Ka波段硅基分布式MEMS传输线移相器射频特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的射频微机电系统(RF MEMS:Radio Frequency MicroElectroMechanical Systems)器件,分布式MEMS传输线(DMTL: Distributed MEMS Transmission Line)移相器因其具有损耗低、体积小、重量轻、以及与集成电路加工工艺相兼容等特点,已经越来越广泛地应用在相控阵雷达、微波通信、卫星通信以及微波测量等领域,其工作稳定性、可靠性以及射频性能在应用系统中起着关键作用。伴随着DMTL移相器的广泛应用,其射频性能问题一直是人们关注的焦点之一。特别是近年来,DMTL移相器朝多位数字式结构、更高频通信系统应用以及集成化方向发展,从而对DMTL移相器的机械性能、射频性能以及封装结构提出了新的要求。为此,本文对硅基DMTL移相器MEMS电容开关的下拉电压、响应时间和动态特性进行了理论分析和数值计算,并针对传统毫米波段DMTL移相器的射频性能、分析方法和封装结构在实际应用中存在的问题进行了深入系统地研究。
     鉴于DMTL移相器含有可动机械部件,其机械性能和射频特性等理论分析方法还不够完善,因此,本文首先针对静电驱动分布式MEMS传输线移相器的下拉电压和响应时间展开研究。采用理论模型和仿真验证相结合的方法从多个角度对DMTL移相器的MEMS电容开关进行机械性能分析,探讨和总结MEMS桥几何尺寸、材料性能等因素与下拉电压和响应时间之间的基本规律,目的是为RF MEMS器件的分析、设计和应用提供一定的理论依据。
     其次,本文针对DMTL移相器的MEMS桥动态特性展开研究,在考虑多种物理因素情况下建立MEMS桥的二维分布动态方程,并采用有限元多物理耦合场方法研究静态加载和动态加载下MEMS桥的动态特性,从而获得了在静态和动态加载情况下残余应力、伸长效应、加载电压、外界机械力的加载模式以及加载模式的振幅、周期和频率对MEMS桥的非线性动态特性影响的基本规律,为分布式MEMS传输线移相器MEMS桥设计和可靠性研究提供了理论基础。
     第三,本文针对传统毫米波段DMTL移相器射频性能改进展开研究,设计出一种硅基锯齿形DMTL移相器匹配电路结构。该锯齿形DMTL移相器结构特点是把加载MEMS金属桥处共面波导信号线设计成不连续,在传输线上引入串联电感抵消并联MEMS桥所产生的电容,从而有效实现传输线阻抗匹配和降低器件损耗。采用等效电路理论和软件仿真相结合的方法对器件的射频性能进行分析和仿真优化,结果表明:与传统DMTL移相器相比,所设计的硅基锯齿形DMTL移相器的射频性能和可靠性获得明显改进。
     第四,本文根据毫米波段DMTL移相器结构特点,设计出封装RF MEMS器件的芯片级微封装结构,该微封装结构采用相兼容的MEMS工艺直接在器件衬底上制备微封装结构,而不是在器件衬底键合上采用陶瓷材料、合金材料、金属、玻璃或硅等材料制成的封装帽。通过应用三维电磁仿真工具分析了器件衬底厚度、垂直互连线半径和微空腔高度对器件射频性能的影响,仿真结果表明:优化的微封装结构对器件射频性能影响非常小。
     最后,根据硅基锯齿形DMTL移相器MEMS电容开关的结构特点,设计了制备MEMS电容开关的表面微机械加工工艺流程以及相应的版图,且该工艺流程只需4块掩模板。测试结果表明:器件射频性能的模拟值和测试结果吻合很好,证明了等效电路理论与仿真工具相结合的方法分析RF MEMS器件的可行性;器件的微结构已完全成型,立体感强,与介质层无粘连,桥本身也非常挺直。
As a new type of radio frequency microelectromechanical systems (RF MEMS) device, the distributed MEMS transmission line (DMTL) phase shifter has the advantages of lower loss, small volume, lighter weight and compatibility with IC fabrication process. These characteristics make DMTL phase shifter widely apply at phased-array radar, microwave communications, satellite communications and microwave measurement etc, and the stability, reliability and RF performances of DMTL phase shifter play key roles in those applied systems. However, The RF performance of DMTL phase shifter is always the focus of attention. Especially in recent years, the trends of development about DMTL phase shifter are multi-bit digital structure, high frequency system application and system integration, which put forward new requirements about mechanical characteristics, RF performance and packaging structure of DMTL phase shifter. Therefore, the theoretical analysis and numerical calculation of pull-down voltage, response time and dynamic characteristics about MEMS capacitive switch of DMTL phase shifter on silicon substrate are performed in this paper. Moreover, the existing problem of traditional millimeter-wave band DMTL phase shifter at practical application, including RF performance, analysis method and packaging structure, is deeply researched.
