天然、重组水蛭素对大鼠随意皮瓣淤血模型的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分天然、重组水蛭素对大鼠随意皮瓣淤血模型VEGF、CD34的影响
     目的:探讨天然、重组水蛭素对大鼠随意皮瓣淤血模型成活保护机制作用,以及对皮瓣血管内皮细胞生长因子(VEGF)、CD34的作用是否相同。
     方法:1、动物模型建立:Wistar大鼠30只,雌雄不限。大鼠麻醉后,取俯卧位固定于手术台,以8%硫化钠涂于大鼠背部术区进行脱毛,温水清洗脱毛区后用画线笔设计以后正中线为轴,蒂在尾端(以骼棘连线为底)的10cm×3cm的背部超长随意皮瓣。消毒术区,铺无菌手术巾,严格无菌操作。沿设计线切开至背部肌膜,在其浅面将皮肤与肉膜由头端向尾端剥离,保证所形成皮瓣为随意皮瓣,在皮瓣形成后即刻3-0丝线缝合。根据术后注射药物不同,皮瓣随机分为3组(n=30),每组10只。A组在皮下注射5u天然水蛭素; B组皮下注射5u重组水蛭素;C组皮下注射相同剂量生理盐水。每组皮瓣注射部位均为在距皮瓣末端约1.5cm和3cm处,分术后即刻、第3、5天注射达皮下层次。
     2、术后对大鼠背部皮瓣进行连续的临床观察并记录。观察实验动物是否出现腹泻,弓背,翘毛,精神萎靡及皮肤溃疡等免疫排斥反应。观察皮瓣颜色、厚度、弹性、渗出、毛发生长、坏死范围及针刺皮瓣出血情况,详细记录。
     3、术后第7天,在皮瓣远端约2~3 cm处切取0.5cm×0.5cm大小全层皮肤组织;组织浸泡于4%多聚甲醛液中。固定7天后石蜡包埋,制成4um厚的切片,HE染色。观察皮瓣组织的中性粒细胞浸润、细胞水肿、毛细血管增生、肉芽组织生成等情况。
     4、手术后的第3、5、7天分别在皮瓣远端2~3 cm处取约0.5cm×0.5 cm大小的全层组织,测定VEGF、CD34含量,以血管内皮细胞生长因子和CD34作为血管标记行免疫组化染色,计数皮瓣新生血管密度。荧光RT-PCR测定VEGFmRNA表达量。
     5、术后第7天,麻醉大鼠后,展平背部,用数码照相机拍摄皮瓣情况,用Image-Pro6.0软件分析系统计算皮瓣坏死面积、成活面积和总面积并计算皮瓣成活率。
     结果:1、皮瓣存活情况的大体观察三组大鼠均无死亡,皮瓣术后无感染。术后第7天,三组皮瓣远端不同面积痂壳形成,坏死区域稳定,成活与坏死界限较清楚,天然、重组水蛭素组皮瓣痂壳呈现深浅不一致灰色,浅灰色,部分痂壳较软,能轻易剥落,剥落后可见创面鲜红出血,对照组痂壳呈棕深黑,较硬,不易剥落,局部有溃烂。
     2、皮瓣组织学观察术后7天,天然水蛭素组皮瓣表皮完整,无萎缩,轻度角化过度,真皮内及皮下无明显炎症细胞浸润,组织无水肿,真皮下微血管多;重组水蛭素组表皮萎缩不明显,皮下组织轻度水肿,炎症细胞浸润略重,真皮下微血管较多;对照组皮下水肿明显,大量炎症细胞浸润,局部表皮溃疡形成,真皮下仅有少量微血管。
     3、VEGF染色阳性的各实验组血管密度值免疫组化着色好,染色效果好,背景干净无污染,阳性细胞显示明确。VEGF主要定位于细胞浆中,VEGF阳性表达的细胞被染成棕色颗粒。术后第3天,VEGF染色阳性血管数目:天然水蛭素组(A)为41.71±3.08,重组水蛭素组(B)为33.05±2.23,对照组(C)为14.71±2.67,各组两两比较P<0.05,其中A组VEGF染色阳性血管数最多,B组次之,C组最少。术后第5天,VEGF染色阳性血管数目:天然水蛭素组(A)为55.24±3.96,重组水蛭素组(B)为41.63±3.97,对照组(C)为8.63±2.59,各组两两比较P<0.05,其中A组VEGF染色阳性血管数最多,B组次之,C组最少。术后第7天,VEGF染色阳性血管数目:天然水蛭素组(A)为40.76±3.69,重组水蛭素组(B)为32.93±2.54,对照组(C)为3.58±2.97,各组两两比较P<0.05,其中A组VEGF染色阳性血管数最多,B组次之,C组最少。在A组,VEGF染色阳性血管数目在术后第5天与第3、7天相比P<0.05,高峰在术后第5天;在B组,VEGF染色阳性血管数目在术后第5天与第3、7天相比P<0.05,高峰在术后第5天;在C组,VEGF染色阳性血管数目在术后第3天与第5、7天两两相比P<0.05,高峰在术后第3天。
     4、CD34染色阳性的各实验组血管密度值CD34主要定位于细胞浆中,少量在细胞膜亦有表达,CD34阳性细胞表现为棕黄色至棕褐色颗粒。术后第3天,CD34染色阳性血管数目:天然水蛭素组(A)为56.83±3.19,重组水蛭素组(B)为47.12±2.13,对照组(C)为21.82±2.56,各组两两比较P<0.05,其中A组CD34染色阳性血管数最多,B组次之,C组最少。术后第5天,CD34染色阳性血管数目:天然水蛭素组(A)为70.13±3.85,重组水蛭素组(B)为52.74±3.08,对照组(C)为16.52±2.48,各组两两比较P<0.05,其中A组CD34染色阳性血管数最多,B组次之,C组最少。术后第7天,CD34染色阳性血管数目:天然水蛭素组(A)为55.87±3.75,重组水蛭素组(B)为45.93±3.65,对照组(C)为11.47±2.87,各组两两比较P<0.05,其中A组CD34染色阳性血管数最多,B组次之,C组最少。在A组,CD34染色阳性血管数目在术后第5天与第3、7天相比P<0.05,高峰在术后第5天;在B组,CD34染色阳性血管数目在术后第5天与第3、7天相比P<0.05,高峰在术后第5天;在C组,CD34染色阳性血管数目在术后第3天与第5、7天两两相比P<0.05,高峰在术后第3天。
     5、荧光RT-PCR检测各组皮瓣组织VEGFmRNA的表达电泳后各泳道均可见特异性条带,与DNA标记进行比较,产物大小与预期产物大小一致,分别为VEGF164 bp,GAPDH 152 bp。术后第3天, VEGFmRNA的表达:天然水蛭素组(A)为28.69±2.07,重组水蛭素组(B)为23.94±3.12,对照组(C)为19.64±1.92,各组两两比较P<0.05,其中A组VEGFmRNA的表达最多,B组次之,C组最少。术后第5天,VEGFmRNA的表达:天然水蛭素组(A)为33.13±4.07,重组水蛭素组(B)为29.52±2.89,对照组(C)为15.52±3.48,各组两两比较P<0.05,其中A组VEGFmRNA的表达最多,B组次之,C组最少。术后第7天,VEGFmRNA的表达:天然水蛭素组(A)为27.87±2.58,重组水蛭素组(B)为22.93±3.43,对照组(C)为10.47±2.86,各组两两比较P<0.05,其中A组VEGFmRNA的表达最多,B组次之,C组最少。在A组,VEGFmRNA的表达在术后第5天与第3、7天相比P<0.05,高峰在术后第5天;在B组,VEGFmRNA的表达在术后第5天与第3、7天相比P<0.05,高峰在术后第5天;在C组,VEGFmRNA的表达在术后第3天与第5、7天两两相比P<0.05,高峰在术后第3天。
     6、皮瓣存活表面积:皮瓣存活表面积:天然水蛭素组(A): 26.64±2.24(cm~2),重组水蛭素组(B): 23.64±2.02(cm~2),对照组(C): 20.71±1.41(cm~2);皮瓣存活率(%):天然水蛭素组(A): 88.87±2.24,重组水蛭素组(B): 79.97±2.02,对照组(C): 69.07±1.42.各组之间两两比较,P<0.05。
     结论:天然、重组水蛭素能够促进随意皮瓣VEGF、CD34表达,改善淤血皮瓣的微循环,有利于新生血管的生成,能够提高随意皮瓣的成活率,天然水蛭素效果优于重组水蛭素。
     第二部分天然、重组水蛭素对大鼠随意皮瓣淤血模型SOD、MDA、ET影响
     目的:探讨天然、重组水蛭素对大鼠随意皮瓣淤血模型存活保护机制作用,以及对皮瓣的丙二醛(MDA)、超氧化物岐化酶(SOD)、内皮素(ET)作用是否相同。
     方法:1、动物模型建立:同第一部分。
     2、术后对大鼠背部皮瓣进行连续的临床观察并记录。同第一部分。
     3、皮瓣组织学的观察,同第一部分。
     4、术后第7天测定皮瓣成活率,以及丙二醛(MDA)、超氧化物岐化酶(SOD)、内皮素(ET)含量;其中丙二醛(MDA)的检测采用硫代巴比妥酸法,超氧化物岐化酶(SOD)的检测采用羟胺法,内皮素(ET)的检测采用酶联免疫吸附试验法。
     结果:1、皮瓣存活情况的大体观察同第一部分。
     2、皮瓣组织学观察同第一部分
     3、术后第7天皮瓣组织丙二醛(MDA)、超氧化物岐化酶(SOD)、内皮素(ET)含量:皮瓣组织丙二醛(MDA)含量:天然水蛭素组(A):10.20±3.41(nmol/mgprot),重组水蛭素组(B):22.12±3.84(nmol/mgprot),对照组(C):32.65±3.91(nmol/mgprot);各组之间两两比较,P<0.05。术后第7天皮瓣组织超氧化物岐化酶(SOD)含量:天然水蛭素组(A):72.59±17.48(U/mgprot),重组水蛭素组(B):36.68±8.32 (U/mgprot),对照组(C):27.66±11.34(U/mgprot);各组之间两两比较,P<0.05。术后第7天皮瓣组织内皮素(ET)含量:天然水蛭素组(A):85.67±37.90,重组水蛭素组(B):163.55±43.45,对照组(C):247.56±38.04;各组之间两两比较,P<0.05。用药组(A组和B组)皮瓣成活率比对照组(C组)高,超氧化物岐化酶(SOD)用药组(A组和B组)比对照组(C组)明显增多,丙二醛(MDA)、内皮素(ET)含量则减少。
     4、皮瓣存活表面积:同第一部分。
     结论:水蛭素能够提高随意皮瓣的成活率、超氧化物岐化酶(SOD)的含量;减低皮瓣的坏死率、丙二醛(MDA)、内皮素(ET)的含量。实验组较对照组有明显差异。水蛭素具有抗血栓、抗凝、抗氧化和抗炎症作用。其中,天然水蛭素效果最明显,重组水蛭素次之。
Objective
     To investigate the effect of natural hirudin and recombinant hirudin which are applied locally to the vein congestion on random skin flap in rats models, and their effect on the flap of VEGF and CD34 are the same or not.
