应用焦磷酸测序技术对不同人群肠道微生物群落结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于肠道菌群与人体的健康和一些代谢性疾病的发生有着密切的关系,所以越来越多的研究人员在该领域展开了研究工作。本论文分别对婴儿和中青年人群、藏族牧民和城市居民以及哈萨克族和维吾尔族居民肠道微生物群落结构进行了研究,同时对不同民族居民其肠道菌群是否存在共有的或者特有的种系型进行了探讨。为了初步间接的探讨改变代谢性疾病患者肠道菌群的结构是否会对疾病治疗产生影响,本研究选取对人体肠道菌群具有显著影响作用的益生菌和菊粉为研究对象,通过采用循证医学的研究手段,探讨其在临床应用中是否对高脂血症具有治疗作用。论文的主要研究结果如下:
     (1)本部分研究选取中国四川地区5例健康汉族婴儿、6例青年人和6例中年人的粪便样品样品作为研究对象,以454焦磷酸测序技术结合多变量统计学方法检测细菌16S rRNA基因V5-V6区的多样性。通过基于UniFrac的主成分分析(principal componentanalysis,PCoA)和非加权组平均法(Unweighted Pair Group Method with ArithmeticMean,UPGMA)我们发现婴儿样品与中青年样品是完全分离的而部分中青年的样品存在交叠现象。多元方差分析(Multivariate analysis of variance,MANOVA)表明婴儿肠道菌群群落结构与中青年差异显著而中青年肠道菌群群落结构差异不显著。无论是基于加权还是非加权的UniFrac距离分析(weighted and unweighted UniFrac distances)均显示婴儿组内平均UniFrac距离大于青年和中年组,同时中年组和青年组间差异不显著。中青年人肠道中的微生物主要隶属于硬壁菌门(Firmicutes),而婴儿的主要为变形菌门(Proteobacteria),克雷白氏杆菌属(Klebsiella)为多数婴儿肠道中的优势细菌属,而非以往文献报道的双歧杆菌(Bifidobacterium)。上述结果表明,婴儿肠道菌群群落结构明显不同于中青年人,但中青年人肠道菌群群落结构相似,同时婴儿肠道菌群群落结构个体之间的差异要显著大于青年人和中年人。
     (2)本部分研究选取28例西藏那曲县境内那曲草原的牧民和15例拉萨的城市居民的粪便样品样品作为研究对象,以454焦磷酸测序技术结合多变量统计学方法检测细菌16S rRNA基因V5-V6区的多样性。虽然基于UniFrac的PcoA分析和UPGMA分析均显示两个人群的样本存在交叠现象,但MANOVA分析显示其肠道菌群群落结构差异显著(P <0.05)。虽然藏族城市居民肠道菌群的多样性和丰度大于藏区居民,但藏区居民组内平均UniFrac距离大于城市居民(P <0.05)。利用偏最小二乘判别分析(Partial least squares discrimination analysis, PLS-DA),我们找出了212个在两类居民肠道菌群结构的差异中最为关键的分类操作单元(Operational taxonomic units,OTU),其中逾1/4的OTUs被鉴定为具有短链脂肪酸产生功能的劳特氏菌属(Blautia)、梭菌属(Clostridium)、考拉杆菌属(Phascolarctobacterium)、罗斯氏菌属(Roseburia)和罕见小球菌属(Subdoligranulum),且其在城市居民中含量显著高于藏区牧民。上述结果表明,在城市和藏区生活的藏族居民其肠道菌群结构是不同的,生活方式对人肠道菌群构成有显著影响作用。
     (3)本部分研究选取22例在乌鲁木齐生活的维吾尔族居民和21例哈萨克族居民的粪便样品样品作为研究对象,以454焦磷酸测序技术结合多变量统计学方法检测细菌16S rRNA基因V5-V6区的多样性。虽然基于UniFrac的PcoA分析和UPGMA分析均显示两个人群的样本存在交叠现象,但MANOVA分析显示其肠道菌群群落结构差异显著(P <0.05)。虽然维吾尔族居民肠道菌群的多样性和丰度大于哈萨克族居民,但哈萨克族居民组内平均UniFrac距离大于城市居民(P <0.05)。利用偏最小二乘判别分析(Partial least squares discrimination analysis, PLS-DA),我们找出了69个在两类居民肠道菌群结构的差异中最为关键的分类操作单元(Operational taxonomic units,OTU),其中近1/3的OTUs被鉴定为具有短链脂肪酸产生功能的梭菌属(Clostridium)、罗斯氏菌属(Roseburia)、布劳特氏菌属(Blautia)、罕见小球菌属(Subdoligranulum)、栖粪杆菌属(Faecalibacterium)、拟杆菌属(Bacteroides)和多尔氏菌属(Dorea),且其在维吾尔族居民中含量偏高。上述结果表明,维吾尔族和哈萨克族居民肠道菌群结构是不同的,基因型对人肠道菌群构成有显著影响作用。
     (4)将前三部分研究中所涉及的汉族、维吾尔族、哈萨克族及藏族青年居民的样品进行合并分析,研究发现所有92个健康居民肠道均含有的细菌属为11个,包括普氏菌属(Prevotella)、拟杆菌属(Bacteroides)、考拉杆菌属(Phascolarctobacterium),罗斯氏菌属(Roseburia),布劳特氏菌(Blautia),栖粪杆菌属(Faecalibacterium)、梭菌属(Clostridium),罕见小球菌属(Subdoligranulum),瘤胃球菌属(Ruminococcus),粪球菌属(Coprococcus)和韦荣球菌属(Veillonella)。通过基于Manova分析的各民族样品马尔距离聚类分析发现各民族居民肠道菌群群落差异显著。为了进一步分析各民族特有的OTU,我们假设若一个OTU在一个或者多个民族居民的检出率小于5%(若样品数小于20则检出率取0),而在其余一个或者多个民族的检出率大于67%,则认为该OTU为能将各民族居民肠道菌群区分开的关键OTU(key OTU)。结果发现不同民族居民肠道菌群具有其特有或缺失的OTUs,哈萨克族和维吾尔族居民其特有的OTUs主要来自于拟杆菌属(Bacteroides)、罗斯氏菌属(Roseburia)和考拉杆菌属(Phascolarctobacterium),然而汉族和藏族居民其特有OTUs主要为劳特氏菌(Blautia)和普氏菌属(Prevotella)细菌。因此我们可以初步推断纳入本部分研究的92个健康青年人共有少数相同的肠道菌群。
     (5)经荟萃分析发现,口服益生乳酸菌及其发酵乳制品具有降低受试者血浆总胆固醇和LDL胆固醇的作用,而对HDL胆固醇和甘油三酯无影响。服用菊粉对高脂血症患者具有降低其血清总胆固醇和LDL胆固醇的作用,而对HDL胆固醇和甘油三酯无影响,此外菊粉对健康居民血脂无调节作用。
A large number of studies have shown that the gut microbiota is closely related tohuman health and metabolism, in particular in metabolic diseases; therefor, the profiling ofhuman gut microbiota has become one of the research hot topics. In this study, we havestudied the effects of age, lifestyle and genotype on the gut microbiota of healthy Chinesepeople, meanwhile we have looked for the phenotypic characteristics that are responsible forthe differentiation between ethnic groups or lifestyles. Although the understanding of thehuman gut microbiota is of great interest due to recently accumulating evidence of its tightassociation with the human health, there is no evidence that a change in the composition ofthese microbes would impact on diseases. Oral probiotic strains and inulin could affectmicrobial environment of the gut microbiota, we conducted a meta-analysis of randomizedcontrolled trials that evaluated the effects of probiotics and inulin consumption on bloodlipids. The main results are described as follows:
     (1) We performed a structural survey of the gut microbiota of17healthy individuals (5infants,6young people, and6middle-aged people) by using deep454pyrosequencing of theV5-V6region of the16S ribosomal RNA gene. By combining an Unweighted Pair GroupMethod with Arithmetic Mean (UPGMA) and UniFrac principal component analysis (PCoA),we observed that the fecal microbial communities of the infant individuals were distinct fromthose of the other individuals (P>0.001). Multivariate analysis of variance showed that thedifference between the young and middle-aged individuals was not significant. The UniFracdistance metric indicated that the interpersonal variation was significantly greater among theinfants than among the young and middle-aged people (P>0.05). Firmicutes was identifiedas the predominant phylum in the young and middle-aged people, whereas Proteobacteriawas the most abundant in the infants (P>0.05). Contrasting to the findings of other studies,Klebsiella, rather than Bifidobacterium, was identified as the most abundant microbial genusin the infant samples. There were significant differences in the phylogenetic composition ofthe gut microbiota of the healthy Chinese infants and adults, but high similarities in thestructure of the gut microbiota of young and middle-aged people. Interpersonal variation wassignificantly greater among the infants than among the young or middle-aged people.
     (2) We compared the fecal microbiota of urban (N=15) and pastoral (N=28) residents inTibet. By using high-throughput16S rDNA sequencing and biochemical analyses, we foundthat although UPGMA and PCoA analysis both showed an overlapping of a few of thesamples,, the difference between the two groups was significant, as shown by Manovaanalysis (P <0.05). UniFrac distance metrics indicated that the interpersonal variation wassignificantly greater among the pastoral residents than the urban ones, meanwhile the meancommunity richness and diversity were higher in the pastoral residents. By Partial LeastSquare Discriminate Analysis (PLS-DA), we identified212OTUs as key phenotypes thatresponded to lifestyle, and more than a quarter of them were Blautia, Clostridium,Phascolarctobacterium, Roseburia and Subdoligranulum. By using Mann-Whitney test, wefound that the bacterial-derived short-chain fatty acids (SCFA) were enriched in urban residents as compared to the pastoral subjects. Thus, we could conclude that the gut microbialcommunities of the pastoral residents were distinct from that of the urban residents, and theirlifestyle had a significant effect on the gut community composition.
     (3) We compared the fecal microbiota of the Uygurs (N=28) and Kazakhs (N=15) livingin Urumqi. By using high-throughput16S rDNA sequencing and biochemical analyses, wefound that although UPGMA and PCoA analysis both showed an overlapping of a few of thesamples, the difference between the two groups was significant, as shown by Manova analysis(P <0.05). UniFrac distance metric indicated that the interpersonal variation was significantlygreater among the Kazakhs, meanwhile the mean community richness and diversity werehigher in the Uygurs. By PLS-DA Analysis, we identified69OTUs as key phenotypes thatresponded to genotype, and more than one third of them were Clostridium, Roseburia, Blautia,Subdoligranulum, Faecalibacterium, Bacteroides, and Dorea, By using Mann-Whitney test,we found that these bacterial short-chain fatty acids (SCFA) were enriched in the Uygurs.Thus, we could conclude that the gut microbial communities of the Kazakhs were distinctfrom that of the Uygurs, and genotype had a significant effect on the gut communitycomposition.