     Considering the fact that the DMTL phase shifter concludes the movable mechanical components, the theoretical analysis of mechanical characteristics and RF performances etc suffers from a series of limitations. Therefore, the pull-down voltage and response time of electrostatic driven DMTL phase shifter are investigated in this paper firstly. The mechanical characteristics of MEMS capacitive switch of DMTL phase shifter are analyzed using method combining theoretical model and simulation verification to discuss and conclude elementary relations geometric dimension and material performance of MEMS bridge with pull-down voltage and response time. Therefore, these results provide the theory basis for analysis, design and application of RF MEMS devices
     Secondly, in order to investigate the dynamic characteristics of MEMS bridge about DMTL phase, the two-dimension distributed dynamic equation of MEMS bridge which takes into account multi-physical factors and effects is presented. The dynamic characteristics of MEMS bridge under static and dynamic loading conditions are analyzed by finite element multi-physical coupled field method to obtain elemental relations about influence of residual stress, stretching effects, applied voltage, different mechanical force loading modes and the amplitude, period and frequency of loading mode on nonlinear dynamic character of MEMS bridge. Therefore, these results provide the theory basis for design and reliability analysis of MEMS bridge about DMTL phase shifter.
     Thirdly, a circuit match structure of saw-shape DMTL phase shifter on silicon substrate is designed to improve the RF performances of traditional millimeter-wave band DMTL phase shifter. The structure characteristics of saw-shape DMTL phase shifter are that the center conductor of CPW, where the MEMS bridges are loaded, is discontinuous and narrow, so that the series inductance is introduced on the transmission line to offset shunt capacitance from the MEMS bridges, realize impedance match of transmission line and reduce the loss of device. The RF performances analysis and simulation optimization of saw-shape DMTL phase shifter on silicon substrate are performed using method combining equivalent circuit and software simulation. The results show that the RF performance and reliability of saw-shape DMTL phase shifter on silicon substrate obtain obvious improvements comparing with the traditional DMTL phase shifter.
     Fourth, a chip level micropackaging structure, which package RF MEMS devices, is designed based on structure character of millimeter-wave band DMTL phase shifter. The micropackaging structure is directly fabricated on substrate of devices by compatibility with MEMS fabrication processes and is different from bonding packaging cap on substrate of devices which are fabricated by the ceramic material, alloy, metal, glass or silicon etc. The influences of the substrate thickness, vertical feedthrough radius and microcavity height of micropackaging structure on RF performances of device are analyzed by 3-D EM simulation tool. The results show that optimized micropackaging structure slightly impact on RF performance of device.
     Finally, the surface micromechanical process flow fabricating MEMS capacitive switch and corresponding layout are designed according to the structure character of MEMS capacitive switch about saw-shape DMTL phase shifter on silicon substrate, and the process flow only requires 4 masks for MEMS capacitive switch. The measurement results show that the MEMS bridge fully suspend over the signal line of CPW, do not adhere to dielectric layer and has very strong three-dimension effect under up-state. Moreover the simulation results agree with test results very well, this demonstrates that the method combining equivalent cicuit theory and simulation tool, which analyze the RF performance of RF MEMS devices, is feasible.
引文
1张光义,王德纯等.空间探测相控阵雷达.科学出版社, 2001:96~99
    2 S. Drabowitch, A. Papiernik, H. D. Griffiths, J. Encinas, and B. L. Smith. Modern Antennas (2nd edition). Springer Netherlands, 2005:113~122
    3 H. J. Visser. Array and Phased Array Antenna Basics. John Wiley & Sons, Ltd., England, 2005:145~153
    4 T. A. Milligan. Modern Antenna Design (2nd edition). John Wiley & Sons. Inc., New Jersey, USA, 2005:214~218
    5 V. Caekenberghe, K. Vaha-Heikkila, T. Rebeiz and G. Sarabandi. Ka-Band MEMS TTD Passive Electronically Scanned Array (ESA). IEEE Antenna and Propagation Society International Symposium. New Mexico, USA, 2006:513~516
    6 C .T. Rodenbeck, S. G. Kim, W. H. Tu, M. R. Coutant, S. Hong, M.Y. Li and K. Chang. Ultra-Wideband Low-cost Phased-Array Radars. IEEE MTT Trans.. 2005, 53(12):3697~3703
    7贾春燕,李冬文,叶莉华,崔一平.相控阵雷达与光控相控阵雷达.电子器件. 2006, 29(2):598~601
    8姚中兴,黄立伟.微波技术与天线.西安电子科技大学出版社, 1993:134~138
    9 V. K. Varadan, D. K. Ghodgaonkar and V. V. Varadan. Ceramic Phase Shifters for Electronically Steerable Antenna System. Microwave Journal. 1992, 35(3):116~127
    10 http://www.ems-t.com
    11 http://www.globalspec.com/Supplier/profile/CERNEX
    12 Y. Kang. Fast RF Ferrite Phase Shifter for High-Power Application. 20th International Linac Conference. Monterey, California, 2000:1012~1014.