     Methods
     1. Establishment of animal model:
     Thirty Wistar rats, including male and female,were employed to establish animal model of vein congestive flap. All rats were anaesthetized by 10% chloral hydrate (300mg/kg). The hair of dorsal skin was removed with 8% sodium sulfide and the skin was sterilized with betadine. Caudally based dorsal flaps (10 cm×3 cm) in size were raised under sterile conditions. The palpable hip joints were used as anatomical landmarks to define the base of the flap. The flap was dissected and detached from its panniculus carnosus and reattached in the native position with separate sutures. The sites of injection were 1 ~ 3 cm distal to the flaps. The time of injection was immediately after surgery and re-injected at day 3 and day 5 post-operation. The injection spot was at the hypodermic level. The rats were divided randomly into 3 groups (ten in each group). In group A, 5 U of natural hirudin was locally applied to each flap. In groups B, 5 U of recombinant hirudin was locally applied to each flap. In group C, isotonic NaCl was locally applied to each flap as a control group.
     2. Make continuous clinical observation and record the back flap of the rats during 7 days after operation. Observe whether there is immunological rejection , such as diarrhea, Camponotus, Alice hair,depression and skin ulcers to the experimental animals. Observe the flap color,thickness, elasticity, exudation,hair growth, necrosis area and acupuncture bleeding situation,then record in detail.
     3. Histopathological evaluation: The samples were preserved in 10% formalin solution. Transverse sections were taken at the flap base 3 cm (viable area) or 7 cm (necrosis area) distal to the viable-necrotic area boundaries. The tissue samples were embedded in paraffin blocks; 0.5cm×0.5cm thick sections were cut and stained with haematoxylin and eosin and evaluated with a light microscope.
     4. VEGF and CD34 levels were measured on postoperative day 3,5 and 7. VEGF and CD34 were determined by immunohistochemistry. VEGF mRNA expression measured by fluorescence RT-PCR.
     5. To determine the skin flap survival rate, photographs of the skin flaps 7 days after surgery were analyzed using the Image-Pro 6.0 software. The flap survival rate was calculated as the percentage of the surviving flap area over the total flap area.
     Results
     1.General observation of the flap survival All rats survived until the end of the study without infection. Seven days after surgery, the necrotic area was stabilized with clear boundaries between the viable and necrotic areas. In the natural and recombinant hirudin treated groups, parts of the crust shells of the flaps were inconsistent in depth and were gray or light gray in color. These soft scar tissue can be easily peeled off revealing the wound and bleeding underneath. In contrast, the crust shells in the control group were hard with deep dark brown color.and contained local fester which can not be easily peeled off.
     2. Histopathological observation of the flaps
     In the natural hirudin group, no atrophy was observed. Only mild hyperkeratosis and inflammatory cell infiltration were present in the flap tissue. There was an increase in subcutaneous vessel densities in the treated group. In contrast, subcutaneous flap edema and local ulceration were seen in the control group, with fewer subcutaneous vessels observed. The histopathological features of the recombinant hirudin group were intermediate among the three groups.
     3. The VEGF positive vessel density in flap
     Immunohistochemical coloring well. Good dyeing effect. Clean background pollution. Positive cells displayed clear. Postoperative day 3, VEGF staining the number of positive vessels: natural hirudin group (A): 41.71±3.08, recombinant hirudin group (B): 33.05±2.23, control group (C): 14.71±2.67. Both treatment groups have significantly higher numbers of VEGF positive vessels compared to control group (P<0.05). The largest number of VEGF positive vessels stained was group A . Group B followed it .Group C was the least. Postoperative day 5, VEGF staining the number of positive vessels: natural hirudin group (A): 55.24±3.96, recombinant hirudin group (B) : 41.63±3.97, control group (C): 8.63±2.59. Both treatment groups have significantly higher numbers of VEGF positive vessels compared to control group (P<0.05). The largest number of VEGF positive vessels stained was group A . Group B followed it. Group C was the least. Postoperative day 7, VEGF staining the number of positive vessels: natural hirudin group (A) : 40.76±3.69, recombinant hirudin group (B) : 32.93±2.54, control group (C): 3.58±2.97. Both treatment groups have significantly higher numbers of VEGF positive vessels compared to control group (P<0.05). The largest number of VEGF positive vessels stained was group A . Group B followed it .Group C was the least. In group A, the 5th day VEGF positive vessels stained compared with the 3th and 7th day ,P <0.05, peak at postoperative day 5; In group B, the 5th day VEGF positive vessels stained compared with the 3th and 7th day P <0.05, peak at postoperative day 5; In the C group, the 5th day VEGF positive vessels stained compared with the 3th and 7th day P <0.05, peak at postoperative day 3.
     4. The CD34 positive vessel density in flap
     Postoperative day 3, CD34 staining the number of positive vessels: natural hirudin group (A): 56.83±3.19, recombinant hirudin group (B): 47.12±2.13, control group (C):21.82±2.56. Both treatment groups have significantly higher numbers of CD34 positive vessels compared to control group (P<0.05). The largest number of CD34 positive vessels stained was group A. Group B followed it. Group C was the least. Postoperative day 5, CD34 staining the number of positive vessels: natural hirudin group (A):70.13±3.85, recombinant hirudin group (B): 52.74±3.08, control group (C):16.52±2.48. Both treatment groups have significantly higher numbers of CD34 positive vessels compared to control group (P<0.05). The largest number of CD34 positive vessels stained was group A .Group B followed it. Group C was the least. Postoperative day 7, CD34 staining the number of positive vessels: natural hirudin group (A):55.87±3.75, recombinant hirudin group (B):45.93±3.65, control group (C):11.47±2.87.Both treatment groups have significantly higher numbers of CD34 positive vessels compared to control group (P<0.05). The largest number of CD34 positive vessels stained was group A . Group B followed it. Group C was the least. In group A, the 5th day CD34 positive vessels stained compared with the 3th and 7th day P <0.05, peak at postoperative day 5; In the B group, the 5th day CD34 positive vessels stained compared with the 3th and 7th day P <0.05, peak at postoperative day 5; In the C group, the 5th day CD34 positive vessels stained compared with the 3th and 7th day P <0.05, peak at postoperative day 3.
