群能量守恒粒子群算法及其在发酵过程控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵工程是生化工程和现代生物技术及其产业化的基础。在发酵工程领域,为了提高发酵水平和生产率,更多的研究工作集中在菌种的筛选和改造上。尽管现代生物技术的发展,在基因工程和代谢工程领域内有了长足的进展,通过诱发变异、基因重组和培养能够得到高产菌株,然而,通过优化模型和控制以使发酵过程产品生产最优仍是发酵工程领域中存在的主要问题之一,因此对生物发酵过程模型优化及优化控制的研究日益受到重视。粒子群优化算法原理简单、易于实现,且适合于复杂优化问题的求解,因此,将粒子群优化算法引入发酵领域进行模型参数估计为发酵过程模型优化提供了有效途径。发酵过程的优化控制目标多种多样(最大生产率、最大终止时刻产量或最高原料转化率等),发酵领域中处理多目标问题的传统方法(目标加权合并、目标转化为约束等)实施困难且易丢失非凸目标函数最优解以至决策失误。基于粒子群优化的多目标算法由于在搜索中具有多向性和全局性,同时可以处理所有类型的目标函数和约束,因此非常适合求解发酵过程中复杂的多目标优化控制问题。
     本文在分析现有粒子群算法研究现状的基础上,对标准粒子群算法在寻优过程中容易过早收敛、陷入局部最优的现象进行研究,应用能量守恒原理,通过引入粒子最差位置提出了一种群能量守恒粒子群优化算法。该算法根据粒子内能进行动态分群,对较优群体采用引入最差粒子的速度更新策略,加快较优群体收敛速度;对较差群体采用带有惩罚机制的速度更新策略,补偿较优群体速度降低产生的整群能量损失,避免算法陷入局部最优。典型优化问题的仿真结果表明,该算法具有更强的全局搜索能力和更快的收敛速度。
     对多目标进化算法在寻优过程中的收敛性和分布性问题进行研究,提出一种群能量守恒多目标粒子群优化算法。该算法在粒子速度和位移计算中引入粒子群体能量守恒机制,并将该机制同非支配排序方法、自适应网格机制以及精英保留策略进行有机结合,提高粒子搜寻能力,避免陷入次优非支配前沿。将该算法和非支配排序遗传算法分别作为子种群进化规则,构造基于种群间优劣互补的多目标协同进化算法。与经典多目标进化算法的比较测试结果表明,所提算法具有更好的解分布性和收敛性。
     在发酵过程优化控制方法研究上,针对批次发酵过程模型不准确和过程参数不稳定特点,利用批次流加过程中的反复迭代特性提出一种用于批次流加发酵过程的批次间协同优化控制方法。该方法将群能量守恒粒子群算法、多目标粒子群算法和批次间优化控制有机地结合起来,用上一轮批次流加发酵过程的数据进行过程模型参数辨识,并将更新的过程模型用于新一轮发酵过程中进行操作条件优化。基于工业酵母发酵过程仿真模型进行批次间协同优化控制方法实验,结果表明该方法有效地解决了批次流加发酵过程中的模型不准确和状态不稳定问题,实现了批次流加发酵过程优化控制。
     本文所提出的群能量守恒粒子群算法具有更强的全局搜索能力和更快的收敛速度;所提出的群能量守恒多目标粒子群优化算法具有很好的收敛性和分布性;基于群能量守恒粒子群算法和进化多目标协同算法的批次间协同优化控制方法为生物发酵过程优化控制提供了有效途径。
Fermentation is the basis of bioengineering as well as modern biology technology and bioengineering industrialization. In the fermentation engineering, many studies have focused on the selection and transformation of the bacteria in order to improve the level and productivity of fermentation. Modern biotechnology has made significant progress in genetic engineering and metabolic engineering fields. Strains can be high yield by induced mutation, gene recombination, and cultured. But, getting the best products by optimizing the model and control of fermentation process is still one of the main problems existing in the fermentation engineering. Therefore, control optimization of microbial fermentation process studies received increasing attention. Particle swarm optimization method is simple, easy to implement, and suitable for complex optimization problems. Therefore, using Particle Swarm Optimization algorithm for optimization of fermentation process model has become an effective way to improve the fermentation process optimal control level. In the optimization of fermentation process control, it is needed to achieve multi-objective control tasks (such as the highest yield, the shortest, the minimum) to improve production efficiency and economic efficiency. In fermentation area, traditional methods of deal with multi-objective problems (such as weighted combining of objectives and transforming objectives into constraints) are difficult to implement and easy to lose the optimal solution of non-convex objective function, resulting in the decision-making mistakes. Multi-objective evolutionary algorithm based on PSO is very suitable for solving the complex multi-objective optimal control problem of the fermentation process, because it is a global optimization algorithm, and can handle almost all types of objective function and constraints.