     (4) We collectively analyzed the gut microbiota in the92healthy young adults which hadbeen studied in part (1) to part (3). At the genus level, eleven taxa, which contained knownshort-chain fatty acids (SCFAs)-producing capacity, were universally present in all theindividuals. These included Phascolarctobacterium, Faecalibacterium, Blautia, Clostridium,and Ruminococcus. Canonical analysis of principal coordinates based on the unweightedUniFrac metric revealed that the volunteers clustered together mainly according to their ethnicbackground. A total of57OTUs were selected as the potential contributors to the ethnicbackground-driven structural variation. By the criterion that each selected OTU should bepresent in less than5%samples in at least one ethnic group but in more than67%samples inone or more of other groups, it appeared that the distinctiveness of the gut microbiotastructure in the Kazakh and Uygur ethnic groups was largely due to the absence of lineageswithin the genera Phascolarctobacterium, Bacteroides, and Roseburia. In addition, a differentset of OTUs was absent, including those within the genera Blautia and Prevotella.Interestingly, the Han and Tibetan showed a contrasting phenomenon. Thus, all92individualsshared a few common components, and any individual shared many components with a fewother individuals. However, very little was shared across all individuals.
     (5) Based on meta-analysis, we concluded that the consumption of oral probioticsexerted beneficial effects on the total cholesterol and LDL cholesterol for subjects with high,borderline high and normal cholesterol levels. Moreover, a diet rich in inulin was beneficial tothe plasma total and LDL cholesterol, as well as triglyceride concentration of hyperlipidemicsubjects, but had no effect on the plasma lipid in normolipidemic subjects.
引文
1. Hooper L V,Gordon J I. Commensal host-bacterial relationships in the gut. Science,2001,292(5519):1115-1118
    2. Qin J,Li R,Raes J,et al. A human gut microbial gene catalogue established by metagenomic sequencing.Nature,2010,464(7285):59-65
    3. O’Hara A M,Shanahan F. The gut flora as a forgotten organ. EMBO Rep,2006,7(7):688-693
    4. Giannella R A,Broitman S A,Zamcheck N. Gastric acid barrier to ingested microorganisms in man:studies in vivo and in vitro. Gut,1972,13(4):251-256
    5. Wang M,Ahrne S,Jeppsson B,et al. Comparison of bacterial diversity along the human intestinal tractby direct cloning and sequencing of16S rRNA genes. FEMS Microbiol Ecol,2005,54(2):219-231
    6. Savage D C. Associations of indigenous microorganisms with gastrointestinal mucosal epithelia. Am JClin Nutr,1970,23(11):1495-1501
    7. Frank D N,St Amand A L,Feldman R A,et al. Molecular-phylogenetic characterization of microbialcommunity imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A,2007,104(34):13780-13785
    8. Eckburg P B,Bik E M,Bernstein C N,et al. Diversity of the human intestinal microbial flora. Science,2005,308(5728):1635-1638
    9. Lay C,Rigottier-Gois L,Holmstrom K,et al. Colonic microbiota signatures across five northernEuropean countries. Appl Environ Microb,2005,71(7):4153-4155
    10. Mueller S,Saunier K,Hanisch C,et al. Differences in fecal microbiota in different European studypopulations in relation to age,gender,and country: A cross-sectional study. Appl Environ Microb,2006,72(2):1027-1033
    11. Claesson M J,Cusack S,O'Sullivan O,et al. Composition,variability,and temporal stability of theintestinal microbiota of the elderly. Proc Natl Acad Sci U S A,2011,108(S1):4586-4591
    12. Arumugam M,Raes J,Pelletier E,et al. Enterotypes of the human gut microbiome. Nature,2011,473(7346):174-180
    13. Nam Y D,Jung M J,Roh S W,et al. Comparative analysis of Korean human gut microbiota bybarcoded pyrosequencing. PLoS One,2011,6(7): e22109
    14. LeBlanc J G,Milani C,de Giori G S,et al. Bacteria as vitamin suppliers to their host: a gut microbiotaperspective. Curr Opin Chem,2012
    15. Vrieze A,Holleman F,Zoetendal E G,et al. The environment within: how gut microbiota mayinfluence metabolism and body composition. Diabetologia,2010,53(4):606-613
    16. Garcia-Lopez R,Perez-Brocal V,Diez-Domingo J,et al. Gut microbiota in children vaccinated withrotavirus vaccine. Pediatr Infect Dis J,2012,31(12):1300-1302
    17. Nicholson J K,Holmes E,Wilson I D. Gut microorganisms,mammalian metabolism and personalizedhealth care. Nat Rev Microbiol,2005,3(5):431-438
    18. Swann J R,Want E J,Geier F M,et al. Systemic gut microbial modulation of bile acid metabolism inhost tissue compartments. Proc Natl Acad Sci U S A,2011,108(S1):4523-4530
    19. Ley R E,Peterson D A,Gordon J I. Ecological and evolutionary forces shaping microbial diversity inthe human intestine. Cell,2006,124(4):837-848
    20. Macfarlane S,Macfarlane G T. Regulation of short-chain fatty acid production. Proc Nutr Soc,2003,62(1):67-72
    21. Cummings J H,Pomare E W,Branch W J,et al. Short chain fatty acids in human large intestine,portal,hepatic and venous blood. Gut,1987,28(10):1221-1227
    22. Backhed F,Ding H,Wang T,et al. The gut microbiota as an environmental factor that regulates fatstorage. Proc Natl Acad Sci USA,2004,101(44):15718-15723