     5. Fluorescent RT-PCR to detect the expression of flap tissue VEGFmRNA
     Postoperative day 3, VEGFmRNA expresses:natural hirudin group (A):28.69±2.07, recombinant hirudin group (B) : 23.94±3.12, control group (C):19.64±1.92. Both treatment groups have significantly higher numbers of VEGFmRNA compared to control group (P<0.05). The largest number of VEGFmRNA expresses was group A, Group B followed it. Group C was the least. Postoperative day 5, VEGFmRNA expresses:natural hirudin group (A):33.13±4.07, recombinant hirudin group (B):29.52±2.89, control group (C):15.52±3.48. Both treatment groups have significantly higher numbers of VEGFmRNA compared to control group (P<0.05). The largest number of VEGFmRNA expresses was group A. Group B followed it. Group C was the least. Postoperative day 7, VEGFmRNA expresses:natural hirudin group (A):27.87±2.58, recombinant hirudin group (B):22.93±3.43, control group (C):10.47±2.86. Both treatment groups have significantly higher numbers of VEGFmRNA compared to control (P<0.05). The largest number of VEGFmRNA expresses was group A. Group B followed it. Group C was the least. In group A, the 5th day VEGFmRNA expresses compared with the 3th and 7th day P <0.05, peak at postoperative day 5; In group B, the 5th day VEGFmRNA expresses compared with the 3th and 7th day P <0.05, peak at postoperative day 5; In group C, the 5th day VEGFmRNA expresses compared with the 3th and 7th day P <0.05, peak at postoperative day 3.
     6. Flap survival
     Surface area of flap survival: natural hirudin group (A): 26.64±2.24 (cm~2), recombinant hirudin group (B): 23.64±2.02 (cm~2), control group (C): 20.71±1.41 (cm~2); flap survival rate (%): natural hirudin group (A): 88.87±2.24, recombinant hirudin group (B):79.97±2.02, control group (C):69.07±1.42. Pairwise comparison between three groups, P <0.05.
     Conclusion
     VEGF and CD34 expression in random skin flap can be increased by natural hirudin and recombinant hirudin which are conducive to angiogenesis and can improve the survival rate of random skin flap. Natural hirudin is superior than recombinant hirudin.
    
     OBJECTIVE
     To investigate the effect of natural hirudin and recombinant hirudin which are applied locally to the vein congestion on random skin flap in rats models. And the flap of SOD, MDA and ET expression are the same or not.
     METHODS
     1,Animal model: It is the same with the first.
     2. Make continuous clinical observation and record the back flap of the rats during 7 days after operation. It is the same with the first.
     3. Histopathological evaluation: It is the same with the first.
     4. SOD, ET and MDA levels were measured after surgery. In the light microscope, the flap cell morphological changes were observed.Flap survival 7 days after surgery was calculated. MDA was detected through thiobarbituric acid method. SOD was detected using hydroxylamine method. ET was detected by enzyme linked immunosorbent assay method.
     Results
     1.General observation of the flap survival It is the same with the first.
     2.Histopathological observation of the flaps It is the same with the first.
     3. MDA, SOD, and ET levels in the flaps Postoperative day 7, MDA content of the flap: Natural hirudin group (A): 10.20±3.41 (nmol / mgprot), Recombinant hirudin group (B): 22.12±3.84 (nmol / mgprot), Control group (C) : 32.65±3.91 (nmol / mgprot); MDA is significant different from each other (P <0.05). Postoperative day 7, SOD levels of the flap: natural hirudin group (A): 72.59±17.48 (U / mgprot), recombinant hirudin group (B): 36.68±8.32 (U / mgprot), the control group (C) : 27.66±11.34 (U / mgprot); SOD is significant different from each other (P <0.05). ET levels of the flap: Natural hirudin group (A): 85.67±37.90, Recombinant hirudin group (B): 163.55±43.45, Control group (C): 247.56±38.04; ET is significant different from each other (P <0.05).
     4. Flap survival
     It is the same with the first.
     CONCLUSIONS
     Hirudin can improve the flap survival rate and SOD content; reduce the rate of flap necrosis, MDA, and ET levels. The experimental group were significantly different from the control group. Natural hirudin demonstrated more pronounced effects than recombinant hirudin.
引文
1. Vural E, Key JM (2001) Complications, salvage, and enhancement of local flaps in facial reconstruction. Otolaryngol Clin North Am 34:739–751.
    2. Slate RK, Ryan M, Bongard FS (1996) Dependence of tissue oxygen on oxygen delivery. J Surg Res 61:201–205
    3. Tuz M, Eroglu E, Dogru H, Delibas N, Tunc B, Uygur K (2004) The effect of replacement fluids and normovolaemic haemodilution on the survival of dorsal skin flaps in rats. Clin Otolaryngol Allied Sci 29:80–83
    4. Milton SH (1970) Pedicled skin-flaps: the fallacy of the length:width ratio. Br J Surg 57:502–508
    5. Hart K, Baur D, Hodam J, Lesoon-Wood L, Parham M, Keith K, Vazquez R, Ager E, Pizarro J (2006) Short- and long-term effects of sildenafil on skin flap survival in rats. Laryngoscope 116: 522–528
    6. Olivier WA, Hazen A, Levine JP, Soltanian H, Chung S, Gurtner GC (2003) Reliable assessment of skin flap viability using orthogonal polarization imaging. Plast Reconstr Surg 112: 547–555
    7. Campbell SP, Moss ML, Hugo NE (1992) When does a random flap die? Plast Reconstr Surg 89:718–721
    8. Byrne PJ, Goding GS Jr (2007) Skin flap physiology and wound healing. In: Cummings: Otolaryngology: Head & Neck Surgery, 4th edn. C.V. Mosby, St. Louis, pp 159–162
    9. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027
    10. Krum JM, Mani N, Rosenstein JM (2002) Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 110:589–604
    11. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC(1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139
    12. Khan A, Ashrafpour H, Huang N, Neligan PC, Kontos C, Zhong A, Forrest CR, Pang CY (2004) Acute local subcutaneous VEGF165 injection for augmentation of skin flap viability: efficacy and mechanism. Am J Physiol Regul Integr Comp Physiol287:R1219-R1229
    13. Markwardt F. The development of hirudin as an antithrombotic drug. Thromb Res 1994: 74: 1-23.
    14. Weitz JI, Hudoba M, Massel D, et al. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990; 86: 385-91.
    15. Warkentin TE. Management of heparin-induced thrombocytopenia: a critical companson of lepirudin and argatroban. Thromb Res, 2003, 1,110(2-3): 73-82
    16. Fischer KG Hirudin in renal insufficiency [J]. Semin Thromb Hemost. 2002, 28(5): 467-482.
    17. CONFORTI M L, CONNOR N P,HEISEY D M, et al.Evaluation of performance characteristics of the medicinal leech(hirudo medicinalis)for the treatment of venous congestion[J].Plast Reconstr Surg,2002,109(1):228-235.
    18. TAN O,ATIK B,KOSEOGLU B.An easy and safe method to apply leeches on flaps:the leech cage[J].Plast Reconstr Surg,2004,113(1):466-467.
    19. TUNCALI D, TERZIOGLU A, CIGSAR B, et al. The value of medical leeches in the treatment of class IIC ring avulsion injuries: report of 2 cases[J]. J Hand Surg Am, 2004,29(5):943-946.
    20.杨晓楠,殷国前.活体水蛭吸血疗法救治皮瓣静脉淤血一例[J].中国修复重建外科杂志, 2006,20(11):1129.
    21.孙智勇,王刚,杨晓楠.天然水蛭素对猪随意型皮瓣静脉淤血影响的实验研究[J].中国修复重建外科杂志, 2008,22(11):1296-1300.
    22. Galeano M, Altavilla D, Bitto A, et al. Promotion of the survival of ischemicskin flap by transplanted endothelial progenitor cells transfected with VEGF165 gene: an experimental study with mice. Crit Care Med. 2006 Apr;34(4):1139-46. PMID: 16484928
    23.陈是,罗殿中,李萍,等.改进免疫组化SP染色法的探讨.广西医科大学学报,2005.02.15; 22(1): 138-139
    24. Yang JC, Tang J, Li Y, et al. Contrast-enhanced transrectal ultrasound for assessing vascularization of hypoechoic BPH nodules in the transition and peripheral zones: comparison with pathological examination. Ultrasound Med Biol. 2008 Nov;34(11):1758一64.
    25. Wang L, Chen W, Xie X, et al. Celecoxib inhibits tumor growth and angiogenesis in an orthotopic implantation tumor model of human colon cancer. Exp Oncol. 2008 Mar;30(1):42一51 .
    26. Wang L, Cen Y, Xiao H. Studies on enhancement of transverse rectusabdominis musculocutaneous flap survival mediated vascular endothelial growth factor recombinant adenovirus gene. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005 Aug;19(8):617一21.
    27.顾玉东.皮瓣的静脉危象及其处理.中华手外科杂志,1996,12(3):131-133.
    28.章开衡,邢新.水蛭素的外科应用[J].中国美容整形外科杂志, 2010,21(4):244-246.
    29. Brenner P, Keller M, Beiras-Fernandez A, , etal. Prevention of hyperacute xenograft rejection through direct thrombin inhibition with hirudin[J]. Ann Transplant. 2010 Dec 22;15(4):30-7.
    30. Min GS, Sarkar IN, Siddall ME. Salivary transcriptome of the North American medicinal leech, Macrobdella decora.[J]. J Parasitol. 2010Dec;96(6):1211-21. Epub 2010 Jul 22.
    31. Singh AP. Medicinal leech therapy (hirudotherapy): a brief overview. [J]. Complement Ther Clin Pract. 2010 Nov;16(4):213-5. Epub 2010 Mar 6.