     Based on the analysis of existing research on Particle Swarm Optimization algorithm and the research on the phenomenon of easy to premature convergence and sink into local optimum, which usually occurs in the optimization process of particle swarm optimization algorithm, a Swarm Energy Conservation Particle Swarm Optimization (SEC-PSO) is proposed. SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms adaptively according to the energy of the swarm. The simulation results of typical optimization problems show that the algorithm has better global search capability and faster convergence.
     We studied the convergence and distribution of the optimization process of multi-objective evolutionary algorithms, and proposed a Swarm Energy Conservation Multi-objective Particle Swarm Optimization (SEC-MOPSO) algrothm. In this algrothm, a Swarm Energy Conservation mechanism is used. The mechanism is combined with non-dominated sorting method, adaptive grid mechanism, and elitist strategy to improve the search capabilities of particles and avoid falling into the second-best non-dominated front. We structured a co-evolution algorithm based on complementary strengths and weaknesses among populations. In this algorithm, evolution rules of sub-population are Non-dominated sorting Genetic algorithm (NSGA) and SEC-MOPSO respectively. The simulation results show that the proposed algorithms have better distribution and convergence performence of solution than classic multi-obective evolutionary algorithm.
     In the research of fermentation process optimal control method, a run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, which are used in the operation condition optimization of the next run, is adjusted by calculating time-series data got from real fed-batch process in the run-to-run optimization. The simulation is taken based on industrial yeast fermentation process simulation model. The results show that this strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively.
     SEC-PSO proposed in this paper has a strong global search capability and fast convergence. Pareto optimal solutions of SEC-MOPSO and CEMO have good convergence and distribution. Run-to-run strategy with SEC-PSO and CEMO provides an effective method to control optimization of fed-batch fermentation process.
引文
[1]Jose de Assis A, Maciel Filho R. Soft sensors development for on-line bioreactor state estimation[J]. Computer & Chemical Engineering,2000,24:1099-1103
    [2]张嗣良.发酵过程多水平问题及其生物反应器装置技术研究基于过程参数相关的发酵过程优化与放大技术[J].中国工程科学,2001,8(3):37-44
    [3]张泉灵,金晓明,王树青,等.基于主元分析和模糊模型的链霉素发酵过程建模[J].无锡轻工大学学报,2000,19(5):446-451
    [4]周海英,袁景淇,邓建慧,等.重组毕氏酵母发酵过程的结构模型[J].上海交通大学学报,2002,36(10):1443-1447
    [5]秦华明,赵颖怡,梁世中.遗传算法在微生物发酵培养中的应用[J].食品与发酵工业,2002,28(3):51-55
    [6]Hjersted J, Henson M A. Population Modeling for Ethanol Productivity Optimization in Fed-Batch Yeast Fermenters [C]. In:Proceedings of 2005 American Control Conference [A]. Portland, Oregon, USA:IEEE,2005,3253-3258
    [7]Zhang H W, Lennox B. Integrated Condition Monitoring and Control of Fed-Batch Fermentation Process[J]. Journal of Process Control,2004(14):41-50
    [8]Massimo C D, Montague G A, Willis M J, et al. Towards improved penicillin fermentation via artificial neural networks [J]. Computers and Chemical Engineering,1992,16(4): 283-291
    [9]Chen L Z, Nguang S K, Chen X D, et al. Modelling and Optimization of Fed-Batch Fermentation Processes using Dynamic Neural Networks and Genetic Algorithms [J]. Biochemical Engineering Journal,2004(22):51-61
    [10]Franco-Lara E, Weuster-Botz D. Estimation of Optimal Feeding Strategies for Fed-Batch Bioprocesses[J]. Bioprocess and Biosystems Engineering,2005,9(27):255-262
    [11]Laursen S, Webb D, Ramirez W F. Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein [J]. Computers & Chemical Engineering,2007,31(3):163-170