    23. Cash H L,Whitham C V,Behrendt C L,et al. Symbiotic bacteria direct expression of an intestinalbactericidal lectin. Science,2006,313(5790):1126-1130
    24. Smith E A,Macfarlane G T. Enumeration of human colonic bacteria producing phenolic and indoliccompounds: effects of pH,carbohydrate availability and retention time on dissimilatory aromatic aminoacid metabolism. J Appl Bacteriol,1996,81(3):288-302
    25. Younes H,Coudray C,Bellanger J,et al. Effects of two fermentable carbohydrates (inulin and resistantstarch) and their combination on calcium and magnesium balance in rats. Br J Nutr,2001,86(4):479-485
    26. Falk P G,Hooper L V,Midtvedt T,et al. Creating and maintaining the gastrointestinal ecosystem: whatwe know and need to know from gnotobiology. Microbiol Mol Biol Rev,1998,62(4):1157-1170
    27. Alam M,Midtvedt T,Uribe A. Differential cell kinetics in the ileum and colon of germfree rats. ScandJ Gastroenterol,1994,29(5):445-451
    28. Stappenbeck T S,Hooper L V,Gordon J I. Developmental regulation of intestinal angiogenesis byindigenous microbes via Paneth cells. Proc Natl Acad Sci U S A,2002,99(24),15451-15455
    29. Sekirov I,Russell S L,Antunes L C,et al. Gut microbiota in health and disease. Physiol Rev,2010,90(3):859-904
    30. Round J L,Mazmanian S K. The gut microbiota shapes intestinal immune responses during healthand disease. Nat Rev Immunol,2009,9(5):313-323
    31. Willing B,Halfvarson J,Dicksved J,et al. Twin studies reveal specific imbalances in themucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis,2009,15(5):653-60
    32. Scharlau D,Borowicki A,Habermann N,et al. Mechanisms of primary cancer prevention by butyrateand other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res,2009,682(1):39-53
    33. Palombo J D,Ganguly A,Bistrian B R,et al. The antiproliferative effects of biologically active isomersof conjugated linoleic acid on human colorectal and prostatic cancer cells. Cancer Lett,2002,177(2):163-172
    34. Louis P,Flint H J. Diversity,metabolism and microbial ecology of butyrate-producing bacteria fromthe human large intestine. FEMS Microbiol Lett,2009,294(1):1-8
    35. Davis C D,Milner J A. Gastrointestinal microflora,food components and colon cancer prevention. JNutr Biochem,2009,20(10):743-752
    36. Hooper L V,Xu J,Falk P G,et al. A molecular sensor that allows a gut commensal to control itsnutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A,1999,96(17):9833-9838
    37. Brook I. Bacterial interference. Crit Rev Microbiol,1999,25(3):155-172
    38. Hooper L V. Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol,2009,7(5):367-374
    39. Lopez-Boado Y S,Wilson C L,Hooper L V,et al. Bacterial exposure induces and activates matrilysinin mucosal epithelial cells. J Cell Biol,2000,148(6),1305-1315
    40. Garcia-Lafuente A,Antolin M,Guarner F,et al. Modulation of colonic barrier function by thecomposition of the commensal flora in the rat. Gut,2001,48(4):503-507
    41. Palmer C,Bik E M,DiGiulio D B,et al. Development of the human infant intestinal microbiota. PLoSBiol,2007,5(7): e177
    42. Mackie R I,Sghir A,Gaskins H R. Developmental microbial ecology of the neonatal gastrointestinaltract. Am J Clin Nutr,1999,69(S5):1035-1045
    43. Biagi E,Nylund L,Candela M,et al. Through ageing,and beyond: gut microbiota and inflammatorystatus in seniors and centenarians. Plos One,2010,5(5): e10667
    44. Finegold S M,Attebery H R,Sutter V L. Effect of diet on human fecal flora: comparison of Japaneseand American diets. Am J Clin Nutr,1974,27(12):1456-1469
    45. Wu G D,Chen J,Hoffmann C,et al. Linking long-term dietary patterns with gut microbial enterotypes.Science,2011,334(6052):105-108
    46. Mai V,Katki H A,Harmsen H,et al. Effects of a controlled diet and black tea drinking on the fecalmicroflora composition and the fecal bile acid profile of human volunteers in a double-blinded randomizedfeeding study. J Nutr,2004,134(2):473-478
    47. Mitsou E K,Kougia E,Nomikos T,et al. Effect of banana consumption on faecal microbiota: arandomised,controlled trial. Anaerobe,2011,17(6):384-387
    48. Blaut M,Collins M D,Welling G W,et al. Molecular biological methods for studying the gutmicrobiota: the EU human gut flora project. Br J Nutr,2002,87(S2):203-211
    49. Oelschlaeger T A. Mechanisms of probiotic actions-A review. Int J Med Microbiol,2010,300(1):57-62
    50. Kaushik J K,Kumar A,Duary R K,et al. Functional and probiotic attributes of an indigenous isolateof Lactobacillus plantarum. Plos One,2009,4(12): e8099
    51.张家超,郭壮,陈卫等.益生菌对肠道菌群的影响—以Lactobacillus casei Zhang研究为例[J].食品学报,2011,11(9):58-68.
    52. McNulty N P,Yatsunenko T,Hsiao A,et al. The impact of a consortium of fermented milk strains onthe gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med,2011,3(106):106
    53. Kleessen B,Sykura B,Zunft H J,et al. Effects of inulin and lactose on fecal microflora,microbialactivity,and bowel habit in elderly constipated persons. Am J Clin Nutr,1997,65(5):1397-1402.
    54. Mah K W,Sangsupawanich P,Tunyapanit W,et al. Gut microbiota of children living in rural southThailand and urban Singapore. Allergol Int,2008,57(1):65-71.
