,206(23):4191-4208
    [96] Sane S.P., Dickinson M.H. The Control of Flight Force by a Flapping Wing: Lift and DragProduction[J]. Journal of Experimental Biology,2001,204(15):2607-2626
    [97] Dickinson M.H., Lehmann F.O., Sane S.P. Wing Rotation and the Aerodynamic Basis of InsectFlight[J]. Science,1999,284(5422):1954-1960
    [98] Dickinson M.H., Gotz K.G. Unsteady Aerodynamic Performance of Model Wings at LowReynolds Numbers[J]. Journal of Experimental Biology,1993,174(1):45-65
    [99] Dickinson M. Solving the Mystery of Insect Flight[J]. Scientific American,2001,284(6):48-57
    [100]孙茂.昆虫飞行的高升力机理[J].力学进展,2002,32(03):425-434
    [101] Sun M., Tang J. Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing inFlapping Motion[J]. Journal of Experimental Biology,2002,205(1):55-70
    [102] Sun M. High-lift Generation and Power Requirements of Insect Flight[J]. Fluid DynamicsResearch,2005,37(1-2):21-39
    [103]刘岚.微型扑翼飞行器的仿生翼设计技术研究[D].西安:西北工业大学,2007
    [104]苏进展,方宗德,刘岚.微扑翼飞行器总体设计及实验[J].光学精密工程,2008,16(04):656-661
    [105]刘岚,方宗德,张西金.微型扑翼飞行器的升力风洞试验[J].航空动力学报,2007,22(08):1315-1319
    [106]刘岚,方宗德,侯宇等.微型扑翼飞行器的气动建模分析与试验[J].航空动力学报,2005,20(01):22-28
    [107]侯宇,方宗德,刘岚等.微扑翼飞行器静电驱动机构的机电耦合特性研究[J].机械科学与技术,2005,24(03):303-306
    [108]侯宇,方宗德,刘岚等.仿生微扑翼飞行器机构动态分析与工程设计方法[J].航空学报,2005,26(02):173-178
    [109]朱保利.多自由度扑翼微型飞行器设计研究[D].南京:南京航空航天大学,2007
    [110]朱保利,肖天航,昂海松等.微飞行器前后同频双扑动翼的推进效果[J].清华大学学报(自然科学版),2008,48(02):298-301
    [111]朱保利.复合运动扑翼气动特性的数值模拟[J].南昌大学学报(理科版),2009,33(03):268-271
    [112]左德参.仿生微型飞行器若干关键问题的研究[D].上海:上海交通大学,2007
    [113]左德参,彭松林,张卫平等.扑翼微飞行器飞行时的数值模拟与分析(英文)[J].空气动力学学报,2007,25(01):125-131
    [114]金晓怡,颜景平,周建华.昆虫飞行高升力机理的研究[J].机械设计与研究,2007,23(05):40-43
    [115]于冰.微型仿生扑翼飞行机器人飞行机理和控制方案研究[D].南京:东南大学,2006
    [116]宋书恒.微型飞行器相关气动力特性的数值模拟[D].绵阳:中国空气动力研究与发展中心,2008
    [117]宋书恒,朱国林,张树海.微型飞行器低雷诺数矩形扑翼非定常气动特性的数值模拟[J].空气动力学学报,2008,26(02):239-245
    [118]鲍麟.昆虫翼柔性变形的力学效应研究[D].中国科学院研究生院,2007
    [119]徐明,余永亮,鲍麟.蜻蜓拍翼前飞中模型翼动态柔性变形的气动效应研究[J].中国科学院研究生院学报,2006,23(06):729-735
    [120]刘雄,张宪民,陈严等.基于动态入流理论的水平轴风力机动态气动载荷计算模型[J].太阳能学报,2009,30(4):412-419
    [121]崔尔杰.生物运动仿生力学与智能微型飞行器[J].力学与实践,2004,26(02):1-8
    [122] Entomopter Project[EB/OL]. http://angel-strike.com/entomopter/EntomopterProject.html,2013
    [123] Lu Q.H., Zhang X.M., Fan Y.b.. A Multiscale Optimal Filter Method for Micro-motionMeasurement with High Accuracy[J]. Journal of the International Measurement Confederation,2011,44(1):96-101
    [124]童秉纲,陆夕云.关于飞行和游动的生物力学研究[J].力学进展,2004,34(01):1-8
    [125] Muller T.J., DeLaurier J.D. An Overview of Micro Air Vehicle Aerodynamics[M].2001:6-8
    [126]马丁西蒙斯.模型飞机空气动力学[M].航空工业出版社,2007:15-27
    [127]空气动力学—先驱飞行器的贡献[EB/OL]. http://aerotech.buaa.edu.cn/EFM/Introduction/Book02/00_01.aspx?v=0&p=0&d=0&k=Book02_00_01,2013
    [128]陈文元,张卫平.微型扑翼式仿生飞行器[M].上海交通大学出版社,2010:8-22
    [129]钱翼稷.空气动力学[M].北京航空航天大学出版社,2004:86-160
    [130] Wegener P.P. What Makes Airplanes Fly? History, Science, and Applications of Aerodynamics
    [M]. Springer,1996:90-100