    32. Alibeik S, Zhu S, Brash JL. Surface modification with PEG and hirudin for protein resistance and thrombin neutralization in blood contact[J]. Colloids Surf B Biointerfaces. 2010 Dec 1;81(2):389-96.
    33. Lu WF, Mo W, Liu Z,etal. The antithrombotic effect of a novel hirudin derivative after reconstruction of carotid artery in rabbits[J]. Thromb Res. 2010 Oct;126(4):e339-43.
    34. Green PA, Shafritz AB. Medicinal leech use in microsurgery[J]. J Hand Surg Am. 2010 Jun;35(6):1019-21.
    35. Markwardt F. Methods in enzymelogy, 1970; 19: 924
    36. Yu A, Zhang C, Dong C, etal. Two characteristics of a recombinant fusion protein composed of staphylokinase and hirudin: high thrombus affinity and thrombus-targeting release ofanticoagulant activity[J]. Sheng Wu Gong Cheng Xue Bao. 2008 Nov;24(11):1955-61.
    37.刘在贵,程方敏等.早期应用水蛭素治疗脑出血的临床研究[J].临床荟萃,2010,25(15):1311-1313.
    38. Wang F, Li X, Zhou Y. Nanoscaled polyion complex micelles for targeted delivery of recombinant hirudin to platelets based on cationiccopolymer[J]. Mol Pharm. 2010 Jun 7;7(3):718-26.
    39.贾彦,牛英才,张英博等.天然水蛭素对实验性肝纤维化大鼠肝脏结缔组织生长因子mRNA表达的影响[J].时珍国医国药,2009,20(1):95-97.
    40. Corral-Rodríguez MA, Macedo-Ribeiro S, Pereira PJ etal. Leech-derived thrombin inhibitors: from structures to mechanisms to clinical applications[J]. J Med Chem. 2010 May 27;53(10):3847-61.
    41. Cornejo-Esquerra A, Talleri-de-Andrea G, de Jesús Blanco-Favela J, etal. Leech hirudo medicinalis: a therapeutic alternative availa ble in Mexico][J]. Rev Med Inst Mex Seguro Soc. 2009 May-Jun;4 7(3):335-40.
    42. Vogt F, Beiras-Fernandez A, Weis M, etal. Hirudin for management of heparin-induced thrombocytopenia type II in a patient with biventricular assist device support [J]. Heart Surg Forum. 2009 Dec;12(6):E374-6.
    43. Massart D, Sohawon S, Noordally O. Medicinal leeches]. [J]. Rev Med Brux. 2009 Sep-Oct;30(5):533-6.
    44. Robier C, Neubauer M, Sternad H, etal. Hirudin-induced pseudothrombocytopenia in a patient with EDTA-dependent platelet aggregation:report of a new laboratory artefact[J]. Int J Lab Hematol. 2010 Aug 1;32(4):452-3.
    45.张玉杰,王筱亮,吴建梅等.重组水蛭素-2脂质体的制备及大鼠鼻腔给药药代动力学[J].中国中药杂志,2007,32(9):801-8
    46. Schmidt OH, Lang W. etal. Heparin-induced thrombocytopenia with thromboembolic arterialocclusion treated with recombinant hirudin[J]. N Engl J Med. 1997 Nov 6;337(19):1389.
    47. Liu H, Fleming NW, Moore PG. Anticoagulation for patients with heparin-induced thrombocytopenia using recombinant hirudin during cardiopulmonary bypass[J]. J Clin Anesth. 2002 Sep;14(6):452-5.
    48. Whelen S, Carr ME Jr. Use of recombinant hirudin in heparin-induced thrombocytopenia and thrombosis (HITT) and renal failure--a case report[J]. Angiology. 2001 Oct;52(10):711-5.
    49. Olbrich K, Wiersbitzky M, Wacke W, etal. Atypical heparin-induced thrombocytopenia complicated by intracardiac thrombus, effectively treated with ultra-low-dose rt-PA lysis and recombinant hirudin [J]. Blood Coagul Fibrinolysis. 1998 Apr;9(3):273-7.
    50. Schenk JF, Berg G, M?rsdorf S, etal. Heparin-induced thrombocytopenia: a critical risk/benefit analysis of patients in intensive care treated with R-hirudin [J]. Clin Appl Thromb Hemost. 2000 Jul;6(3):151-6.
    51. Meyer M, Clauss M,Lepple-Wienhues A,et al. Anovel vascular endothelial growth Through factor encoded by virus VEGF-E ,mediates angiogenesis via signaling VEGFR-2 (KDR) but not VEGFR-1(FLt-1) receptor tyrosine kinases.EMBO J ,2005,18(2):363-74.
    52. Hartrampf CR, Scheflan M. Black PW. Breast reconstruction with transverse abdominal island flap. Plast Reconstr Sur,1982,23:216-222.
    53. Arnez Zm,Smith RW, Eder E,et al. Breast reconstruction by the free lower transverserectus abdominals musculocutaneous flap .Br J Plast Surg 1988,41:500-503.
    54. Grotting JC,microsurgicalUrist MM,Maddox WA,et a1.Conventional TRAM flap versus free TRAM flap immediate breast reconstruction.Plast Reconstr Surg,1989,83:828-831.
    55. Feller AM,Horl HW,Biemer E.The transverse rectus abdominalsmusculocutaneous flap: A reliable alternative for delayed autologous tissue breastreconstruction. Ann Plast Surg 2004,25:425-428.
    56. Harashina T,Sone K,Inous T,et a1.Augmentation of circular of pedicled transverserectus abdominals musculocutaneous flaps by micro vascular surgery.Br J Plast,1987 40:367-370.
    57. Takayanagi S. Ohtsuka M.Extenden transverse rectus abdominals musculocutaneous flap. last Reconstr Surg, 2005, 83:1057-61.
    58.韩雪峰,李健宁,杨大平,等.跨区供血皮瓣成活过程中血管构筑及内源性VEGF变化的实验研究[J].中国美容医学, 2008,17(2):232-234.
    59.解放军肾脏病研究所学术委员会.IgA肾病诊断及治疗规范.肾脏病与透析肾移植杂志,2004,13(3):253~255
    60. KimuraH,Nakajima T,Kagawa K,et al.Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohis-tochemistry.Liver,1998,18:14~19
    61.Hollingsworth H,Kohn E,Steinberg S,et al.Tumorangioge-nesis in advanced stagy ovarian carcinoma.Am J Pathol,1995,147:33~41
    62. Schlingenmann RO,Rietveld FJ,de Waal RM et al.Leuko-cyte antigen CD34 is expressedby a subset of cultured endothelial cells and onendothelial abluminal microprocesses in the tumor stroma.Lab Invest,1990;62:690~696
    63.El-Ass ON,Yamanoi A,Soda Y,et al.Clinical significance of microgvessell density and vascularendothelial growth factor expression in hepatocellular carcinoma and surrounding liver:possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver.Hepatology,1998;27(6):1554~1562
    64.Yoshida H,Fujita S,NishidaM,et al.Angiogenesis in the human temporomandibular joint studied by immuno-histochemistry for CD34 antigen.J Oral Pathol Med,1999,28(7):289~292
    65.PrtterssonA,Nagy TA,Brown LF,et al. Heterogeneity of angiogenic response induced indifferent normal adult tissues by vaseular permeability faetor/vaseular endothelial growth factor[J].JClinInvest,2000,80(1):99-102
    66.Fujimoto J, et al. Progestins suppress estrogen- indueed dxpression of vacular endothelial growth factor(VEGF) subtypes is uterine endome trial [J].Caneer Lett,1999,141(1-2):63-71.
    67.Gerber HP, McMurtrey A, Kowalski J, et a. Vascular endothelialgrowth factor regulates endothelial cell survival through the phos phatidylinositol-3-kinase/akt signal transduction pathway. Require ment for flk-1/kdr activation [J].J Biol Chem,1998,273(46): 30336- 30343
    68.Huang N, Khan A, Ashrafpour H, et al. Efficacy and mechanism of adenovirus-mediated VEGF-165 gene therapy for augmentation ofskin flap viability[J].Am J Physiol Heart Circ Physiol, 2006,291(1):H127-137.
    69.Murat Livaoglu et al.,The effect of Hirudoid on random skin-flap survival in rats, Plast reconstr aesthet Surg[J].2010,Jun,63(6):10 47-51
    70.殷国前,孙智勇,杨晓楠.水蛭及水蛭素再度风行的生物疗法[J].中国美容整形外科杂志, 2007,18(4):305-307.
    1. Liebano RE, Corrêa JB, Hochman B,etal. Capsaicin on the viability of random-pattern skin flaps in rats. Acta Cir Bras. 2010 Oct;25(5):440-3
    2. Nezami BG, Rahimpour S, Sadeghi M,etal. Chronic Lithium Impairs Skin Tolerance to Ischemia in Random-Pattern Skin Flap of Rats. J SurgRes. 2010 May 21. [Epub ahead of print]
    3. G(?)züA, Poda M, Ta(?)kin EI,,etal. Pretreatment with octreotide modulatesiNOS gene expression, mimics surgical delay, and improves flapsurvival.Ann Plast Surg. 2010 Aug;65(2):245-9.