    55. Benno Y,Endo K,Mizutani T,et al. Comparison of fecal microflora of elderly persons in rural andurban areas of Japan. Appl Environ Microbiol,1989,55(5):1100-1105
    56. De Filippo C,Cavalieri D,Di Paola M,et al. Impact of diet in shaping gut microbiota revealed by acomparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A,2010,107(33):14691-14696
    57. Hosokawa T,Kikuchi Y,Nikoh N,et al. Strict host-symbiont cospeciation and reductive genomeevolution in insect gut bacteria. PLoS Biol,2006,4(10): e337
    58. Dicksved J,Floistrup H,Bergstrom A,et al. Molecular fingerprinting of the fecal microbiota ofchildren raised according to different lifestyles. Appl Environ Microbiol,2007,73(7):2284-228959Mueller S,Saunier K,Hanisch C,et al. Differences in fecal microbiota in different European studypopulations in relation to age,gender,and country: a cross-sectional study. Appl Environ Microbiol,2006,72(2):1027-1033
    60. Li M,Wang B,Zhang M,et al. Symbiotic gut microbes modulate human metabolic phenotypes. ProcNatl Acad Sci U S A,2008,105(6):2117-2122
    61. Muyzer G,de Waal EC,Uitterlinden AG. Profiling of complex microbial populations by denaturinggradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16S rRNA.Appl Environ Microbiol,1993,59(3):695-700
    62. Zoetendal EG,Akkermans AD,De Vos WM. Temperature gradient gel electrophoresis analysis of16SrRNA from human fecal samples reveals stable and host-specific communities of active bacteria. ApplEnviron Microbiol,1998,64(10):3854-3859
    63. Stsepetova J,Sepp E,Kolk H,et al. Diversity and metabolic impact of intestinal Lactobacillus speciesin healthy adults and the elderly. Br J Nutr,2011,105(8):1235-1244
    64. Liu WT,Marsh TL,Cheng H,et al. Characterization of microbial diversity by determining terminalrestriction fragment length polymorphisms of genes encoding16S rRNA. Appl Environ Microbiol,1997,63(11):4516-4522
    65. Hayashi H,Takahashi R,Nishi T,et al. Molecular analysis of jejunal,ileal,caecal and recto-sigmoidalhuman colonic microbiota using16S rRNA gene libraries and terminal restriction fragment lengthpolymorphism. J Med Microbiol,2005,54(11):1093-1101
    66. Hojberg O,Canibe N,Poulsen H D,et al. Influence of dietary zinc oxide and copper sulfate on thegastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol,2005,71(5):2267-2277
    67. Fairchild A S,Smith J L,Idris U,et al. Effects of orally administered tetracycline on the intestinalcommunity structure of chickens and on tet determinant carriage by commensal bacteria andCampylobacter jejuni. Appl Environ Microbiol,2005,71(10):5865-5872
    68. Liu W H,Saint D A. Validation of a quantitative method for real time PCR kinetics. Biochem BiophysRes Commun,2002,294(2):347-353
    69. Margulies M,Egholm M,Altman W E,et al. Genome sequencing in microfabricated high-densitypicolitre reactors. Nature,2005,437(7057):376-380
    70. Buee M,Reich M,Murat C,et al.454Pyrosequencing analyses of forest soils reveal an unexpectedlyhigh fungal diversity. New Phytol,2009,184(2):449-456
    71. Roh SW,Kim K H,Nam Y D,et al. Investigation of archaeal and bacterial diversity in fermentedseafood using barcoded pyrosequencing. ISME J,2010,4(1):1-16
    72. Dethlefsen L,Relman D A. Incomplete recovery and individualized responses of the human distal gutmicrobiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A,2011,108(S1):4554-4561
    73. Beards E,Tuohy K,Gibson G. A human volunteer study to assess the impact of confectionerysweeteners on the gut microbiota composition. Br J Nutr,2010,104(5):701-708
    74. Ley RE,Turnbaugh P J,Klein S,et al. Microbial ecology: human gut microbes associated with obesity.Nature,2006,444(7122):1022-1023
    75. Qin J,Li R,Raes J,et al. A human gut microbial gene catalogue established by metagenomicsequencing. Nature,2010,464(7285):59-65
    76. Yatsunenko T,Rey F E,Manary M J,et al. Human gut microbiome viewed across age and geography.Nature,2012,486(7402):222-227
    77. Qin J,Li Y,Cai Z,et al. A metagenome-wide association study of gut microbiota in type2diabetes.Nature,2012,490(7418):55-60
    78. Wang T,Cai G,Qiu Y,et al. Structural segregation of gut microbiota between colorectal cancerpatients and healthy volunteers. ISME J,2012,6(2):320-329
    79. Chen Y,Yang F,Lu H,et al. Characterization of fecal microbial communities in patients with livercirrhosis. Hepatology,2011,54(2):562-72
    80. Zhang X,Zhao Y,Zhang M,et al. Structural changes of gut microbiota during berberine-mediatedprevention of obesity and insulin resistance in high-fat diet-fed rats. Plos One,2012,7(8): e42529
    81. Lozupone C,Hamady M,Knight R. UniFrac--an online tool for comparing microbial communitydiversity in a phylogenetic context. BMC Bioinfor,2006,7:371
    82. Hamady M,Knight R. Microbial community profiling for human microbiome projects: Tools,techniques,and challenges. Genome Res,2009,19(7):1141-52
    83. Cardenas E,Tiedje J M. New tools for discovering and characterizing microbial diversity. Curr OpinBiotechnol,2008,19(6):544-549