    [12]王建林,于涛.发酵过程生物量软测量技术的研究进展[J].现代化工,2005,25(6):22-25
    [13]Vapnik V. Statistical Learning Theory[M]. New York, Wiley,1998
    [14]高学金,王普,孙崇正,等.基于支持向量机的青霉素发酵过程建模[J].系统仿真学报,2006,18(7):2052-2055
    [15]高学金,王普,孙崇正,等.基于动态ε-SVM的发酵过程建模[J],仪器仪表学报,2006,11,27(11):1497-1500
    [16]常玉清,王福利,王小刚.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报,2006,27(3):241-245
    [17]Lee D S, Jeon C O, Park J M. Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process[J]. Biotechnology and Bioengineering,2002,78(6): 670-682
    [18]许光,俞欢军,陶少辉,等.与机理杂交的支持向量机为发酵过程建模[J].化工学报,2005,56(4):653-658
    [19]Berkholz R, Rohlig D, Guthke R. Data and Knowledge Based Experimental Design for Fermentation Process Optimization [J]. Enzyme and Microbial Technology,2000(27): 784-788
    [20]赵江,张贵炜,齐欢.发酵过程的多模型融合建模算法[J],信息与控制,2005,34(2):172-177
    [21]Vanichsriratana W, Farlane D M, Keshavarz T, et al. Comparison of Open Loop Optimal Control and Closed Loop Optimal Control of a Fermentation Process [J]. UKACC International Conference on CONTROL,1996,96(2-5):258-263
    [22]杨旭华,戴华平,孙优贤,基于神经网络的发酵时间和最优发酵温度模型[J].化工自动化仪表,2004,3,10(1):18-21
    [23]王海霞,肖应旺,徐保国,基于SVM-IGA的补料分批发酵过程优化控制[J].计算机测量与控制,2005,13(7):674-676
    [24]Xiong Z H, Zhang J. Modeling and optimal control of fed-batch processes using a novel control affine feed forward neural network[J]. Neurocomputing,2004,61(1-4):317-337
    [25]Ezequiel F L, Dirk W B. Estimation of optimal feeding strategies for fed-batch bioprocesses[J]. Biochemical Engineering,2005(27):255-262
    [26]Kravaris C, Chung C. Nonlinear state feed back synthesis by global Input/Output linearization[J]. AIChE J.1987(33):592-603
    [27]Jorqensen S, Szederkenyi B. Nonlinear analysis and control of a continuous fermentation process[J]. Computers and Chemical Engineering,2002,26(4):659-670
    [28]宋毅芳,任元,杨虹,等.生物发酵过程的微分几何变结构控制[J].控制系统,2007,23(2-1):44-46
    [29]Bonastre A, Ors R, Peris M. Monitoring of a wort fermentation process by means of a distributed expert system [J], Chemometrics and Intelligent Laboratory Systems,2000, 50(2):235-242
    [30]Babuska R, Oosterhoff J, Oudshoorn A, et al. Fuzzy self-tuning PI control of pH in fermentation [J], Engineering Applications of Artificial Intelligence,2003,15(1):3-15
    [31]Karakuzu C, Turker M, Ozturk S. Modeling on-line state estimation and fuzzy control of production scale fed-batch baker's yeast fermentation [J], Control Engineering Practice, 2006,14(8):959-974
    [32]潘丰,补料分批发酵过程优化控制[J],自动化仪表,2004,25(8):51-54
    [33]刘国海,孙玉坤,全力,等,基于神经网络逆系统的发酵过程多变量解耦控制[J],仪器仪表学报,2006,27(3):275-279
    [34]Shinzawa H, Jiang J H, Iwahashi M, et al. Self-modeling curve resolution (SMCR) by particle swarm optimization (PSO) [J]. Analytica Chimica Acta,2007,595(1):275-281
    [35]Xu B L, Wang Z Q. A multi-objective-ACO-based data association method for bearings-only multi-target tracking [J]. Communications in Nonlinear Science and Numerical Simulation,2007,12(8):1360-1369
    [36]Liu H B, Abraham A, Clerc M. Chaotic dynamic characteristics in swarm intelligence[J]. Applied soft computing,2007,7(3):1019-1026
    [37]孙力娟,王汝传.基于蚁群算法和遗传算法融合的组播路由问题求解[J].电子学报,2006,(8):1391-1395
    [38]Wang F S, Cheng W M. Simultaneous optimization of feeding rate and operation parameters for fed-batch fermentation processes [J]. Biotechnology Progress,1999,15(5):
    949-952
    [39]R, Agrawal S K, Francis J. Doyle F J. A flatness based approach to optimization in fed-batch bioreactors[J]. International Symposium on Advanced Control of Chemical Process,2000,14(6):111-116
    [40]Ge H W, Liang Y C, Marches M. A modified particle swarm optimization-based dynamic recurrent neural network for identifying and controlling nonlinear systems [J]. Computers and Structures,2007; 85(21):1611-1622