    [131] Grasmeyer J.M., Keennon M.T. Development of the Black Widow Micro Air Vehicle[C].39thAIAA Aerospace Sciences, Meeting&Exhibit. Reno, NV, AIAA,2001:1-9
    [132] Unmanned Aircraft Systems[EB/OL]. http://www.avinc.com/media_gallery/,2013
    [133]2001BAE Systems. MicroStar Micro Air Vehicle,Design to Reality[R]. USA:Martin BAESystems in Cooperation with Lockheed,2001
    [134] Lian Y., Shyy W., Viieru D., et al. Membrane Wing Aerodynamics for Micro Air Vehicles[J].Progress in Aerospace Sciences,2003,39(6-7):425-465
    [135] Shyy W., Ifju P., Viieru D. Membrane Wing-based Micro Air Vehicles[J]. Applied MechanicsReviews,2005,58:283-301
    [136] Ifju P.G., Jenkins D.A., Ettinger S., et al. Flexible-wing-based Micro Air Vehicles[J]. AIAAJournal2002-0705,2002:1-13
    [137] Plantraco MicroFlight[EB/OL]. http://www.microflight.com/,2013
    [138] Lipera L., Colbourne J.D., Tischler M.B., et al. The Micro Craft iSTAR Micro Air Vehicle:Control System Design and Testing[C]. The American Helicopter Society57th Annual Forum.Washington, DC,USA, American Helicopter Society Inc.,2001:1998-2008
    [139]爱普生开发出全球最小飞行机器人[EB/OL]. http://www.mxzdy.com/news/doc/172.html,2004
    [140] The Mesicopter: A Meso-Scale Flight Vehicle[EB/OL]. http://aero.stanford.edu/mesicopter/mesicopter.html,2013
    [141]维杰·库马:善于合作的飞行机器人[EB/OL]. http://www.ted.com/talks/vijay_kumar_robots_that_fly_and_cooperate.html,2012
    [142] GRASP Laboratory-University Of Pennsylvania[EB/OL]. https://www.grasp.upenn.edu/,2013
    [143]9269Ipad Ipod iphone Super Small Mini Helicopter Motor[EB/OL]. http://yifantoys.en.alibaba.com/product/906785336-214867369/9269_Ipad_Ipod_iphone_super_small_mini_helicopter_motor_8cm_i_helicopter.html,2014
    [144]777-286新款飞球UFO遥控模型[EB/OL]. http://detail.1688.com/offer/36334545207.html,2014
    [145] T70充电遥控飞机[EB/OL]. http://item.yixun.com/item-446309.html,2014
    [146]吴子牛.空气动力学(下册)[M].清华大学出版社,2007:101-108
    [147] World Book. World Book-"Mosquito"[M]. World Book Inc.,1989:835
    [148]吴子牛.空气动力学(上册)[M].清华大学出版社,2007:79-106
    [149] Tennekes H. The Simple Science of Flight: From Insects to Jumbo Jets[M]. MIT Press,2009:11-32
    [150]鸟类的骨骼结构[EB/OL]. http://baike.baidu.com/image/3bc6f750b36d02711038c2d2,2014
    [151]鸟类气囊[EB/OL]. http://baike.baidu.com/view/1897059.htm,2014
    [152] Burnie D. Eyewitness Books: Bird[M]. DK Publishing,2008:8-27
    [153]《国家地理》视觉地球(一)[EB/OL]. http://tupian.baike.com/10550/3.html?prd=zutu_thumbs,2014
    [154] How Ornithopters Fly[EB/OL]. http://www.ornithopter.de/english/index_en.htm,2014
    [155]鸽子[EB/OL]. http://www.mypsd.com.cn,2014
    [156] Prum R.O., Brush A.H. Which Came First, the Feather or the Bird[J]. Scientific American,2003,288(3):60-69
    [157] Liu T.S., Kuykendoll K., Rhew R., et al. Avian Wings[J]. AIAA Journal2004-2186,2004:1-24
    [158] Puffins in Peril[EB/OL]. http://www.timeforkids.com/news/puffins-peril/95516,2014
    [159] Puffins[EB/OL]. http://flickrhivemind.net/Tags/tuftedpuffin/Interesting,2014