    84. Shendure J,Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008,26(10):1135-1145
    85. Koenig J E,Spor A,Scalfone N,et al. Succession of microbial consortia in the developing infant gutmicrobiome. Proc Natl Acad Sci U S A,2011,108(S1):4578-85
    86. Lee OO,Wang Y,Yang J,et al. Pyrosequencing reveals highly diverse and species-specific microbialcommunities in sponges from the Red Sea. ISME J,2011,5(4):650-664
    87. Kuczynski J,Stombaugh J,Walters W A,et al. Using QIIME to Analyze16S rRNA Gene Sequencesfrom Microbial Communities. Curr Protoc Microbiol,2012,Chapter1,Unit1E5
    88. Caporaso J G,Bittinger K,Bushman F D,et al. PyNAST: a flexible tool for aligning sequences to atemplate alignment. Bioinformatics,2010,26(2):266-267
    89. Haas B J,Gevers D,Earl A M,et al. Chimeric16S rRNA sequence formation and detection in Sangerand454-pyrosequenced PCR amplicons. Genome Res,2011,21(3):494-504
    90. Cole J R,Chai B,Farris R J,et al. The ribosomal database project (RDP-II): introducing myRDP spaceand quality controlled public data. Nucleic Acids Res,2007,35(Database issue):169-172
    91. Price M N,Dehal P S,Arkin A P. FastTree: computing large minimum evolution trees with profilesinstead of a distance matrix. Mol Biol Evol,2009,26(7):1641-1650
    92. Lozupone C,Knight R. UniFrac: a new phylogenetic method for comparing microbial communities.Appl Environ Microbiol,2005,71(12):8228-8235
    93. Karlsson C,Ahrne S,Molin G,et al. Probiotic therapy to men with incipient arteriosclerosis initiatesincreased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis,2010,208(1):228-233
    94. McKenna P,Hoffmann C,Minkah N,et al. The macaque gut microbiome in health,lentiviral infection,and chronic enterocolitis. PLoS Pathog,2008,4(2): e20
    95. Dethlefsen L,Huse S,Sogin M L,et al. The pervasive effects of an antibiotic on the human gutmicrobiota,as revealed by deep16S rRNA sequencing. PLoS Biol,2008,6(11): e280
    96. Turnbaugh P J,Hamady M,Yatsunenko T,et al. A core gut microbiome in obese and lean twins.Nature,2009,457(7228):480-484
    97. Mariat D,Firmesse O,Levenez F,et al. The Firmicutes/Bacteroidetes ratio of the human microbiotachanges with age. BMC Microbiol,2009,9(2):123
    98. Maslowski KM,Vieira AT,Ng A,et al. Regulation of inflammatory responses by gut microbiota andchemoattractant receptor GPR43. Nature,2009,461(7268):1282-1286
    99. Huurre A,Kalliomaki M,Rautava S,et al. Mode of delivery-effects on gut microbiota and humoralimmunity. Neonatology,2008,93(4):236-240
    100. Morotomi M,Nagai F,Sakon H,et al. Paraprevotella clara gen. nov.,sp. nov. and Paraprevotellaxylaniphila sp. nov.,members of the family 'Prevotellaceae' isolated from human faeces. Int J Syst EvolMicrobiol,2009,59(8):1895-1900
    101. Fricke W F,Seedorf H,Henne A,et al. The genome sequence of Methanosphaera stadtmanae revealswhy this human intestinal archaeon is restricted to methanol and H2for methane formation and ATPsynthesis. J Bacteriol,2006,188(2):642-658
    102. Samuel B S,Hansen E E,Manchester J K,et al. Genomic and metabolic adaptations ofMethanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A,2007,104(25):10643-10648
    103. Bjorksten B. The intrauterine and postnatal environments. J Allergy Clin Immunol,1999,104(6):1119-1127
    104. Vanhoutte T,De Preter V,De Brandt E,et al. Molecular monitoring of the fecal microbiota ofhealthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl EnvironMicrobiol,2006,72(9):5990-5997
    105. Petersen D G,Dahllof I. Improvements for comparative analysis of changes in diversity of microbialcommunities using internal standards in PCR-DGGE. Fems Microbiology Ecology,2005,53(3):339-348
    106. Matsuki T,Watanabe K,Fujimoto J,et al. Use of16S rRNA gene-targeted group-specific primers forreal-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol,2004,70(12):7220-7228
    107.郭慧娟.培养与非培养方法对青藏高原土壤细菌多样性的研究[D]:[硕士学位论文].河北:河北农业大学生命科学学院,2011
    108. Toth E,Kovacs G,Schumann P,et al. Schineria larvae gen. nov.,sp. nov.,isolated from the1st and2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol,2001,51(2):401-407
    109. Delhaes L,Bourel B,Scala L,et al. Case report: recovery of Calliphora vicina first-instar larvae froma human traumatic wound associated with a progressive necrotizing bacterial infection. Am J Trop MedHyg,2001,64(3-4):159-161
    110. Maurin M,Delbano J N,Mackaya L,et al. Human infection with Schineria iarvae. Emerg Infect Dis,2007,13(4):657-659
    111. Derrien M,Vaughan E E,Plugge C M,et al. Akkermansia muciniphila gen. nov.,sp. nov.,a humanintestinal mucin-degrading bacterium. Int J Syst Evol Microbiol,2004,54(5):1469-1476
    112. Derrien M,van Passel M W,van de Bovenkamp JH,et al. Mucin-bacterial interactions in the humanoral cavity and digestive tract. Gut Microbes,2010,1(4):254-268
    113. Derrien M,Collado M C,Ben-Amor K,et al. The Mucin degrader Akkermansia muciniphila is anabundant resident of the human intestinal tract. Appl Environ Microbiol,2008,74(5):1646-1648