    13沙侃,车文荃,温勇武,温俊鼎.铁氧体大功率移相器研究.雷达于对抗. 1999, 12(3):33~37
    14薛正辉,杨仁明,李伟明,任武.微波固态电路.北京理工大学出版社, 2004:321~326
    15 K. Nakajima, N. Suematsu, E. Taniguchi, H. Takeda, T. Shinbo, Y. Sasaki, and T. Takagi. L-band Glass-Epoxy 5-bit Phase Shifter Module Using SW-bank Chips and Low Cost Chips. IEEE MTT-S International Microwave Symposium Digest. Boston, MA, 2000:1593~1596
    16沈亚,陈继义,陈堂胜,陈效建,林金庭. S波段单片四位数控移相器.固体电子学研究与进展. 1999, 19(2):139~143
    17 C. Andricos, I. J. Bahl and E. L. Grin. C-Band 6-Bit Monolithic Phase Shifter. IEEE Trans. Microwave Theory Technology. 1985, 33 (12):1591~ 1596
    18 T. A. Murphy, J. W. Gipprich, M. E. Hines and D. Kruger. A 6-Bit GMIC Phase Shifter for 6~18GHz. IEEE MTT-S International Microwave Symposium Digest. Albuquerque, NM, 1992:1171~1174
    19 B. Glance. A Fast Low-Loss Low-Drive 14-GHz Microstrip PIN Phase Shifter. IEEE Trans. Microwave Theory Technology. 1980, 28(6):669~671
    20 C. L. Chen. A Low Loss Ku-Band Monolithic Analog Phase Shifter. IEEE Trans. Microwave Theory Technology. 1987, 35(3):315~320
    21 C. F. Campbell and S. A. Brown. A Compact 5-Bit Phase-Shifter MMIC for K-Band Satellite Communication Systems. IEEE Trans. Microwave Theory Technology. 2000, 48(12):2652~2656
    22 D. Teeter. Ka-Band GaAs HBT PIN Diode Switches and Phase Shifters. IEEE MTT-S International Microwave Symposium Digest. San Diego, CA, 1994:451~454
    23 K. Maruhashi, H. Mizutani, and K. Ohata. A Ka-Band 4-Bit Monolithic Phase Shifter Using Unresonated FET Switches. IEEE MTT-S International Microwave Symposium Digest. Baltimore, Maryland, U.S.A., 1998: 51~54
    24 V. E. Dunn, N. E. Hodges, W. Alyassini, M. Feng, and C. L. Lau. MMIC Components for MM-Wavelength Active Arrays. Microwave Journal. 1989, 32(12):109~116
    25 A. W. Jacomb-Hood, D. Seielstad and J. D. Merrill. A Three-Bit Monolithic Phase Shifter at V-Band. IEEE MTT-S International Microwave Symposium Digest. Las Vegas, Nevada, 1987:81~84
    26 S. Weinreb, W. Berk, S. Duncan and N. Byer. Monolithic Varactor 360°Phase Shifters for 75–110GHz. International Semiconductor DeviceResearch Conference. Charlottesville, VA, 1993:456~462
    27 K. Zuefle, F. Steinhagen, W. H. Haydl and A. Hulsmann. Coplanar 4-Bit HEMT Phase Shifters for 94GHz Phased Array Radar Systems. IEEE MTT-S International Microwave Symposium Digest. Anaheim, CA, 1999:303~306
    28 R. Ison and M. Hawkins. Comparative Evaluation of MEMS and Ferroelectric Technologies in Phase Shifter Design. IEEE Antennas and Propagation Society International Symposium. Salt Lake City, USA, 2000:808~811
    29 J. B. L. Rao and D. P. Patel. Voltage-Controlled Ferroelctric Lens Phase Arrays. IEEE Transactions on Antennas and Propagation. 1999, 47(9):458~468
    30 F. D. Flaviis. Full Wave Analysis of Coplanar Phase Shifter Printed on High Purity Ferroeltctric Material. IEEE MTT-S International Microwave Symposium Digest. Boston, MA, 2000:367~370
    31 A. Kozyrev and V. Osadchy. Application of Ferroelectric in Phase Shifter Design. IEEE MTT-S International Microwave Symposium Digest. Boston, MA, 2000:1355~1358
    32 F. W. V. Keuls and C. H. Muller. Room Temperature Thin Film BaxSr1-xTiO3 Ku-Band Coupled Microstrip Phase Shifters: Effects of Film Thickness, Dopping, Annealing and Substrate Choice. IEEE MTT-S International Microwave Symposium Digest. Anaheim, CA, 1999:737~740
