中波红外大相对孔径非制冷热像仪光学系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非制冷热成像技术是当前红外热成像技术的重要发展方向之一。基于非制冷探测器发展低成本、用于高温事件探测的中波红外热成像系统具有广泛的应用前景。非制冷探测器具有重量轻、体积小、功耗低、稳定性好等优点,但其辐射响应率低。针对中波红外非制冷探测器辐射响应率低的不足,本文开展大相对孔径中波红外光学系统的研究。研制出的大相对孔径光学系统具有成像质量好、适用环境温度范围宽、尺寸小、重量轻、结构紧凑的优点,适于作为微小卫星平台上的空间成像系统。
     本文首先提出论文所要研究的问题,介绍国内外非制冷红外成像系统的研究现状,指出开展本课题研究的意义和应用价值。第二章从探测地球表面高温事件的使用要求出发,结合当前中波红外非制冷探测器的性能,计算确定光学系统的焦距、相对孔径和视场角。进一步从光学系统基本参数出发,比较分析现有光学系统类型和结构型式,确定使用折射或折/衍混合匹兹伐物镜结构型式。
     第三章详细分析环境温度变化对红外光学系统成像质量的影响,指出在空间环境温度变化条件下,热离焦量远远超出了焦深范围,必须消除热差的影响。通过比较各种消热差的方法,选择了重量轻、无功耗、可靠性好的光学被动消热差方法,给出实现光学被动消热差需满足的一般关系式。
     第四章介绍消热差折射光学系统的设计。根据光学被动消热差和消色差条件,利用热差图选择折射光学系统材料和分配光焦度。指出在本课题系统参数的条件下,匹兹伐结构至少需要四块透镜才能得到满足消热差、消色差和光焦度要求的解。运用初级像差理论求解折射系统的初始结构,挑选高级球差较小的解作为初始结构并进行优化设计。
     第五章详细论述了消热差折/衍混合光学系统的设计。阐述衍射元件的热差和色差特性,表明衍射元件具有的特殊热差和色差性能,相当于一种特殊的红外材料。使用衍射元件几乎不增加系统的重量,在匹兹伐物镜的前组引入衍射元件能够减少一片大尺寸的折射透镜,减轻系统的总重。通过热差图确定折/衍混合系统的材料和光焦度分配。介绍了衍射元件的单色像差特性,运用初级像差理论求出折/衍混合系统的初始结构。对折/衍混合系统和折射系统的优化设计结果进行比较,折/衍混合系统具有总重量轻的突出优势。随后对折/衍混合结构系统的加工和装调公差进行优化分配,获得易于实现的设计结果。
     第六章介绍了金刚石单点车削技术加工光学非球面和衍射面的方法,成功完成了前表面为非球面、后表面为衍射面的锗的折/衍混合透镜的加工。设计了光机结构和装调方案,给出了研制结果。最后对整个光学系统的MTF进行了测试,测试结果表明系统不仅在常温状态下成像质量良好,并且在一定的温度变化范围内保持较稳定的成像质量。
     最后,对论文主要内容和创新点进行总结,指出下一步需要开展的工作。
Low-cost infrared imager based on uncooled focal plane arrays is one of the most important developments in thermal imaging techniques. It has wide application prospect for remote sensing high temperature events. The uncooled detector has many advantages such as lightweight, compactness, low power, and excellent reliability, but its radiation responsitivity is low at present. To compensate for this drawback, it is necessary to use midwave IR optical system with large relative aperture. At the same time, the developed high speed objective, which is expected to use as a spaceborne imaging system of microsatellite, should have high quality image, good adaptability to environment temperature fluctuation, lightweight and compact structure.
     The issue studied in this dissertation is put forward at first. The development and state of art of IR thermal imager with uncooled detector is introduced and its significance is pointed out. In chapter two, according to the requirements of detecting terrestrial high temperature events and the performance of current MWIR uncooled detector, the basic parameters of its used optical system, such as the focal length, relative aperture and field of view, are determined. Through comparing and analyzing various typical objectives, both refractive and refractive-diffractive hybrid Petzval lens are chosen as its candidate structure.
     In chapter three, the effect of environmental temperature fluctuation on the imaging quality of optical system is analyzed. Since its thermal defocus, due to the change of its enviromental temperature, extends far beyond the focus depth, thermal aberrations must be cancelled out. Compared with other various athermalization methods, optical passive method is preferred and studed for its light weight, good reliability and no power dissipation. The general equation for optical passive athermalization is deduced.