    4. Manchio JV, Litchfield CR, Sati S,etal. Duration of smoking cessation and its impact on skin flap survival. Plast Reconstr Surg. 2009 Oct;124(4):1105-17.
    5. Nezami BG, Talab SS, Emami H,etal. Chronic upregulation of the endogenous opioid system impairs the skin flap survival in rats. Ann Plast Surg.2009 Nov;63(5):558-63.
    6. Karacal N,Ambarcioglu O,Topal U,etal.Enhancement ofdorsalrandom-patternskin flap survival in rats with topicallidocaine and prilocaine (EMLA):enhancement of flap survival by EMLA.JSurg Res 2005;124:134.
    7. Torkvist L, Lofberg R, Raud J, et al. Heparin protects against skin flap necrosis: relationship to neutrophil recruitment and anti-coagulant activity. Inflamm Res 2004;53:1-3.
    8. Zamboni WA, Roth AC, Russell RC, et al. Morphologic analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of hyperbaric oxygen. Plast Reconstr Surg 1993;91:1110-23.
    9. Cetinkale O, Bilgic L, Bolayirli M, et al. Involvement of neutrophils in ischemia-reperfusion injury of inguinal island skin flaps in rats. Plast Reconstr Surg 1998;102:153-60.
    10. Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interactions with granulocytes: tethering and signaling molecules.Immunol Today 1992;13:93-100.
    11. Haas S, Breddin HK, Ottillinger B, et al. Topical mucopolysaccharide polysulfate (MPS) in the treatment of thrombophlebitis,a critical review. Phlebologie 2001;30:132-9.
    12. Vedder NB, Bucky LP, Richey NL, et al. Improved survival ratesof random flaps in rabbits with a monoclonal antibody that blocks leukocyte adherence. Plast Reconstr Surg 1994;93:1035-40.
    13. Hjortdal VE, Sinclair T, Kerrigan CL, et al. Arterial ischemia in skin flaps: microcirculatory intravascular thrombosis. Plast Reconstr Surg 1994;93:375-85.
    14. Atchabahian A, Masquelet AC. Experimental prevention of free flap thrombosis.II: normovolemic hemodilution for thrombosis prevention. Microsurgery 1996;17:714-6.
    15. Sawhney CP. The role of heparin in restoring the blood supply in ischaemic skin flaps: an experimental study in rabbits. Br JPlast Surg 1980;33:430-3.
    16. Wong L, Im MJ, Hoopes JE. Increased survival of island skin flaps by systemic heparin in rats. Ann Plast Surg 1991;26:221-6.
    17. Pantazi G, Knight KR, Romeo R, et al. The beneficial effect of heparin in preischemic perfusion solutions for cold-stored skin flaps. Ann Plast Surg 2000;44:304-10.
    18. Wright JG, Kerr JC, Valeri CR, et al. Heparin decreases ischemia-reperfusion injury in isolated canine gracilis model.Arch Surg 1988;123:470-2.
    19. Harada N, Okajima K, Kohmura H, et al. Danaparoid sodium reduces ischemia/reperfusion-induced liver injury in rats by attenuating inflammatoryresponses. Thromb Haemost 2007; 97:81-7.
    20. Gorog P, Raake W. Antithrombotic effect of a mucopolysaccharide polysulfate after systemic, topical and percutaneous application. Arzneimittelfor schung 1987;37:342-5.
    21. Cesarone MR, Belcaro G, Agus G, et al. Management of superficial vein thrombosis and thrombophlebitis: status and expert opinion document. Angiology 2007;58:7-14.
    22. Sindet-Pedersen S, Lund E, Simonsen EK, et al. The anti-inflammatory effect of organo-heparinoid cream after bilateral mandibular osteotomies.Int J Oral Maxillofac Surg 1989;18:35-8.
    23.庄力,宋业光.维拉帕米在大鼠缺血随意皮瓣中作用的研究,中华医学美学美容杂志,2003, 8: 352355.
    24. Kryger Z, Zhang F, Dogan T, etal. The effects of VEGF on survival of a random falp in the rat: examination of various routes of administration.Br J Plast Surg.2000, 53: 234239.
    25.苗卫华,梁杰,罗少军,等.皮瓣组织修复中血管内皮生长因子的应用.中国临床康复,2004, 8: 932933.
    26. Zhang F, Richards L Angel MF etal. Accelerating flap maturation buvascular endothelium growth factor in a rat tube flap model.Br J Plast Surg 2002: 5963.
    27. Yanagisawa M, Kurihara H, Kimura S, et al .A novel potent Vasoconstrictor eptide produced by vascular endothelial cells[J].Nature, 1988 332(6163): 411.
    28 moue A, Yanagisawa M, Kimura S, et al .The human endothelin family:three structurally and pharmacologically distinct isopeptides predicted by three separate genes[J].Proe Natl Acad Sci USA, 1989, 86(8):2863.
    29.梁贵友,牛义民,刘达兴,等.内皮素1受体拮抗剂抗肺缺血再灌注损伤的实验研究.第三军医大学学报,2005, 27: 1615-1616.
    30.董满库,陈昌玮,崔彦,等.内皮素一1与肝脏缺血再灌注损伤的实验研究.中华器官移植杂志,2001, 32: 88-90.
    31.王锡玲,刘学民,鲍庆秋,等.内皮素、降钙素基因相关肤在充血性心力衰竭患者血浆中的变化及其受体对心脏细胞肥大与增殖的作用.
    32.李力群,郑君达,林明,等.随意皮瓣术后内皮素变化及其受体阻滞剂对皮瓣微循环的影响.温州医学院学报,2004, 34;185-I87.
    33.李力群,林明,郑君达,等.内皮素受体阻滞剂对皮瓣坏死的影响.实用美容整形外科杂志,2003 14; 181-184.
    34. Conforti ML,Connor NP,Heisey DM,etal.Evaluation of performance characteristics of the medicinal leech (Hirudo medicinalis) for the treatment of venous congestion. Plast Reconstr Surg.2002 Jan;109(1):228-35.
    35. Soucacos PN,Beris AE,Malizos KN,et a1.Successful treatment of venous congestion in free skin flaps using medical leeches.Microsurgery.1994;15(7):496-501.
    36. Chepeha DB,Nussenbaum B,Bradford CR,etal.Leech therapy for patients with surgically unsalvageable venous obstruction after revascularized freetissue transfer.Arch Otolaryngol Head Neck Surg.2002 Aug;128(8):960-5.
    37.尹海林.加强项目管理,建立动物实验的伦理学评价机制[J].实验动物科学与管理,2004,21(3):35-39.
    38.汪谦.临床医学实验方法学[M].北京:科学出版社,2002:7
    39. Hart K,Baur D,Hodam J, etal.Short-and long-term effects ofsildenafil on skin flap survival in rats.Laryngoscope 2006;116:522--8.
    40. Emsen IM.The effect of ultrasound on flap survival:an experimental study in rats.Burns 2007;33:369--71.
    41. Holzbach T, Vlaskou D, Neshkova I,etal. Non-viral VEGF(165) gene therapy--magnetofection of acoustically active magnetic lipospheres ('magnetobubbles') increases tissue survival in an oversized skin flap model. J Cell Mol Med. 2010 Mar;14(3):587-99.
    42. Ozler M, Simsek K, Ozkan C, etal. Comparison of the effect of topical and systemic melatonin administration on delayed wound healingin rats that underwent pinealectomy. Scand J Clin Lab Invest. 2010Oct;70(6):447-52.
    43. RussoCR,LeiteMT,GomesHC,etal.Transcutaneouselectrical nerve stimulationin viability of a random skin flap in nicotine- treated rats.Ann PlastSurg 2006;57:670--2.
    44. Vedder NB,Bucky LP,Richey NL,et al.Improved survival rates of random flaps in rabbits with a monoclonal antibody that blocks leukocyte adherence.Plast Reconstr Surg 1994;93:1035--40.
    45. Hjortdal VE,Sinclair T,Kerrigan CL,et al. Arterial ischemia in skin flaps:microcirculatory intravascular thrombosis.Plast Reconstr Surg 1994;93:375--85.
    46. Atchabahian A,Masquelet AC.Experimental prevention of free flap thrombosis. II: normovolemic hemodilution for thrombosis prevention.Microsurgery 1996;17:714--6.
    47. Kroll SS,Schusterman MA,Reece GP,et al.Timing of pedicle thrombosis andflap loss after free-tissue transfer. Plast Reconstr Surg. 1996 Dec;98(7):1230-32.
    48. Brown JS,Devine JC,Magennis P,etal.Factors that influence the outcome of salvage in free tissue transfer.Br J Oral Maxillofac Surg.2003 Feb;41(1):16-20.
    49. Yajima H,Tamai S,Mizumoto S,et al.Vascular complications of vascularized composite tissue transfer:outcome and salvage techniques.Microsurgery.1993;14(8):473-8.