    33 R. Romanofsky and J. Bemhard. A K-Band Linear Phased Array Antenna Based on Ba0.60Sr0.40TiO3 Thin Film Phase Shifter. IEEE MTT-S International Microwave Symposium Digest. Boston, MA, 2000:1351~1354
    34 P. B. Ruffin and S. J. Burgett. Recent Progress in MEMS Technology Development for Military Applications. Proceedings of SPIE-The International Society for Optical Engineering. Newport Beach, CA, 2001:1~12
    35 H. G. Lee, J. Y. Park, J. U. Bu and Y. Yee. MEMS Technology for Advanced Telecommunication Applications. International Journal of High Speed Electronics and Systems. 2002, 12(2): 215~233
    36 K. Grenier, L. Rabbia, A. Tackacs and P. Pons. MEMS Technology as aContender for the Future Wireless Applications. Proceedings of the International Semiconductor Conference. Sinaia, Romania, 2001:101~110
    37吕志清,胡爱民. MEMS-IDT声表面波陀螺.微纳电子技术. 2003, 40(4):27~29
    38杨春生,丁桂甫,赵小林,张琛,余晋岳.微马达结构、气隙磁场和绕组层数对微马达输出力矩的影响.微细加工技术. 2001, 38(1):50~53
    39董海峰,贾玉斌,郝一龙. MEMS隧道加速度计的系统分析与设计.微细加工技术. 2003,40(7):295~297
    40 J. B. Rizk and G. M. Rebeiz. W-band CPW RF MEMS Circuits on Quartz Substrates. IEEE Transactions on Microwave Theory and Techniques. 2003 51(7):1857~1862
    41 R. Aigner. RF-MEMS Filters Manufactured on Silicon: Key Facts about Bulk-Acoustic-Wave Technology. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Grainau, Germany,2003:157~161
    42 C. L. Goldsmith, Z. M.Yao, S. Eshelman and D. Denniston. Performance of Low-Loss RF MEMS Capacitive Switches. Microwave and Guided Wave Letters. 1998, 8(8):269~271
    43 G. M. Rebeiz. RF MEMS: Theory, Design, and Technology. John Wiley and Sons Ltd., New Jersey, USA, 2003
    44 V. Varadan, K. J. Vinoy, K. A. Jose, V. K. Varadan and U. Zoelzer. RF MEMS and Their Applications. John Wiley and Sons Ltd., New Jersey, USA, 2003
    45 R. R. Romanofsky. Array Phase Shifters: Theory and Technology. Glenn Technical Reports of National Aeronautics and Space Administration USA. 2007:1~23
    46 M. Kim, J. B. Hacker, R. E. Mihailovich and J. F. DeNatale. A DC-to-40GHz Four-Bit RF MEMS True-Time Delay Network. IEEE Microwave Wireless Comp. Letter. 2001, 11(2):56~58
    47 J. B. Hacker, R. E. Mihailovich, M. Kim and J. F. DeNatale, A Ka-Band Three-Bit RF MEMS True-Time Delay Network. IEEE Trans. Microwave Theory Technology. 2003, 51(1):305~308
    48 G. L. Tan, R. E. Mihailovich, J. B. Hacker, J. F. DeNatale, and G. M. Rebeiz. Low-Loss 2-and 4-Bit TTD MEMS Phase Shifters Based on SP4TSwitches. IEEE Trans. Microwave Theory Technology. 2003,
    51(1):297~304
    49朱健,周百令,林金庭,郁元卫,陆乐.开关线型四位数字MEMS移相器.固体电子学研究与进展. 2005, 25(3):344~348
    50 R. N. Hardin and E. J. Downey. Electronically Variable Phase Shifter Utilizing Variable Capacitance Diodes. Proc. IRE.. 1960, 5(48):944~945
    51 M. E. Bialkowskl and N. C. Karmakar. An L-Band 90 Hybrid Coupled Phase Shifter Using UHF Band P-I-N Diodes. Microwave Optical Technology Letter. 1994, 4(21):51~54
    52 A. Malczewski. X-Band RF MEMS Phase Shifters for Phase Array Application. IEEE Micorwave Wireless Comp. Letter. 1999, 9(12):517~519
    53 H. T. Kim, J. H. Park and J. H. Yim. A Compact V-Band 2-Bit Reflection-Type MEMS Phase Shifter. IEEE Micorwave Wireless Comp. Letter. 2002, 12(9):324~326
    54 N. S. Barker and G. M. Rebeiz. Distributed MEMS True-Time Delay PhaseShifters and Wide-Band Switches. IEEE Trans. Microwave Theory Technology. 1998, 46(11):1881~1890
    55 N. S. Barker, G. M. Rebeiz. Optimization of Distributed MEMS Phase Shifters. IEEE MTT-S International Microwave Symposium Digest. Anaheim, CA, 1999:299~302