    114. Swidsinski A,Dorffel Y,Loening-Baucke V,et al. Acute appendicitis is characterised by localinvasion with Fusobacterium nucleatum/necrophorum. Gut,2011,60(1):34-40
    115. Png C W,Linden S K,Gilshenan K S,et al. Mucolytic bacteria with increased prevalence in IBDmucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol,2010,105(11):2420-2428
    116. Wang L,Christophersen C T,Sorich M J,et al. Low relative abundances of the mucolytic bacteriumAkkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl EnvironMicrobiol,2011,77(18):6718-6721
    117. Duncan S H,Hold G L,Barcenilla A,et al. Roseburia intestinalis sp. nov.,a novel saccharolytic,butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol,2002,52(5):1615-1620
    118. Scheppach W,Bartram H P,Richter F. Role of short-chain fatty acids in the prevention of colorectalcancer. Eur J Cancer,1995,31(7-8):1077-1080
    119. Kurokawa K,Itoh T,Kuwahara T,et al. Comparative metagenomics revealed commonly enrichedgene sets in human gut microbiomes. DNA Res,2007,14(4):169-181
    120. Hirano J,Yoshida T,Sugiyama T,et al. The effect of Lactobacillus rhamnosus on enterohemorrhagicEscherichia coli infection of human intestinal cells in vitro. Microbiology and Immunology,2003,47(6):405-409
    121. Valeur N,Engel P,Carbajal N,et al. Colonization and immunomodulation by Lactobacillus reuteriATCC55730in the human gastrointestinal tract. Appl Environ Microbiol,2004,70(2):1176-1181
    122. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental andbiomedical research. Appl Environ Microbiol,2008,74(16):4985-4996
    123. Sghir A,Gramet G,Suau A,et al. Quantification of bacterial groups within human fecal flora byoligonucleotide probe hybridization. Appl Environ Microbiol,2000,66(5):2263-2266
    124. Martinez-Anaya M A,Llin M L,Pilar Macias M,et al. Regulation of acetic acid production by homo-and heterofermentative lactobacilli in whole-wheat sour-doughs. Z Lebensm Unters Forsch,1994,199(3):186-190
    125. Shanahan F. The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol,2002,16(6):915-931
    126. Annuk H,Shchepetova J,Kullisaar T,et al. Characterization of intestinal lactobacilli as putativeprobiotic candidates. J Appl Microbiol,2003,94(3):403-412
    127. Moreno-Arribas M V,Polo M C,Jorganes F,et al. Screening of biogenic amine production by lacticacid bacteria isolated from grape must and wine. Int J Food Microbiol,2003,84(1):117-123
    128. Johnson L R,Brockway P D,Madsen K,et al. Polyamines alter intestinal glucose transport. Am JPhysiol,1995,268(1):416-423
    129. Yu J,Sun Z,Liu W,et al. Rapid identification of lactic acid bacteria isolated from home-madefermented milk in Tibet. J Gen Appl Microbiol,2009,55(3):181-190
    130. Bao Q,Liu W,Yu J,et al. Isolation and identification of cultivable lactic acid bacteria in traditionalyak milk products of Gansu Province in China. J Gen Appl Microbiol,2012,58(2):95-105
    131. Matsuki T,Watanabe K,Tanaka R,et al. Distribution of bifidobacterial species in human intestinalmicroflora examined with16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol,1999,65(10):4506-4512
    132. Kitajima H,Sumida Y,Tanaka R,et al. Early administration of Bifidobacterium breve to preterminfants: randomised controlled trial. Arch Dis Child Fetal Neonatal Ed,1997,76(2):101-107
    133. Mutai M,Tanaka R. Ecology of Bifidobacterium in the human intestinal flora. Bifido Micro,1987,6(1):33-41
    134. Benno Y,Sawada K,Mitsuoka T. The intestinal microflora of infants: composition of fecal flora inbreast-fed and bottle-fed infants. Microbiol Immunol,1984,28(1):975-986
    135. Reddy B S,Rivenson A. Inhibitory effect of Bifidobacterium longum on colon,mammary,and livercarcinogenesis induced by2-amino-3-methylimidazo[4,5-f]quinoline,a food mutagen. Cancer Res,1993,53(17):3914-3918
    136. Li X,Fu G F,Fan Y R,et al. Bifidobacterium adolescentis as a delivery system of endostatin forcancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther,2003,10(2):105-111
    137. Harmsen H J,Wildeboer-Veloo A C,Grijpstra J,et al. Development of16S rRNA-based probes forthe Coriobacterium group and the Atopobium cluster and their application for enumeration ofCoriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol,2000,66(10):4523-4527
    138. Takaishi H,Matsuki T,Nakazawa A,et al. Imbalance in intestinal microflora constitution could beinvolved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol,2008,298(5-6):463-472
    139. Nadal I,Donat E,Ribes-Koninckx C,et al. Imbalance in the composition of the duodenal microbiotaof children with coeliac disease. J Med Microbiol,2007,56(12):1669-1674
    140. Ferris M J,Masztal A,Aldridge K E,et al. Association of Atopobium vaginae,a recently describedmetronidazole resistant anaerobe,with bacterial vaginosis. BMC Infect Dis,2004,4(1):5
    141. Martens E C,Chiang H C,Gordon J I. Mucosal glycan foraging enhances fitness and transmission ofa saccharolytic human gut bacterial symbiont. Cell Host Microbe,2008,4(5):447-457