     In chapter four, the design of athermalized refractive optical system is introduced. Based on the conditons of optical passive athermalization and achromatism, its optical material and power distribution is determined through athermal chart. It is pointed out that at least four refractive lenses are necessary for Petzval refractive lens to meet these conditions. Its initial structure parameters are obtained though its primary aberration analysis. Among the obtained initial structures, the structure which high order spherical aberration is relatively low is chosen and further optimized.
     In the fifth chapter, the athermalized refractive-diffractive hybrid optical system design is detailed. The thermal and chromatic characteristics of diffractive optical element are introduced. For its unique dispersion and thermal properties, it can be regarded to make from a special kind of infrared material. Use of diffractive optical element nearly does not increase any system weight. Through introducing a diffractive optical element in the front group of the Petzval objective, a piece of large size lens can be saved so that its weight decreases considerable. The optical material and power distribution of the hybrid system is determined also through the athermal chart. Its initial structure is solved according to its primary aberration. The optimized refractive-diffractive hybrid system has distinctive advantage in weight over the designed refractive system. Then the former’s manufacture and assembly tolerances are distributed optimally so that its implementation is faciliated.
     In the sixth chapter, how to fabricate aspheric and diffractive surfaces with single point diamond turning technique is introduced. And the hybrid germanium lens comprising of an aspherical and a diffractive surface is successively machined. The opto-mechanical structure and the alignment and assembly scheme of the objective are designed. The performance test and results of our developed objective are reported. Then, its modulation transfer function MTF is measured. It is demonstrated that the manufactured lens has high imaging quality under room temperature and also can maintain its stability within certain temperature range.
     Finally, the main work and the innovative points in this dissertation are summarized, and the further work is prospected.
引文
1.苏君红,吴诚,红外热成像技术的进展,现代光学与光子学的进展——庆祝王大珩院士从事科研活动六十五周年专集,天津科学出版社,2003,340-357
    2. Paul Norton, James Campbell III, Stuart Horn , and Donald Reago, Third-generation infrared imagers, 2000, Proc. SPIE Vol.4310, 226-236
    3. Raymond S. Balcerak, Uncooled IR Imaging: technology for the next generation, 1999, Proc. SPIE Vol.3698, 110-118
    4. Donald A Reago, Stuart Horn, James Campbell, and R.Vollmerhausen, Third generation imaging sensor system concepts, 1999, Proc. SPIE Vol.3701, 108-117
    5.方家熊,红外探测器技术的进展,出处同1,358-373
    6.邢素霞,张俊举,常本康,钱芸生,非制冷红外成像技术的发展和现状,红外与激光工程,2004,Vol.33, No.5, 441-444
    7.张俊举,微测辐射热计焦平面阵列的成像系统研究,南京理工大学博士论文,2006.6
    8.周士源,皮德富,王广民,微辐热计红外探测器的性能预测,红外技术,1997,Vol.19, No.2, 13-16
    9. W. Radford, D. Murphy, J.A. Finch, K. Hay, A. Kennedy, Sensitivity improvements in uncooled microbolometer FPAs, 1999, Proc. SPIE Vol.3698, 119-130
    10. P.E.Howard,J.E.Clark,W.J.Parrish,Advancedhigh-performance 320×240 VOx microbolometer uncooled IR focal plane, 1999, Proc. SPIE Vol.3698, 131-136