    [41]Skolpap W, Nuchprayoon S, Scharer J M, et al. Fed-batch optimization of alpha-amylase and protease-producing Bacillus subtilis using genetic algorithm and particle swarm optimization [J]. Chemical Engineering Science,2008,63(16):4090-4099
    [42]Fernando H, Zhang J. Optimal control of batch processes using particle swam optimisation with stacked neural network models [J]. Computers and Chemical Engineering,2009,33(10):1593-1601
    [43]熊伟丽,徐保国,吴晓鹏.改进粒子群算法在酶发酵过程优化控制中的应用[J].化工自动化及仪表,2007,34(2):7-9
    [44]SACHS E, HU A, INGOLFSSON A. Run by run process control:combining SPC and feedback control [J]. IEEE transactions on semiconductor manufacturing,1995,8(1): 26-43
    [45]Srinivasan B, Primus C J, Bonvin D, et al. Run-to-run optimization via control of generalized constraints[J]. Control Engineering Practice,2001,9(8):911-919
    [46]Paengjuntuek W, Kittisupakorn P, Arpornwichanop A. Batch-to-batch Optimization of Batch Crystallization Processes [J]. Chinese Journal of Chemical Engineering,2008, 16(1):26-29
    [47]Ko C L, Wang F S. Run-to-run fed-batch optimization for protein production using recombinant Escherichia coli [J]. Biochemical Engineering Journal,2006,30(3):279-285
    [48]Lee K W, Lee J H, Yang D R, et al. Integrated run-to-run and on-line model-based control of particle size distribution for a semi-batch precipitation reactor [J]. Computers & Chemical Engineering,2002,26(7):1117-1131
    [49]Kennedy J, Eberhart R. Particle Swarm Optimization [A]. In:Proceedings of IEEE International Conference on Neural Networks [C]. IEEE,1995,1942-1948
    [50]Clerc M. The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization [A]. In:Proceedings of the Congress on Evolutionary Computation[C]. Washington DC,1999:1951-1957
    [51]Shi Y H, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. In:Proceedings of IEEE International Conference on Evolutionary Computation[C]. Seoul,2001:101-106
    [52]Shi Y H, R.C. Eberhart RC.A modified particle swarm optimizer [A]. In:Proceedings of the IEEE Congress on Evolutionary Computation[C]. USA:IEEE,1998,69-73
    [53]Kennedy J. Population structure and particle swarm performance [A]. In:Proceedings of the Congress on Evolutionary Computation[C]. CEC,2002,1671-1676
    [54]Suganthan, P N. Particle swarm optimiser with neighbourhood operator [A]. In: Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway NJ: CEC,1999,1958-1962
    [55]Buthainh A K. Multi-Phase Particle Swarm Optimization [D], USA, Syracuse University, 2002
    [56]Sun J, Feng B, Xu W B. Particle Swarm Optimization with Particles Having Quantum Behavior[A]. In:Congress on Evolutionary Computation[C]. Portland OR, USA:CEC, 2004:325-331
    [57]Beasley D, Bull D, Martin R. A Sequential Niche Technique for Multimodal Function Optimization [J]. Evolutionary Computation,1993:101-125
    [58]Wachowiak M P, Smolikova R, Zheng, Y, et al. An Approach to Multimodal Biomedical Image Registration Utilizing Particle Swarm Optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(3):289-301
    [59]Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing,2002,1(2):235-306
    [60]Victoire T A A, Jeyakumar A E. Hybrid PSO-SQP for economic dispatch with valve-point effect [J]. Electric Power Systems Research,2004,71(1):51-60
    [61]Juang C F. A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design[J]. IEEE Transactions on Systems Man and Cybernetics-Part B-Cybernetics,2004,34(2):997-1006
    [62]Shi X H, Liang Y C, Lee H P, et al. An improved GA and a novel PSO-GA-based hybrid algorithm [J]. Information Processing Letters,2005,93(5):255-261
    [63]王华秋,曹长修.基于模拟退火的并行粒子群优化研究[J].控制与决策,2005,5:500-504
    [64]Smith A E. Multi-objective optimization using Evolutionary algorithms [J].IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2002,6(5):526-526