    50. Takao harashina,The relationship between venous occlusiontime in islandflaps and flap survivals.Plast Reconstr Surg.1977 July;60(1):92-95.
    51. Kanth BK, Jnawali HN, Niraula NP,etal. Superoxide dismutase (SOD) genesin Streptomyces peucetius: Effects of SODs on secondary metabolites production. Microbiol Res. 2010 Sep 29. [Epub ahead of print]
    52. Shuvaev VV, Han J, Yu KJ, etal. PECAM-targeted delivery of SOD inhibitsendothelial inflammatory response. FASEB J. 2010 Sep 27. [Epub ahead of print]
    53. Gulubova M, Vlaykova T. etal. Expression of the xenobiotic- and reactive oxygen species-detoxifying enzymes, GST-pi, Cu/Zn-SOD, and Mn-SOD in the endocrine cells of colorectal cancer. Int J Colorectal Dis. 2010 Aug 17. [Epub ahead of print]
    54. Yan H, Zhang F, Kochevar AJ, etal. The effect of postconditioning on the muscle flap survival after ischemia-reperfusion injury in rats. J Invest Surg. 2010 Oct;23(5):249-56.
    55. Freitas FA, Piccinato CE, Cherri J,etal. Effects of Pentoxyfilline and Heparin on Reperfusion Injury Island Skin Flaps in Rats Exposed to Tobacco. J Surg Res. 2010 May 27. [Epub ahead of print]
    56. Eskitascioglu T, Karaci S, Canoz O,etal. The Impact of Lidocaine on Flap Survival Following Reperfusion Injury. J Surg Res. 2009 Jun27. [Epub ahead of print]
    57. Gideroglu K, Yilmaz F, Aksoy F,etal. Montelukast protects axial patternrat skin flaps against ischemia/reperfusion injury. J Surg Res. 2009 Dec;157(2):181-6.
    58. Tane N,Inoue H,Aihara M,et al.The effects of endothelin-1on flap necrosis[J].Ann Plast Surg,1995, 35(4):389.
    59. Gokalan Kara CO,ozden A,O"c,sel H.The effect of trimetazidine on the survivalof rat island skin flaps subjected toischemia-reperfusion injury.Ann Plast Surg 2001;47:168-171.
    60. Tane N,moue H, A ihara M,et al. The effects of endo the in-1 on flap necrosis, Ann P last Surg, 1995, 35:389-395.
    61. Murat Livaoglu et al,The effect of Hirudoid on random skin-flap survival in rats,J Plast Reconstr Aesthet Surg 2009,26;1—5
    62. Alibeik S, Zhu S, Brash JL,etal. Surface modification with PEG and hirudinfor protein resistance and thrombin neutralization in bloo d contact. Colloids Surf B Biointerfaces. 2010 Dec 1;81(2):389-96
    
    1. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF.Tumourcells secrete a vascular permeability factor that promotesaccumulationof ascites fluid. Science. 1983;219:983–985.
    2. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells.EMBO J. 1989;8:3801–3806.
    3. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. BiochemBiophys Res Commun. 1989;161:851–858.
    4. Senger DR, Connolly DT, Van de Water L, Feder J, Dvorak HF. Purificationand NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 1990;50:1774–1778.
    5. Levick JR, Michel CC. The effect of bovine albumin on the permeability of frog mesenteric capillaries. Q J Exp Physiol Cogn Med Sci.1973;58:87–97.
    6. Levick JR, Michel CC. The permeability of individually perfused frog mesenteric capillaries to T1824 and T1824-albumin as evidence for a large pore system. Q J Exp Physiol Cogn Med Sci. 1973;58:67–85.
    7. Freedman FB, Johnson JA. Equilibrium and kinetic properties of theEvans blue-albumin system. Am J Physiol. 1969;216:675–681.
    8. Renkin EM. Control of microcirculation blood-tissue exchange. In: MichelCC, Renkin EM, editors. Handbook of Physiology The Cardiovascular System Microcirculation. 2nd ed. Bethesda, MD: American Physiological Society; 1984. pp. 627–688.
    9. Levick JR. An Introduction to Cardiovascular Physiology. London: Butterworths; 1991.
    10. Hillman NJ, Whittles CE, Pocock TM, Williams B, Bates DO. Differential effects on Microvascular hydraulic conductivity (Lp) of vascular endothelial growth factor C (VEGF-C) and placental growth factor-1 (PlGF-1) JVasc Res. 2001;38:176–185.
    11. Fu BM, Shen S. Acute VEGF effect on solute permeability of mammalian microvessels in vivo. Microvasc Res. 2004;68:51–62.
    12. Wu HM, Huang Q, Yuan Y, Granger HJ. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol. 1996;271:H2735–H2739.
    13. Wu HM, Yuan Y, Zawieja DC, Tinsley J, Granger HJ. Role of phospholipaseC, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. Am J Physiol. 1999;276:H535–H542.
    14. Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR, Jaffe EA, et al. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem. 2000;275:5096–5103.
    15. Wu LW, Mayo LD, Dunbar JD, Kessler KM, Ozes ON, Warren RS, et al. VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem. 2000;275:6059–6062.
    16. Bates DO, Heald RI, Curry FE, Williams B. Vascular endothelial growth factor increases Rana vascular permeability and compliance by different signalling pathways. J Physiol (Lond) 2001;533:263–272.
    17. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation. 1998;97:99–107.
    18. Leenders W, Lubsen N, van Altena M, Clauss M, Deckers M, Lowik C, et al.Design of a variant of vascular endothelial growth factor-A (VEGF-A) antagonizing KDR/Flk-1 and Flt-1. Lab Invest. 2002;82:473–481.
    19. Whittles CE, Pocock TM, Wedge SR, Kendrew J, Hennequin LF, Harper SJ, et al. ZM323881 a novel inhibitor of vascular endothelial growth factor-receptor-2, tyrosine kinase activity. Microcirculation. 2002;9:513–522.
    20. Castilla MA, Neria F, Renedo G, Pereira DS, Gonzalez-Pacheco FR, Jimenez S, et al. Tumor-induced endothelial cell activation: role of vascularendothelial growth factor. Am J Physiol Cell Physiol. 2004;286:C1170–C1176.
    21. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994;269:26988–26995.
    22. Cunningham SA, Arrate MP, Brock TA, Waxham MN. Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosinebinding sites. Biochem Biophys Res Commun. 1997;240:635–639.
    23. Criscuolo GR, Lelkes PI, Rotrosen D, Oldfield EH. Cytosolic calcium changes in endothelial cells induced by a protein product of human gliomascontaining vascular permeability factor activity. J Neurosurg. 1989;71:884–891.
    24. Bates DO, Curry FE. Vascular endothelial growth factor increases microvascular permeability via a Ca(2+)-dependent pathway. Am J Physiol. 1997;273:H687–H694.
    25. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell. 1999;4:915–924.
    26. Wu MH, Yuan SY, Granger HJ. The protein kinase MEK1/2 mediate vascular endothelial growth factor- and histamine-induced hyperpermeability in porcine coronary venules. J Physiol (Lond) 2005;563:95–104.
    27. Six I, Kureishi Y, Luo Z, Walsh K. Akt signaling mediates VEGF/VPF vascular permeability in vivo. FEBS Lett. 2002;532:67–69.
    28. Pocock TM, Bates DO. In vivo mechanisms of vascular endothelial growth factor-mediated increased hydraulic conductivity of Rana capillaries. JPhysiol (Lond) 2001;534:479–488.
    29. Pocock TM, Williams B, Curry FE, Bates DO. VEGF and ATP act by different mechanisms to increase microvascular permeability and endothelial [Ca(2+)](i) Am J Physiol Heart Circ. 2000;279:H1625–H1634.
    30. Pocock TM, Foster RR, Bates DO. Evidence of a role for TRPC channels inVEGF-mediated increased vascular permeability in vivo. Am J Physiol Heart Circ. 2004;286:H1015–H1026.
    31. Cheng HW, James AF, Foster RR, Hancox JC, Bates DO. VEGF activates receptor-operated cation channels in human microvascular endothelial cells.Arterioscler Thromb Vasc Biol. 2006;26:1768–1776.
    32. Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, et al. Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res. 2005;96:1282–1290.
    33. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO. VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation. 2008;15:605–614.
    34. Ge R, Tai Y, Sun Y, Zhou K, Yang S, Cheng T, et al. Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett. 2009;283:43–51.
    35. Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Beliveau R.Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell. 2003;14:334–347.
    36. Tahir SA, Park S, Thompson TC. Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther. 2009;8:2286–2296.
    37. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, et al. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996;271:6518–6522.
    38. Fleming I, Rueben A, Popp R, Fisslthaler B, Schrodt S, Sander A, et al.Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27:2612–2618.
    39. Liao WX, Feng L, Zhang H, Zheng J, Moore TR, Chen DB. Compartmentalizing VEGF-induced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Mol Endocrinol. 2009;23:1428–1444.
    40. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L. A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci USA. 2009;106:3202–3206.
    41. Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med. 1996;183:1981–1986.
    42. Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Invest OphthalmolVis Sci. 1999;40:157–167.