    11. J.L.Tissot, C. Trouilleau, B. Fieque, A. Crastes, O. Legras, Uncooled microbolometer detector: Recent developments at Ulis, 2005, Proc. SPIE Vol.5957, 129-140
    12. Brian D. Oelrich, Arnaud Crastes, Craig I. Underwood, Stephen Mackin, Low-cost mid-wave IR microsatellite imager concept based on uncooled technology, 2004, Proc. SPIE, 5570, 209-217
    13. James D. Spinhirne,V Stanley Scott, J Cavanaugh, Preliminary space flight results from the uncooled infrared spectral imaging radiometer (ISIR) on shuttle missionSTS-85,1998,Proc. SPIE, 3379, 14-21
    14. O. Saint-Pé, D. Dubet, P. Duthil, T.D.Pope, H. Jerominek, Study of an Uncooled focal plane array for thermal observation of the Earth,1998,Proc. SPIE, 3436, 593-604
    15. Herve Geoffray, Francois Guerin , Measured performance of a low cost thermal infrared pushbroom camera based on uncooled microbolometer FPA for space applications, 2001, Sensors, Systems, and Next-Generation Satellites V, Toulouse, France,298-308
    16. Brian D.Oelrich, Craig Underwood, Stephen, The evaluation of uncooled detectors for Low-cost thermal-IR earth observation at the surrey space centre, Surrey space centre,2005,Technical Report
    17.李颖文,易新建,何兆湘,罗艳,320×240凝视型非制冷红外热像仪研究,华中理工大学学报,2000,Vol.28, No.11, 48-50
    18.邢素霞,非制冷红外热成像系统研究,2005,南京理工大学博士论文
    19.沈为民,薛鸣球,余建军,大视场大相对孔径长波红外物镜,光子学报, 2004.4 ,Vol.33, No.4, 460-462
    20.张轶楠,王肇圻,孙强,折/衍混合Petzval物镜设计,南开大学硕士论文,2004.4
    1. Craing Underwood, Low-cost satellite infrared imager study, 2003, Technical Report
    2. D.Escorial, I.F.Tourne, F.J.Reina, Fuego: a dedicated consideration of small satellites to detect and monitor forest fires, 2003, Acta Astronautica, Vol.52, No.9/12,765-775
    3. G.Billig, W.Leibrandt, E.Lorenz,Fire detection by satellite-a global challenge,2004, Technical Report
    4.邵式平,非制冷长波红外焦平面阵列现状,红外与激光工程,1997,Vol.26, No.4, 6-11
    5. Brian D. Oelrich, Arnaud Crastes, Craig I. Underwood, Stephen Mackin, Low-cost mid-wave IR microsatellite imager concept based on uncooled technology, 2004, Proc. SPIE, 5570, 209-217
    6. J.L.Tissot,C.Trouilleau,Uncooled microbolometer detector:recent developments at ULIS, Opto-Electron.Rev,2006, Vol.14,No1, 25-32
    7. C.Trouilleau, A.Crastes, O.Legras, 35μm pitch at ULIS, a breakthrough, 2005, Proc. SPIE, 5783, 578-585
    8. Jean Jacques Yon, Gerars Desrefanis, Eric Mottin, Recent development in infrared technologies at Leti for earth observation,2004, Proc. SPIE, 5570, 525-536
    9. J.M.劳埃德,热成像系统,1981,国防工业出版社
    10. PcModwin 3.7,Version 3.7,Release 1.0,1998,Ontar Corporation, North Andover,MA
    11. Dozier J, A method for satellite identification of surface temperature fields of subpixel resolution , Remote Sens. Environ., 1981 ,Vol.11, 221–229
    12.杨宜禾,红外系统,1985,国防工业出版社
    13. Domenico Luisi, Conceptual design and specification of a microsatellite forest fire detection system, 2007, The M.S. Degree Dissertation
    14. S.V. Afonin, V.V. Belov, Application of atmospheric radiance/scattering models in the problem of fire detection from space www.isprs.org/publications/related/ISRSE/html/papers/654.pdf
    15. P.J.Rogers, Athermalized FLIR Optics, Proc.SPIE,1990, Vol.1354, 742-751
    16.杨建峰,安葆青,薛鸣球,大视场三反射面非共轴光学系统研究,光子学报,1997,Vol.26, No.3, 277-281
    17.潘君骅,大相对口径大线视场光学系统的设计,中国工程科学,2000, Vol.2, No.8, 89-90