    [65]公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289
    [66]Coello C A C. Evolutionary multi-objective optimization:A historical view of the field [J]. IEEE Computational Intelligence Magazine,2006,1(1):28-36
    [67]Coello C A C. Recent trends in evolutionary multi-objective optimization [A]. In: Abraham A, Jain LC, Goldberg R. Evolutionary Multi-Objective Optimization: Theoretical Advances and Applications[C]. Berlin:Springer-Verlag,2005.7-32
    [68]Coello C A C.20 Years of Evolutionary Multi-Objective Optimization:What has been done and what remains to be done [A]. In:Yen G Y, Fogel DB. Computational Intelligence:Principles and Practice [C]. New York:IEEE Computational Intelligence Society,2006.73-88
    [69]Rosenberg R S. Simulation of genetic populations with biochemical properties [J]. Mathematical Biosciences,1970,7(3-4):223-257
    [70]Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms [D]. Vanderbilt University,1984
    [71]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. In:Grefenstette JJ. Proc. of the Int'l Conf. on Genetic Algorithms and Their Applications [C]. Hillsdale:L. Erlbaum Associates, Inc.,1985.93-100
    [72]Peabody D, Goldberg L R. Some determinants of factor structures from personality-trait descriptors [J]. Journal of Personality and Social Psychology,1989,57,552-567
    [73]Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms [J]. Evolutionary Computation,1994,2(3):221-248
    [74]Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algorithm for
    Multiobjective Optimization [A]. In:Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence [C]. Piscataway, New Jersey:IEEE,1994,82-87
    [75]Fonseca C M, Fleming P J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization [A]. In:Stephanie Forrest. Proceedings of the Fifth International Conference on Genetic Algorithms [C]. San Mateo, California:Morgan Kauffman Publishers,1993,416-423
    [76]Husbands P. Distributed Coevolutionary Genetic Algorithms for multi-Criteria and Multi-Constraint Optimisation [A]. In:Fogarty T C. Evolutionary Computing [C]. Springer Verlag,1994,150-165
    [77]Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3(4):257-271
    [78]Zitzler E, Thiele L. Multiobjective Optimization Using Evolutionary Algorithms-A Comparative Study [A]. In:Eiben A E. Parallel Problem Solving from Nature Ⅴ [C]. Amsterdam:Springer-Verlag,1998,292-301
    [79]Zitzler E, Laumanns M, and Thiele L. SPEA2:Improving the Strength Pareto Evolutionary Algorithm [A]. In:Giannakoglou K. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems [C]. Athens, Greece: EUROGEN,2001, pages 95-100
    [80]Knowles J D, Corne D W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy [J]. Evolutionary Computation,2000,8(2):149-172
    [81]Deb K, Agrawal S, Pratab A, et al. A Fast Elitist NonDominated Sorting Genetic Algorithm for Multi-Objective Optimization:NSGA-Ⅱ [A]. In:Schoenauer M. Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference [C]. Paris, France:Springer,2000,849-858
    [82]Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197
    [83]Van D A, Veldhuizen, Lamont G B. Multiobjective optimization with messy genetic algorithms [A]. In:Bryant B, Carroll J, Damiani E, et al. Proceedings of the 2000 ACM symposium on Applied computing [C]. NY, USA:ACM,2000,470-476
    [84]Coello C A C, Pulido G T. A micro-genetic algorithm for multiobjective optimization [J]. Lecture Notes In Computer Science,2001, (1993):126-140
    [85]Zitzler E, Kunzli S. Indicator-based selection in multiobjective search [A]. In:Yao X, et al. Parallel Problem:Solving from Nature-PPSN Ⅷ [C]. Birmingham:Springer-Verlag, 2004,832-842
    [86]Zitzler E, Thiele L, Bader J. SPAM:set preference alogrithm for multiobjective optimization [A]. In:Rudolph G, Jansen T, Lucas S, et al. Parallel Problem Solving from Nature-PPSN Ⅹ [C]. Dortmund:Springer,2008,847-858