    56 J. S. Hayden and G. M. Rebeiz. Low-Loss Cascadable MEMS Distributed X-Band Phase Shifters. IEEE Microwave and Guided Wave Letters. 2000, 10(4):142~144
    57 A. Borgioli, Y. Liu, A. S. Nagra. Low-loss Distributed MEMS Phase Shifter. IEEE Microwave and Guided Wave Letter. 2000, 10(1):7~10
    58 H. T. Kim, J. H. Park, Y. K. Kim and Y. Kwon. V-Band Low-Loss and Low-Voltage Distributed MEMS Digital Phase Shifter Using Metal-Air-Metal Capacitors. IEEE MTT-S International Microwave Symposium Digest. Seattle, Washington, USA, 2002:341~344
    59 J. S. Hayden and G. M. Rebeiz. A Low-Loss Ka-Band Distributed MEMS 2-Bit Phase Shifter Using Metal-Air-Metal Capacitors. IEEE MTT-S International Microwave Symposium Digest. Seattle, Washington, USA, 2002:337~340
    60 J. S. Hayden and G. M. Rebeiz. Very Low Loss Distributed X-Band And Ka-Band MEMS Phase Shifters Using Metal-Air-Metal Capacitors. IEEE Trans. Microwave Theory Technolgy. 2003, 51(1):309~314
    61 J. J. Hung, L. Dussopt and G. M. Rebeiz. Distributed 2-and 3-Bit W-Band MEMS Phase Shifter on Glass Substrates. IEEE Transactions Microwave Theory and Techniques. 2004, 52(2):600~606
    62 A. Frang, S. Majlis, and B. Yeop. Inductively-Tuned K-Band Distributed MEMS Phase Shifter. IEEE International Conference on Semiconductor Electronics. Kuala Lumpur, Malaysia, 2006:208~212
    63 B. Lakshminarayanan and T. M. Weller. Design and Modeling of 4-bit Slow-Wave MEMS Phase Shifters. IEEE Transactions on Microwave Theory and Techniques. 2006, 54(1):120~127
    64 H. S. Gamble, B. M. Armstrong, J. N. Mitchell, Y. Wu, V. F. Fusco and J. A. C. Stewart. Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon. IEEE Microwave and Guided Wave Letters. 1999, 9(10):395~397
    65 H. Henr, S. Gonzague, V. Matthieu, C.Alain and D. Gilles. Ultra Low Loss Transmission Lines on Low Resistivity Silicon Substrate. IEEE MTT-S International Microwave Symposium Digest. Boston MA, 2000:1809~1812
    66 D. Lederer and J. P. Raskin. Substrate Loss Mechanisms for Microstrip and CPW Transmission Lines on Lossy Silicon Wafers. Solid-State Electronics. 2003, 47(11):1927~1936
    67 T.S. Ji. Distributed MEMS Phase Shifters by Microstereolithography on Silicon Substrates for Microwave and Millimeter Wave Applications. Smart Material and Structure. 2001, 10(6):1224~1229
    68 B. Lakshminarayanan and T. Weller. Distributed MEMS Phase Shifters on Silicon Using Tapered Impedance Unit Cells. IEEE MTT-S International Microwave Symposium Digest. Seattle, Washinton, USA, 2002:1237~1240
    69 W. Palei, A.Q. Liu, A.B. Yu, A. Alphones amd Y.H. Lee. Optimization of Design and Fabrication for Micromachined True Time Delay (TTD) Phase Shifters. Sensors and Actuators A:Physical. 2005, 119(2):446~454
    70 G. Bartolucci, S. Catoni, F. Giacomozzi, R. Marcelli, B. Margesin and D. Pochesci. Realisation of Distributed RF MEMS Phase Shifter with Very Low Number of Switches. Electronics Letters. 2007, 43(23):234~236
    71 C. Goldsmith, J. Ehmke, A. Malczewski, and B. Pillas. Lifetime Characterization of Capacitive RF MEMS Switches. IEEE MTT-S International Microwave Symposium Digest. Phoenix, AZ, 2001:227~230
    72 D. Peroulis, S. P. Pacheco and K. Sarabandi, et al. Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches. IEEE Transactions on Microwave Theory and Technniques. 2003, 51(1):259~270