    18.王立辉,郁蕴健,陆段军,大线视场大相对口径红外成像系统的光学设计,红外与毫米波学报,2008, Vol.27, No.3, 39-41
    19.常军,翁志成,丛小杰,长焦距、大视场、离轴望远系统的光学设计,光电子·激光,2003,Vol.14, No.7, 686-689
    20.沈为民,薛鸣球,余建军,长波红外广角地平仪镜头的光学设计,光学精密工程,2002,Vol.10, No.4, 329-332
    21.沈为民,薛鸣球,余建军,大视场大相对孔径长波红外物镜,光子学报,2004, Vol.33, No.4, 460-463
    22. Oliver Saint-pe, Dominique Dubet, Philippe Duthil Tim Pope, Hubert Jerominek, Study of an Uncooled focal plane array for thermal observation of the Earth, Proc.SPIE,1998, Vol.3436, 593-603
    23. David G. Latimer, Louis R.Fantozzi, Fast 8-12μm objectives utilizing multiple aspheric surfaces, Proc.SPIE,1999, Vol.3698, 882-890
    24. 24.D.Fisher,Design of high-speed infrared lenses using conic surfaces, Proc.SPIE, 1998, Vol.3482, 718-724
    25. Gregory P. Behrmann, John P.Bowen, Influence of temperature on diffractive lens performance, APPLIED OPTICS, 1993, Vol.32, No.14, 2483-2489
    26. Zhang, YN; Wang, ZQ ,Passively athermalised hybrid Petzval objective for high resolution MWIR detector arrays,Optik, 2004,Vol.115, 169-172
    27. Andrew P. Wood,Using hybrid refractive-diffractive elements in infrared Petzval objectives,Proc.SPIE,1990,Vol.1354, 316-322
    28. Andrew P. Wood, L. Lewell, Paul A. Manning, Paul P. Donohue , Passively athermalized hybrid objective for a far-infrared uncooled thermal imager, Proc.SPIE, 1996,Vol.2744, 500-509
    29.袁旭沧,光学设计,科学出版社,1983
    30.张以谟,应用光学,机械工业出版社,1982
    31. Robert B. Chipper, Refractive/Diffractive infrared imager and optics, US Patent 5973827,1999
    32. Takayuki Nakano, Yasuhisa Tamagawa, infrared optical system for infrared cameras, US Patent 6335332,2003
    1.张幼文,红外光学工程,上海科学技术出版社,1982年11月第一版,141-142
    2. ZEMAX optical design program user’s guide, January 6, 2003, ZEMAX development corporation,
    3. http://www.guojing-tech.com
    4. http://www.iiviinfrared.com/cn/products/materials.html
    5. http://www.springer.com/978-3-540-44376-6
    6.金乐天,胡玉禧,杨建峰,相里斌,共轴球面光学系统的热像差分析,光子学报,1999,Vol.28, No.7, 647-650
    7.张以谟,应用光学,机械工业出版社,1982
    8. P.J.Rogers, Athermalized FLIR Optics, Proc.SPIE,1990, Vol.1354, 742-751
    9.胡玉禧,相里斌,杨建峰,空间光学系统无热化设计,量子电子学报,2006,Vol.17, No.3, 274-278
    10.胡玉禧,周绍祥,杨建峰,相里斌,红外系统的光机热一体化设计,红外技术,2000,Vol.22, No.2, 32-35
    11. M. Roberts, Athemallisation of infrared optics: a review, Proc.SPIE, 1989, Vol.1049,72-81
    12.吴晓靖,孟军和,使用简单机械结构实现红外光学系统无热化,红外与激光工程,2005,Vol.34, No.4, 391-393
    13.吴晓靖,孟军和,红外光学系统无热化设计的途径,红外与激光工程,2003,Vol.32, No.6, 572-576
    14. Michael Bass, Eric W. Van Stryland, David R. Williams, William L.Wolfe, Hand book of optics, McGRAW-HILL, INC,39.1-39.13,
    15. Zhang, YN; Wang, ZQ ,Passively athermalised hybrid Petzval objective for high resolution MWIR detector arrays,Optik, 2004,Vol.115, 169-172
    16. Andrew P. Wood, L. Lewell, Paul A. Manning, Paul P. Donohue , Passively athermalized hybrid objective for a far-infrared uncooled thermal imager, Proc.SPIE,1996,Vol.2744, 500-509
    17. Yashuhisa Tamagawa, Totu Tajime, Expansion of an athamal chart into a multilens system with thick lenses spaced apart, Opt. Eng. 1996, 35(10), 3001-3006
    18. Y.Tamagawa, S.Wakabayshi, New design method for athermalized optical systems, Proc. SPIE , 1992, Vol.1752, 232-238
    19. Richard Simmons, Paul A Manning, Trevor Chamberlain, The design of passively athermalized narrow- and wide-field-of-view infrared objectives for the OBSERVER unmanned air vehicle, Proc. SPIE, Vol.5612, 2004, 236-248