    [87]Emmerich M, Beume N, Naujoks B. An EMO algorithm using the hypervolume measure as selection criterion [A]. In:Coello C A C, Hernandez-Aguirre A, Zitzler E. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005) [C]. Guanajuato:Springer,2005,62-76
    [88]Beume N, Naujoks B, Emmerich M. SMS-EMOA:Multiobjective selection based on
    dominated hypervolume [J]. European Journal of Operational Research,2007,181(3): 1653-1669
    [89]Nebro A J, Durillo J J, Luna F, et al. A cellular genetic algorithm for multiobjective optimization [A]. In:Pelta D A, Krasnogor N. Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2006) [C].2006,25-36
    [90]Nebro A J, Durillo J J, Luna F, et al. Design issues in a multiobjective cellular genetic algorithm.In:Obayashi S, Deb K, Poloni C, et al. Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007). Matshushima: Springer,2007,126-140
    [91]Coello C A C, Toscano-Pulido G. Multiobjective optimization using a micro-genetic algorithm [A]. In:Spector L, Good-man E D, Wu A, et al. Proceedings of the Genetic and Evolutionary Computation Conference [C]. San Francisco:Morgan Kaufmann Publishers, 2001,274-282
    [92]Toscano-Pulido G, Coello Coello C A. The micro genetic algorithm 2:.towards online adaptation in evolutionary multiobjective optimization [A]. In:Fonseca C M, Fleming P J, Zitzler E, et al. Proceedings of Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003) [C]. Faro:Springer,2003,252-266
    [93]Reynolds C W. Flocks, herds and schools:a distributed behavioral model [J]. Computer Graphics,1987,1(4):25-34
    [94]Brits R, A.P. Engelbrecht A P, van den Bergh F. Locating multiple optima using particle swarm optimization [J]. Applied Mathematics and Computation,2007,189(2):1859-1883
    [95]Coello C A, Pulido G T, Lechuga M S. Handing multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(3):256-279
    [96]Alvarez B J, EVERSON R, FIELDSEND J. A MO-PSO algorithm based exclusively on Pareto dominance concepts[J]. Lecture Notes in Computer Science,2005,3410:459-473
    [97]熊盛武,刘麟,王琼,等.改进的多目标粒子群算法[J].武汉大学学报:理学版,2005,51(3):308-312
    [98]贺益君,俞欢军,成飙,等.多目标粒子群算法用于补料分批生化反应器动态多目标优化[J].化工学报,2007,58(5):1262-1270
    [99]Parsopoulos K E,Vrahatis M N.Particle Swarm Optimization Method in Multiobjective Problems [A].In:Lamont G B, Haddad H, Papadopoulos G, et al. ACM Symposium on Applied Computing(SAC 2002) [C]. New York, USA:ACM,2002,603-607
    [100]Zitzler E, Deb K, Thiele L. Comparison of multi-objective evolutionary algorithms Empirical results [J]. Evolutionary Computation,2000,8(2):173-95
    [101]Kursawe F. A variant of evolution strategies for vector optimization [A]. In:Schwefel H P, Manner R. Proceedings of the 1st Workshop on Parallel Problem Solving from Nature [C]. London, UK:1990,193-197
    [102]Ehrlieh P R, Raven P H. ButterfliesandPlants:astudyineoevolution [J]. Evolution.1965, 18:586-608
    [103]Jazen D H. When is it coevolution [J]. Evolution.1980,34:611-612
    [104]Erick C P. Efficient and accurate parallel genetic algorithms [M]. USA:Kluwer Academic Publishers,2001
    [105]National Instruments. DAQ M Series User Manual[M]. Austin:National Instruments Corporation,2007
    [106]徐进容,潘丰.基于粒子群和支持向量机为青霉素发酵建模[J].计算机与应用化学,
    2007,24(11):1458-1460
    [107]Yuzgec U, Turker M, Hocalar A. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process[J]. ISAT,2009, (48):79-92
    [108]Sonnleitnert B, Kappeli O. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity:formulation and verification of a hypothesis[J]. Biotechnology and Bioengineering,1986,28:927-937
    [109]Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering,2002,26:1553-1565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700