    43. Nagy JA, Feng D, Vasile E, Wong WH, Shih SC, Dvorak AM, et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. LabInvest. 2006;86:767–780.
    44. Michel CC, Neal CR. Openings through endothelial cells associated with increased microvascular permeability. Microcirculation. 1999;6:45–54.
    45. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol. 2002;39:225–237.
    46. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascularendothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem. 1999;274:23463–23467.
    47. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro.J Cell Biol. 1998;140:947–959.
    48. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. Reinterpretationof endothelial cell gaps induced by vasoactive mediators in guinea-pig,mouse and rat: many are transcellular pores. J Physiol (Lond) 1997;504:747–761.
    49. Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol. 2009;296:F947–F956.
    50. Morbidelli L, Pyriochou A, Filippi S, Vassiliades Y, Roussos C, Zhou Z,et al. The soluble guanylyl cyclase inhibitor NS-2028 reduces vascularendothelial growth factor-induced angiogenesis and permeability. Am J Physiol Regul Integr Comp Physiol. 2009
    51. Ikeda S, Ushio-Fukai M, Zuo L, Tojo T, Dikalov S, Patrushev NA, et al. Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res. 2005;96:467–475.
    52. Sun H, Breslin JW, Zhu J, Yuan SY, Wu MH. Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability. Microcirculation.2006;13:237–247.
    53. Eriksson A, Cao R, Roy J, Tritsaris K, Wahlestedt C, Dissing S, et al. Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation. 2003;107:1532–1538.
    54. Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost. 2001;86:308–315.
    55. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions andVE-cadherin in the control of vascular permeability. J Cell Sci. 2008;121:2115–2122.
    56. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol. 2008;10:923–934.
    57. Ha CH, Bennett AM, Jin ZG. A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem. 2008;283:7261–7270.
    58. Zhang X, Curry FR, Weinbaum S. Mechanism of osmotic flow in a periodic fiber array. Am J Physiol Heart Circ. 2006;290:H844–H852.
    59. Qiu Y, Ferguson J, Neal CR, Kaura A, Wood E, Sage LS, et al. TransgenicVEGF165b isoform-specific over-expression in podocytes reduces glomerular permeability in vivo. J Am Soc Nephrol. 2010 in press.
    60. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ. 2006;290:H560–H576.
    61. Peters S, Heiduschka P, Julien S, Ziemssen F, Fietz H, Bartz-Schmidt KU,et al. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am J Ophthalmol. 2007;143:995–1002.
    62. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J,et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–1136.
    63. Ananthnarayan S, Bahng J, Roring J, Nghiemphu P, Lai A, Cloughesy T, etal. Time course of imaging changes of GBM during extended bevacizumab treatment. J Neurooncol. 2008;88:339–347.
    64. Numnum TM, Rocconi RP, Whitworth J, Barnes MN. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol Oncol. 2006;102:425–428.
    65. Plotkin SR, Stemmer-Rachamimov AO, Barker FG, 2nd, Halpin C, Padera TP,Tyrrell A, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med. 2009;361:358–367.
    66. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. 2002;29:10–14.
    1. Irish JC, Gullane PJ, Mulholland S, Neligan PC. Medicinal leech in head and neck reconstruction. J Otolaryngol 2000;29:327-32.
    2. Eroglu C, Hokelek M, Guneren E, Esen S, Pekbay A, Uysal OA. Bacterial flora of Hirudo medicinalis and their antibiotic sensitivities in theMiddle Black Sea Region, Turkey.Ann Plast Surg 2001;47:70-3.
    3. Munshi Y, Ara I, Rafique H, Ahmad Z. Leeching in the history--a review.Pak J Biol Sci 2008;11:1650-3.
    4. Cole D. Clinical hirudology: Revival of an ancient art. N Z Med J 1985;98:28-9.
    5. Durrant C, Townley WA, Ramkumar S, Khoo CT. Forgotten digital tourniquet: Salvage of an ischaemic finger by application of medicinal leeches. Ann R Coll Surg Engl 2006;88:462-4.
    6. de Los Mozos-Pιrez B, Font-Jimιnez I. Leeches in the intensive care unit: Nursing care. Enferm Clin 2007;17:211-4.
    7. Fields WS. The history of leeching and hirudin. Haemostasis 1991;21:3-10.
    8. Foucher G, Henderson HR, Maneau M, Merle M, Braun PM. Distal digital replantation: One ofthe best indications for microsurgery. Int J Microsurg 1981;3:265-70.
    9. Weinfeld AB, Yuksel E, Boutros S, Gura DH, Akyurek M, Friedman JD. Clinical and scientific considerations in leech therapy for the management of acute venous congestion: An updated review. Ann Plast Surg 2000;45:207-12.
    10. Pantuck AJ, Lobis MR, Ciocca R, Weiss RE. Penile replantation using theleech Hirudo medicinalis. Urology 1996;48:953-6.
    11. Lineaweaver WC, O'Hara M, Stridde B, Valauri FA, Buncke HJ. Clinical leech use in a microsurgical unit: The San Francisco experience. Blo od Coagul Fibrinolysis 1991;2:189-92.
    12. Mory RN, Mindell D, Bloom DA. The leech and the physician: Biology, etymology, and medical practice with Hirudinea medicinalis. World J Surg 2000;24:878-83.
    13. Adams SL. The medicinal leech. A page from the annelids of internal medicine. Ann Intern Med 1988;109:399-405.
    14. Lineaweaver WC, Hill MK, Buncke GM, Follansbee S, Buncke HJ, Wong RK, et al. Aeromonas hydrophila infections following use of medicinal le eches in replantation and flap surgery. Ann Plast Surg 1992;29:238-4 4.
    15. Ardehali B, Hand K, Nduka C, Holmes A, Wood S. Delayed leech-borne infection with Aeromonas hydrophilia in escharotic flap wound. J Plast Reconstr Aesthet Surg 2006;59:94-5.
    16. Ouderkirk JP, Bekhor D, Turett GS, Murali R. Aeromonas meningitis complicating medicinal leech therapy. Clin Infect Dis 2004;38:e36-7.
    17. Hamon M.Mechanism of thrombosis:physiopathology role of thrombin and its inhibition by modern therapies[J]. Arch MAL Coear Vaiss ,2006,99(3):5.
    18. LINDMANN W,RICHITER S,SCHILLING M K,et al.Hirudin-based anticoagulant strategy during isolated limb perfusion in a patient with heparin-inducedthrombocytopenia[J].Melanoma Res,2005,15(4):287-290.
    19. Serletti JM, Steven L, Orlando GS, O'Connor T, Herrera HR. Urokinase protocol for free-flap salvage following prolonged venous thrombosis. Plast Reconstr Surg,1998;102:1947–1953.
    20. Utley DS, Koch JR, Goode RL.The failing flap in facial plastic and reconstructive surgery: role of the medicinal leech. Laryngoscope1998;108:1129–35.
    21. Gideroglu K, Yildirim S, Akan M, et al. Immediate use of medicinal leeches to salvage venous congested reverse pedicled neurocutaneous flaps. Scand J Plast Reconstr Surg 2003;37:277–82.
    22. Ardehali B, Hand K, Nduka C, Holmes A, Wood S. Delayed leech-borne infection with Aeromonas hydrophilia in escharotic flap wound. J Plast Reconstr Aesthet Surg 2006;59:94-5.
    23. I. Ikizceli, L. Avsarogullari, E. Sozuer,et al.Bleeding due to a medicinal leech bite[J].Emerg Med J ,2005,22(6):458 - 460.
    24. COTTLER P S,GAMPPER T J,RODEHEAVER G T. et al.Evaluation of clinically applicable exsanguination treatments to alleviate venous congestion in an animal skin flap model[J]. Wound Repair ReGen, 1999,7:187.
    25. CHO B H,AHN H B.Microsurgical replantation of a partial ear,with leech therapy[J].Annals of Plastic Surgery,1999,43(4):427-429.
    26. CHEPEHA D B, NUSSENBAUM B, BRADFORD C R, et al.Leech therapy for patients with surgically unsalvageable venous obstruction after revascularized free tissue transfer[J].Arch Otolaryngal Head Nech Surg, 2002 ,128(8):964.
    27. JONATHAN C, PATRICK J,STEVE MULBOLLAND, et al.Medical leech in head and neck reconstruction[J].J Otolaryngology, 2000,29(5):327-331.
    28. X. Zhao,K. M. Higgins,D. Enepekides and G. Farwell.Medicinal leech therapy for venous congested flaps: case series and review of the literature.J Otolaryngol Head Neck Surg ,2009 April,38(2):E61–E64.
    29.杨晓楠,殷国前.活体水蛭吸血疗法救治皮瓣静脉淤血一例[J].中国修复重建外科杂志,2006,20(11):1129.
    30. M. Mineo, T. Jolley and G. Rodriguez. Leech therapy in penile replantation: a case of recurrent penile self-amputation[J].Urology, 2004 May, 63(5): 981-3.