    73 K. J. Rangra, R. Marcelli, G. Soncini, F. Giacomozzi, B. Margesin, L. Lorenzelli, M. Mulloni and C. Collini. Micromachined Low Actuation Voltage RF MEMS Capacitive Switches, Technology and Characterization. International Semiconductor Conference Proceedings. Sinaia, Romania, 2004:165~168
    74 E. K. I. Hamad, A. M. E. Safwat and A. S. Omar. 2D Coupled Electrostatic-Mechanical Model for Shunt-Capacitive MEMS Switch Based on Matlab Program. IEEE International Conference on Wireless Communications and Applied Computational Electromagnetics. Hilton Hawaiian Village, Honolulu, Hawaii, 2005:754~758
    75 S. D. Lee, B. C. Jun, T. J. Baek, S. K. Kim, S. D. Kim, J. K. Rhee and K. Mizuno. Studies on the Pull-Up RF MEMS Switch for the Lower Actuation Voltage and High Speed Using Double Electrode. Asia-Pacific Microwave Conference Proceedings. Suzhou, China, 2005:741~744
    76 D. Elata and V. Leus. Switching Time, Impact Velocity and Release Response, of Voltage and Charge Driven Electrostatic Switches. International Conference on MEMS, NANO and Smart Systems. Banff Alberta, Canada, 2005:331~334
    77 Y. T. Song, H. Y. Lee and M. Esashi. Low Actuation Voltage Capacitive Shunt RF-MEMS Switch Having a Corrugated Bridge. IEICE Transactions on Electronics. 2006, E89-C (12):1880~1887
    78 C. L. Dai and J. H. Chen. Low Voltage Actuated RF Micromechanical Switches Fabricated Using CMOS-MEMS Technique. Microsystem Technologies. 2006, 12(12):1143~1151
    79 E. M. Abdel-Rahman, M. I. Younisand A. H. Nayfeh, Characterization of the mechanical behaovior of an electrically actuated mircobeam, J. Micromech. Microeng., Vol.12(2002), pp.759~766.
    80 M.I. Younis, E.M. Abdel-Rahman and A. Nayfeh, A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS. J. Microelectromech. Syst.. 2003, 12(5):672~679
    81 A. H. Nayfeh, M. I. Younis and E.M. Abdel-rahman. Reduced-Order Models for MEMS Applications. Nonlinear Dynamics. 2005, 41(1-3):211~236
    82 M. I. Younis, R. Miles and D. Jordy. Investigation of the Response of Microstructure under the Combined Effect of Mechanical Shock and Electrostatic Forces. J. Micromech. Microeng.. 2006, 16(11):2463~2474
    83 M. I. Younis, F. M. Al-Saleem, R. Miles and Q. Su. Characterization for the Performance of Capacitive Switches Activated by Mechanical Shock. J. Micromech. Microeng.. 2007, 17(7):1360~1370
    84 M. I. Younis, F. Al-Saleem and D. Jordy. The Response of Clamped-Clamped Microbeams under Mechanical Shock. International Journal of Nonlinear Mechanics. 2007, 42(4):643~657
    85 Y. Liu, K. M. Liew, Y. C. Hon and X. Zhang. Numerical Simulation and Analysis of an Electroactuated Beam Using a Radial Basis Function. Smart Materials and Structures. 2005, 14(6):1163~1171
    86 S. Z. You, Y. F. Long, Y. S. Xu, Z. Q. Zhu, Y. L. Shi, and Z. S. Lai. Fabrication and Characterization of Thick Porous Silicon Layers for RF Circuits. Sensors and Actuators A:Physical. 2003,108(1-3):117~120
    87 Y. F. Long, Z. Q. Zhu and Z. S. Lai. A Novel Technology for Post-Treating of Porous Silicon Thick Films in H2O2. Chinese Journal of Semconductors. 2003, 24(6):574~578
    88 J. Qing, Y. L. Shi, W. Li, Z. S. Lai, Z. Q. Zhu, and P, S. Xin. Ka-Band Distributed MEMS Phase Shifters on Silicon Using AlSi Suspended Membrane. Journal of Microelectromechanical Systems. 2004, 3(3):542~549
    89郭方敏,朱自强,赖宗声,朱守正等.压控式毫米波MEMS移相器的可动薄膜.半导体学报. 2003, 24(6):631~636