    [160] Design Friday: the Amazing Bird Photography of Johnfish[EB/OL]. http://modular4kc.com/2009/11/13/design-friday-the-amazing-bird-photography-of-johnfish/,2014
    [161] Bird Flight II[EB/OL]. http://people.eku.edu/ritchisong/554notes3.html,2014
    [162] Wake Turbulence[EB/OL]. http://www.candiler.com.tr/wake-turbulence/,2014
    [163]飞翔的秃鹫[EB/OL]. http://club.tech.sina.com.cn/thread-1940342-1-1.html,2014
    [164]大雁编队飞行[EB/OL]. http://www.icpcw.com/Information/Tech/News/2202/220257.htm,2014
    [165] Dalton S. The Miracle of Flight[M]. Firefly Books Ltd.,1999:46-108
    [166] A. David E. Nature's Flyers: Birds, Insects, and the Biomechanics of Flight[M]. The JohnsHopkins University Press,2004:215-230
    [167] Greenewalt, H. Crawford. Hummingbirds[M]. Doubleday&Company, Inc,1960:223-225
    [168] Tobalske B.W., Warrick D.R., Clark C.J., et al. Three-dimensional Kinematics of HummingbirdFlight[J]. Journal of Experimental Biology,2007,210(13):2368-2382
    [169] Sane S.P. Steady or Unsteady? Uncovering the Aerodynamic Mechanisms of Insect Flight[J].The Journal of Experimental Biology,2011,214:379-351
    [170] Sane S.P., Dickinson M.H. The Aerodynamic Effects of Wing Rotation and a RevisedQuasi-steady Model of Flapping Flight[J]. Journal of Experimental Biology,2002,205(8):1087-1096
    [171]王惠民.流体力学基础(第2版)[M].清华大学出版社,2005:44-63
    [172]王福军.计算流体动力学分析——CFD软件原理与应用[M].清华大学出版社,2004:8-62
    [173]阎超.计算流体力学方法及应用[M].北京航空航天大学出版社,2006:17-26
    [174]黄克智,薛明德,陆明万.张量分析[M].清华大学出版社,2003
    [175] Patankar S.V., Spalding D.B. A Calculation Procedure for Heat, Mass and Momentum Transferin Three-dimensional Parabolic Flows[J]. International Journal of Heat and Mass Transfer,1972,15(10):1787-1806
    [176] Miao J.M., Ho M.H. Effect of Flexure on Aerodynamic Propulsive Efficiency of FlappingFlexible Airfoil[J]. Journal of Fluids and Structures,2006,22(3):401-419
    [177] Lai J.C.S., Platzer M.F. Jet Characteristics of a Plunging Airfoil[J]. AIAA Journal,1999,37(12):1529-1537
    [178]刘雄,张宪民,陈严等.水平轴风力机结构动力响应分析[J].太阳能学报,2009,30(06):804-809
    [179] Rayner J.M.V. A Vortex Theory of Animal Flight. Part2. The Forward Flight of Birds[J].Journal of Fluid Mechanics,2006,91(04):731-763
    [180] Kuethe A.M., Chow C.Y. The Finite Wing, Foundations of Aerodynamics[M].4th ed,JohnWildy, New York,1986:145-164
    [181] Jones R.T. The Unsteady Lift of a Wing of Finite Aspect Ratio[J]. NACA Report681,1940:31-38
    [182] Wang N.F, Zhang X.M. Mechanical Design of a Compliant Prosthesis Finger by StructuralTopology Optimization[C].2012IEEE International Conference on Robotics and Biomimetics(ROBIO2012).2012:1650-1655
    [183] Galinski C., Zbikowski R. Insect-like Flapping Wing Mechanism Based on a Double SphericalScotch Yoke[J]. Journal of the Royal Society Interface,2005,2(3):223-235
    [184] Robert L.N.. Design of Machinery5th Edition[M]. McGraw-Hill Press,2012:420-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700