    31. J. S. Hullett, G. G. Spinnato and V. Ziccardi. Treatment of an ear laceration with adjunctive leech therapy: a case report. J Oral Maxillofac Surg 2007, 65(10):2112-4
    32. TALBI M, STUSSI J D, MELEY M.Microsurgical replantation of a totally amputated ear without venous repair[J].Reconstructive Microsurgery,2001,17(6):417-420.
    33. LOUIS P. Bucky, Leeches latch on after reconstructive surgery[J]. Journal of the National CanCer Institute, 1999 ,91( 20):1715.
    34. M. A. Yantis, K. N. O'Toole and P. Ring. Leech therapy[J]. Am J Nurs, 109(4): 36-42; quiz 43.
    35. P.A.Green and A.B.Shafritz. Medicinal leech use in microsurgery[J].J Hand Surg Am,2010,35(6):1019-21.
    36. Lozano DD, Stephenson LL, Zamboni WA. Effect of hyperbaric oxygen and medicinal leeching on survival of axial skin flaps subjected to total venous occlusion. Plast Reconstr Surg 1999;104:1029—32.
    37. Tuncali D, Terzioglu A, Cigsar B, Aslan G. The value of medicinal leeches in the treatment of class II C ring avulsion injuries: report of 2 cases. J Hand Surg 2004;29A:943–946.
    38.江传福.水蛭吸吮原位缝合治疗断指(趾)--附5例报告[J].中国乡村医药2005,12(3):19.
    39.邓红平,徐煜,林一奇,等.水蛭在断指再植术后静脉危象时的应用[J].实用手外科杂志,1999 ,13(3):171 - 172.
    40. C. Durrant, W. A. Townley, S. Ramkumar and C. T. K. Khoo. Forgotten digital tourniquet: salvage of an ischaemic finger by application of medicinal leeches[J]. Annals of The Royal College of Surgeons of England 2006, 88(5):462-464
    41.夏世平.水蛭活血汤治疗疤痕挛缩31例临床观察[J].实用中医药杂志,1996,12(3):10.
    42. SCHENKER M , MURRAY A , KAY S P. Leech therapy in the treatment of median nerve compression due to forearm haematoma[J].J Neurol Neurosurg Psychiatry,2006 ,77(6):799 ;author reply 799 - 800.
    43. F. C. Riess, B. Poetzsch, K. Madlener, E. Cramer, K. N. Doll, S. Doll, D. E. Lorke, J. Kormann and G. Mueller-Berghaus. Recombinant hirudin for cardiopulmonary bypass anticoagulation: a randomized, prospective, and heparin-controlled pilot study[J]. Thorac Cardiovasc Surg, 2007, 55(4):233-8.
    44.陈洪,郭伟,陈建良,等.术中应用水蛭素治疗出血后脑水肿[J].中国临床神经外科杂志,2006,11(7):406 - 407.
    45.李富慧,张小林,冯东泽.微创并水蛭素局部应用治疗高血压脑出血的临床研究[J].中国现代临床医学,2O04,3(6):11-12.
    46. A. Michalsen, U. Deuse, T. Esch, G. Dobos and S. Moebus. Effect of leeches therapy (Hirudo medicinalis) in painful osteoarthritis of the knee: a pilot study. Ann Rheum Dis 2001,60(10):986.
    47. S. Andereya, S. Stanzel, U. Maus, R. Mueller-Rath, T. Mumme, C. H. Siebert, F. Stock and U. Schneider. Assessment of leech therapy for knee osteoarthritis: a randomized study. Acta Orthop 2008, 79(2): 235-43
    48. Ingrid Marry,Verofiique Peclat,Gailute Kirdaite,et a1.Amelioration ofcollagen-induced arthritis by thrombin inhibition.J Clin Invest,2001,107(5):631
    49.杨继斌.活水蛭治疗急性踝关节扭伤[J].湖北中医杂志,2001,23(6):37.
    50.杨书彦.水蛭治疗肾病综合征36例[J].中医研究,2002,15 (2):36-37.
    51.王朝.水蛭在难治性肾病综合征中的应用[J].现代中西医结合杂志,2007,16(9):1195-1196.
    52.许进福,程世平,曹梅.疏血通注射液对原发性肾病综合征患者血浆内皮素和可溶性白介素-2受体的影响[J].中国药房2006,17(17):1330-1331
    53.彭桂阳.水蛭粉治疗肾盂积水20例临床观察[J].中国民族医药杂志,1997,12 Suppl:71—72.
    54.刘耕野.水蛭三金汤治疗尿路结石4例[J].湖南中医杂志,2000,16(5):31-32.
    55.林建明,程世平,刘加林,等.水蛭对狼疮性肾炎患者血浆内皮素和可溶性白介素-2受体的影响[J].疑难病杂志,2009,8(9):535-537.
    56.李开龙,何娅妮,左洪炜,等.水蛭素治疗以血尿为主要表现的免疫球蛋白A型肾病的随机对照临床研究[J].中西医结合学报2008 March,6(3):253-257.
    57.彭瑞元,李晓铭,李春.脉血康治疗精液不液化[J].中外医疗,2008 ,17:65.
    58.吴一凡,肖新立,曹茂堂.水蛭治疗精液不液化56例体会[J].时珍国医国药,2003 ,14(9):584-585.
    59.原所贤,暴连英.水蛭胶囊治疗男科病举隅[J].世界今日医学杂志,2003,4(5):424-425.
    60.王吉侯.男科运用水蛭经验[J].江西中医药,1994,25(1):14-15.
    61.孟战战,罗二平.药物灌渗水囊按摩治疗前列腺炎伴精液不液化症[J].中华男科学,2001,8(4):265-266.
    62.扈新女.水蛭临床应用举隅[J].山西中医,2001,1(17):36.
    63.杨仓良,程方.毒性中药古今用[M].北京:中国医药科技出版社,1993:171.
    64.荣繁.水蛭在男科病中的应用举隅[J].湖北中医杂志,2003,25 (7):38-39.
    65. M. E. Kalender, G. Comez, A. Sevinc, A. Dirier and C. Camci. Leech therapy for symptomatic relief of cancer pain. Pain Med, 2010, 11(3):433-5.
    66.马秀红.水蛭的药理及临床应用[J].中国社区医师,2001:(12):8.
    67.王杰,韩俊庆,李伯辉,等.复方水蛭素的药效学研究[J].山东大学学报(医学版),2007,45(8):852-854.
    68.于瑞发,李军凯,王杰,等.复方水蛭素提取物抗移植性肿瘤的实验研究[J].实用医药杂志2007, 24(5):599-601.
    69.孙学强,张晨光,毛致方.水蛭抗纤维化临床疗效观察[J].准海医药2008,26(4):312-313.
    70. Saskia M. Schnabl,Caroline Kunz,Frank Unglaub,Elias Polykandriotis,Raymund E. Horch,Adrian Dragu.Acute postoperative infection with Aeromonas hydrophila after using medical leeches for treatment of venous congestion.Eur Arch Otorhinolaryngol (2010) 267:1225–1229.
    71. Bourdais L, Heusse JL, Aillet S, Schoentgen C, Watier E. Leech-borne infection on a TRAM flap: a case report. Ann Chir Plast Esthet. 2010 Feb;55(1):71-3.
    72. Knobloch K, Gohritz A, Busch K,et al.Hirudo medicinalis-leech applicationsin plastic and reconstructive microsurgery-a literature review.Handchir Mikrochir Plast Chir 2007,39(2):103–107
    73. Hermansdorfer J, Lineaweaver W, Follansbee S,et al.Antibiotic sensitivities of Aeromonas hydrophila cultured from medicinal leeches. Br J Plast Surg, 1988, 41(6):649–651
    74. A. M. Beer, S. Fey, J. Ciborovius and M. Knorr. Drug exanthema in connection with trimethoprim and sulfamethoxazole treatment, triggered by leech therapy[J]. Forsch Komplementarmed Klass Naturheilkd 2005, 12(1):32-6.
    75. J. Smolle, L. Cerroni and H. Kerl. Multiple pseudolymphomas caused by Hirudo medicinalis therapy.J Am Acad Dermatol, 2000Nov; 43 (5 Pt 1): 867-9.
    76. J. Etemadi, M. R. Ardalan, R. Motavali, R. S. Tubbs and M. M. Shoja.Thrombotic Microangiopathy as a Complication of Medicinal Leech Therapy. South Med J, 2008,101(8): 845-7
    77. GREINARCHER A,VOLPEL H,JANSSENS U,et a1.for the HIT Investigators Group . Recombinant hirudin(lepirudin)provides safe and effective anticoagulation in patients with heparin-induced thrombocytopenia : a prospective study[J].Circulation,1999,99:73-80.
    78. Y. Ou, G. Y. Liao and W. T. Wu. Potential use of hirudin in diabetic cataract: a study of galactose mediated human lens epithelial cells injury[J]. Chem Biol Interact, 2008, 173(2):141-7.
    79. W. Z. Wang, R. D. Emes, K. Christoffers, J. Verrall and S. E. Blackshaw. Hirudo medicinalis: a platform for investigating genes in neural repair[J]. Cell Mol Neurobiol 2005, 25(2) :427-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700