    90 F. Guo, Y. Zhang, J. Lin, J. Kong, S. Zhu, Z. Lai and Z. Zhu. MEMS Phase Shifters On Low-resistivity Silicon Wafer. IEEE International Conference on Mechatronics and Automation. Luoyang, China, 2006:497~501
    91 F. M. Guo, Z. Q. Zhu, Y. F. Long, W. M. Wang, S. Z. Zhu, Z. S. Lai, N. Li, G.Q. Yang and W. Lu. Study on Low Voltage Actuated MEMS RF Capacitive Switches. Sensors and Actuators A: Physical. 2003, 108(1-3):128~133
    92李炜,石艳玲,忻佩胜,朱自强,赖宗声.电容式MEMS开关中弹性膜应力对驱动电压的影响.固体电子学研究与进展. 2003, 23(4):514~519
    93娄建中,赵正平,杨瑞霞等.射频微机械移相器.半导体技术. 2004, 29(10):1815~1828
    94 J. Z. Lou and Z. B. Zhao. A Novel DMTL MEMS Phase Shifter. 4th International Conference on Microwave and Millimeter Wave Technology. Beijing, China, 2004:558~561
    95 M. Miao, Y. F. Jin, G. Y. Wu and Y. L. Hao. Design and analysis of a bulk micromachined distributed digital microwave phase shifter on glass substrate. 8th International Conference on Solid-State and Integrated Circuit Technology. Shanghai, China, 2006:539~541
    96 D. Elata. Modeling the Electromechanical Response of RF-MEMS Switches.
    7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems. Como, Italy, 2006:1162~1168
    97龙永福,石艳玲,赖宗声,朱自强,朱荣锦,忻佩胜,李炜.偏置电压对射频/微波MEMS电容开关寿命的影响.微电子学. 2004, 34(1):30~33
    98龙永福,朱自强,赖宗声等.射频/微波MEMS Shunt开关的开启时间研究.电子学报. 2002, 30(8):1204~1206
    99 W. M. Zhang and G. Meng. Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors under Parametric Excitation. IEEE Sensors Journal. 2007, 7(3):370~380
    100 M. I. Younis, D. Jordy and J. M. Pitarresi. Computationally Efficient Approaches to Characterize the Dynamic Response of Microstructures under Mechanical Shock. Journal of Microelectromechanical Systems. 2007, 16(3):628~638
    101 J. Kimberley, I. Chasiotis and J. Lambros. Failure of Microelectromechanic-al Systems Subjected to Impulse Loads. International Journal of Solids and Structures. 2008, 45(2):497~512
    102 S. A. Emam. A Theoretical and Experimenal Study of Nonlinear Dynamics of Buckled Beams. Doctor thesis of Virginia Polytechnic Institute and StateUniversity. 2002
    103 B. Choi and E. G. Lovell, Improved Analysis of Microbeams under Mechanical and Electrostatic Loads. Journal of Micromechanics and Microengineering. 1997, 7(1):24~29
    104 J. I. Seeger and S. B. Crary. Stabilization of Electrostatically Actuated Mechanical Devices. International Conference on Solid-State Sensors and Actuatator. Chicago IL, USA, 1997:1133~1136
    105 F. Shi, P. Ramesh, and S. Mukherjee. Dynamic Analysis of Microelectrome-chanical System (MEMS). International Journal for Numerical Methods in Engineering. 1996, 39(24):4119~4139
    106 G. McFeetors, and M. Okoniewski. Distributed MEMS Analog Phase Shifter With Enhanced Tuning. IEEE Microwave and Wireless Components Letters. 2006, 16(1):34~36
    107 B. Lakshminarayanan and T.M. Weller. Optimization and Implementation of Impedance-Matched True-Time-Delay Phase Shifters on Quartz Substrate. IEEE Transactions on Microwave Theory and Techniques. 2007, 55(2):335~342
    108 C. L. Fu, F. S. Pan, H. W. Chen, S. C. Feng, W. Cai and C. R. Yang. Coplanar Phase Shifters Based on Ferroelectric Thin Films. International Journal of Infrared and Millimeter Waves. 2007, 28(3):229~235
    109 K. Topalli, ?. A. Civi, S. Demir, S. Koc and T. Akin. A Monolithic Phased Array Using 3-bit Distributed RF MEMS Phase Shifters. IEEE Transactions on Microwave Theory and Techniques. 2008, 56(2):270~277
    110 Y. Hung. Calculation of Microwave Parameters of CPW wich a Buffer Layer. the 3rd International Conference on Microwave and Millimeter Wave Technolog Proceedings. Beijing, China. 2002:875~878