    20.白剑,孙婷,沈亦兵,侯西云,杨国光,红外折射–衍射混合光学系统的热差分析,光学学报,1999,Vol.19, No.7, 997-1002
    1.张以谟,应用光学,机械工业出版社,1982
    2. Yashuhisa Tamagawa, Totu Tajime, Expansion of an athamal chart into a multilens system with thick lenses spaced apart, Opt. Eng. 1996, 35(10), 3001-3006
    3. Y.Tamagawa, S.Wakabayshi, New design method for athermalized optical systems, Proc. SPIE , 1992, Vol.1752, 232-238
    4. Yasuhisa Tamagawa, Satoshhi Wakabayasi. Multilens system design with an athermal chart[J]. Applied Optics,1994,33(34):8009~8013
    5.袁旭沧,光学设计,科学出版社,1983
    6.王之江,光学设计理论基础,科学出版社,1985
    7. Robert F.Fisher, Optical system design, McGraw-Hill Professsional,2000
    1.樊仲维,光学系统中的二元光学元件,光学精密工程,1995,Vol.3, No.2, 1-10
    2. Max J. Riedl, Marlborough, Diamond-turned diffractive optical elements for the infrared: suggestion for specification standardization and manufacturing remarks, 1995, Proc. SPIE, Vol.2540, 257-269
    3.苏显渝,李继陶,信息光学,1999,科学出版社
    4.金国藩,严瑛白,邬敏贤,二元光学,国防工业出版社,1998
    5. Gregory P. Behrmann, John P.Bowen, Influence of temperature on diffractive lens performance, APPLIED OPTICS, 1993, Vol.32, No.14, 2483-2489
    6.白剑,孙婷,沈亦兵,侯西云,杨国光,红外折射-衍射混合光学系统的热差分析,1999,光学学报,Vol.19, No.7,997-1002
    7. W.C.Sweatt, Describing holographic optical elements as lenses,1977, J.Opt.Soc.Am., Vol.67, No.11, 803-808
    8. W.A.Kleinhans, Aberrations of Curved Zone Plates and Fresnel Lenses, 1977,Appled Optics,Vol.16,No6,1701-1704
    9. Braulli D A, Morris G M, Design of diffractive singlets for monochromatic imaging, 1991,Appled Optics,Vol.10,No16,2151-2158
    10.张新,含二元光学元件的光学系统成像特性和设计方法,光学精密工程,1994,Vol.2, No.4,1-7
    11.沈为民,大相对口径大视场红外光学系统,博士论文,中国科学院西安光学精密机械研究所,2004
    12. Robert F.Fisher, Optical system design, McGraw-Hill Professsional,2000
    13.潘君骅,光学非球面的设计、加工与检验,科学出版社,1994
    14. Warren J.Smith, Modern lens design, Second condition, McGraw-Hill Professsional, 2005
    15. Andrew P. Wood,Using hybrid refractive-diffractive elements in infrared Petzval objectives, 1990, Proc. SPIE Vol. 1354, 316-322
    16.袁旭沧,光学设计,科学出版社,1983
    17.张以谟,应用光学,机械工业出版社,1982
    18.姜会林,杨华民,任涛,李共德,制定光学公差中的MTF应用,兵工学报,2000,Vol21,No4,327-330
    1. A.P. Wood, Infrared hybrid optics: analysis and implementation, 2001, Proc. SPIE Vol. 4441, 19-29,
    2. A.P. Wood, A Hybrid refractive-diffractive lens for manufacture by diamond turning, 1992, Proc. SPIE Vol. 1573, 122-128
    3. A.P. Wood, Passively athermalized hybrid objective for a far-infrared uncooled thermal imager, 1996, SPIE, Vol. 2744, 500-509
    4. Russell M. Hudyma, Hank Karow, Larry Giammona, George R. Meyer, Design and fabrication of an infrared wide field of view objective utilizing a hybrid refractive/diffractive optical element, 1993, Proc. SPIE, Vol.1970, 68-78
    5. Max J. Riedl, Marlborough, Diamond-turned diffractive optical elements for the infrared: suggestion for specification standardization and manufacturing remarks, 1995, Proc. SPIE, Vol.2540, 257-269
    6.王鹏,衍射光学元件设计及金刚石单点车削技术的研究,2007,硕士论文,长春理工大学
    7. M.J.Riedl , Predesign of diamond turned refractive/diffractive elements for IR objectives,1992,SPIE Critical Design Review, Vol.CR41, 140-156
    8.张晓辉,吴国栋,马冬梅,谷立山,多功能光学传递函数测试仪,2004,光学精密工程,Vol.12, No.4,117-122
    9. J.D.加斯基尔,线性系统·傅里叶变换·光学,人民教育出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700