    111 H. Chung and W. S. C. Chang. Modeling and Optimization of Traveling-Wave LiNbO3 Interferometric Modulators. IEEE Journal of Quantum Electronics. 1991, 27(3):608~617
    112 M. A. S. El-Din, A. M. E. Safwat, H. F. Ragaie and H. Haddara. Design Equations for the On-State Capacitance of the RF MEMS Shunt Switch. 21st National Radio Science Conference. Cairo, Egypt., 2004:1~5
    113 J. B. Muldavin and G. M. Rebeiz. High-isolation CPW MEMS ShuntSwitches. Part 1: IEEE Trans. IEEE Transactions on Microwave Theory and Techniques. 2000, 48(6):1045~1052
    114 H. M. Greenhouse. Design of Planar Rectangular Microelectronic Inductors. IEEE Transactions on Parts, Hybrids, and Pachaging. 1974, 10(2):101~109
    115 K. C.Gupta, R. Garg and I. Bahl. Microstrip Lines and Slotlines (2nd edition). New York: Artech House, 1996
    116 K. I. Kim, J. M. Kim, G. C. Hwang, C. W. Baek and Y. K. Kim. Packaging for RF MEMS Devices Using LTCC Substrate and BCB Adhesive Layer. Journal of Micromechanics and Microengineering. 2006, 16(1):150~156
    117 J. Iannacci, M. Bartek, J. Tian, R. Gaddi and A. Gnudi. Electromagnetic Optimization of an RF-MEMS Wafer-Level Package. Sensors and Actuators A: Physical. 2008, 142(1):434~441
    118 J. Tian, S. Sosin, J. Iannacci, R. Gaddi and M. Bartek. RF-MEMS Wafer-Level Packaging Using Through-Wafer Interconnect. Sensors and Actuators A: Physical. 2008, 142(1):442~451
    119 T. Seki, S. Sato, T. Masuda, I. Kimura and K. Imanaka. Low-Loss RF MEMS Metal-to-Metal Contact Switch with CSP Structure. 12th Int. Conf. Solid-State Sensors, Actuators and Microsystems. Boston, MA, 2003:340~342
    120 Y. K. Park, H. W. Park, D. J. Lee, J. H. Park, I. S. Song, C. W. Kim, Y. H. Lee, C. J. Kim and B. K. Ju. A Novel Low-Loss Wafer-Level Packaging of the RF MEMS Devices. 15th IEEE Int. Conf. MEMS. Las Vegas, NV, 2002:681~684
    121 E. Lee, W. Kim, I. Song, C. Moon, H. Kim and K. Chun. A New Wafer Level Packaging Scheme Using solder (a Lateral Bonding Scheme after LEGO-Like Assembly). Int. Conf. on Electrical Eng.. Sapporo, 2004:572~577
    122 W. Kim, Q. Wang, K. Jung, J. Hwang and C. Moon. Application of Au–Sn Eutectic Bonding in Hermetic RF MEMS Wafer Level Packaging. Proc. 9th Int. Symp. Advanced Packaging Materials: Processes, Properties and Interfaces. Atlanta, GA, 2004:215~219
    123 P. Monajemi, P. J. Joseph, P. A. Kohl and F. Ayazi. Wafer-Level MEMS Packaging via Thermally Released Metal-Organic Membranes. J.Micromech. Microeng.. 2006, 16 (4):742~750
    124 B. W. Min, G. M. Rebeiz. A Low-Loss Silicon-on-Silicon DC-110-GHz Resonance Free Package. IEEE Transactions on Microwave Theory and Techniques. 2006, 54(2):710~716
    125 J. Lee, C.H. Je, S. Kang and C. A. Choi. A Low-Loss Single-Pole Six-Throw Switch Based on Compact RF MEMS Switches. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(11):3335~3344
    126 E. K. Mohamad, P. Arnaud, C. Aurelian and B. Pierre. A Novel Packaging Approach for RF MEMS Switching Functions on Alumina Substrate. Microsystem Technologies. 2007, 13(11-12):1457~1461
    127 M. A. Morton and J. Papapolymerou. Wide-Band Finite Ground Coplanar Interconnects for on-Chip Packaging of RF MEMS Switches Used in Smart Antennas and Phased Arrays, IEEE Antennas and Wireless Propagation Letters. 2004, 3(5):239~242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700