    142. Gerard P,Lepercq P,Leclerc M,et al. Bacteroides sp. strain D8,the first cholesterol-reducingbacterium isolated from human feces. Appl Environ Microbiol,2007,73(18):5742-5749
    143. Dong H,Zhang Y,Dai Z,et al. Engineering clostridium strain to accept unmethylated DNA. PlosOne,2010,5(2): e9038
    144. Weingart O G,Schreiber T,Mascher C,et al. The case of botulinum toxin in milk: experimental data.Appl Environ Microbiol,2010,76(10):3293-3300
    145. Sathish S,Swaminathan K. Genetic diversity among toxigenic clostridia isolated from soil,water,meat and associated polluted sites in South India. Indian J Med Microbiol,2009,27(4):311-320
    146. Twine S M,Reid C W,Aubry A,et al. Motility and flagellar glycosylation in Clostridium difficile. JBacteriol,2009,191(22):7050-7062
    147. Goldstein E J,Citron D M,Peraino V A,et al. Desulfovibrio desulfuricans bacteremia and review ofhuman Desulfovibrio infections. J Clin Microbiol,2003,41(6):2752-2754
    148. Beerens H,Romond C. Sulfate-reducing anaerobic bacteria in human feces. Am J Clin Nutr1977,30(11):1770-1776
    149. Khan M T,Browne W R,van Dijl J M,et al. How can Faecalibacterium prausnitzii employ riboflavinfor extracellular electron transfer? Antioxid Redox Signal,2012,17(10):1433-1440
    150. Sokol H,Pigneur B,Watterlot L,et al. Faecalibacterium prausnitzii is an anti-inflammatorycommensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad SciU S A,2008,105(43):16731-16736
    151. Kovacs A,Ben-Jacob N,Tayem H,et al. Genotype is a stronger determinant than sex of the mousegut microbiota. Microb Ecol,2011,61(2):423-428
    152. Toivanen P,Vaahtovuo J,Eerola E. Influence of major histocompatibility complex on bacterialcomposition of fecal flora. Infect Immun,2001,69(4):2372-2377
    153. Turnbaugh P J,Ley R E,Mahowald M A,et al. An obesity-associated gut microbiome with increasedcapacity for energy harvest. Nature,2006,444(7122):1027-1031
    154. Lan G Q,Ho Y W,Abdullah N. Mitsuokella jalaludinii sp. nov.,from the rumens of cattle in Malaysia.Int J Syst Evol Microbiol,2002,52(3):713-718
    155. Flynn M J,Li G,Slots J. Mitsuokella dentalis in human periodontitis. Oral Microbiol Immunol,1994,9(4):248-250
    156. Levine U Y,Bearson S M,Stanton T B. Mitsuokella jalaludinii inhibits growth of Salmonella entericaserovar Typhimurium. Vet Microbiol,2012,159(1-2):115-122
    157. Lan G Q,Abdullah N,Jalaludin S,et al. Culture conditions influencing phytase production ofMitsuokella jalaludinii,a new bacterial species from the rumen of cattle. J Appl Microbiol,2002,93(4):668-64
    158. Lan G Q,Abdullah N,Jalaludin S,et al. Purification and characterization of a phytase fromMitsuokella jalaludinii,a bovine rumen bacterium. Afr J Biotechnol,2011,10(59):12766-12776
    159. Mukeshkumar D J,Balakumaran M D,Kalaichelvan P T. Isolation,production&application ofextracellular phytase by Serratia Marcescens. Asian J Experi Biolog Sci,2011,2(4):663-666
    160. Malinen E,Krogius-Kurikka L,Lyra A,et al. Association of symptoms with gastrointestinalmicrobiota in irritable bowel syndrome. World J Gastroenterol,2010,16(36):4532-4540
    161. Gervais Danone SA. Use of collinsella aerofaciens for reducing bloating[P]. European patentapplication,2424551
    162. Clemente J C,Ursell L K,Parfrey L W,et al. The impact of the gut microbiota on human health: anintegrative view. Cell,2012,148(6):1258-1270
    163. Li E,Hamm C M,Gulati A S,et al. Inflammatory bowel diseases phenotype,C. difficile and NOD2genotype are associated with shifts in human ileum associated microbial composition. Plos One,2012,7(6):e26284
    164. Costello E K,Stagaman K,Dethlefsen L,et al. The application of ecological theory toward anunderstanding of the human microbiome. Science,2012,336(6086):1255-1262
    165. Huse S M,Ye Y,Zhou Y,et al. A core human microbiome as viewed through16S rRNA sequenceclusters. Plos One,2012,7(6): e34242
    166. Zupancic M L,Cantarel B L,Liu Z,et al. Analysis of the gut microbiota in the old order Amish andits relation to the metabolic syndrome. Plos One,2012,7(8):43052
    167. Duncan SH,Hold GL,Barcenilla A,et al. Roseburia intestinalis sp. nov.,a novel saccharolytic,butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol,2002,52(5):1615-1620
    168. Duncan S H,Hold G L,Harmsen H J,et al. Growth requirements and fermentation products ofFusobacterium prausnitzii,and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov.,comb.nov. Int J Syst Evol Microbiol,2002,52(6):2141-2146
    169. Holmstrom K,Collins M D,Moller T,et al. Subdoligranulum variabile gen. nov.,sp. nov. fromhuman feces. Anaerobe,2004,10(3):197-203
    170. Del Dot T,Osawa R,Stackebrandt E. Phascolarctobacterium faecium gen. nov,spec. nov.,a NovelTaxon of the Sporomusa Group of Bacteria. Syst Appl Microbiol,1993,16(3):380-384.
    171. Shah H N,Collins M D. Proposal To Restrict the Genus Bacteroides (Castellani and Chalmers) toBacteroides fragilis and Closely Related Species. Int J Syst Evol Micr,1989,39(1):85-87
    172. Peng L,Li Z R,Green R S,et al. Butyrate enhances the intestinal barrier by facilitating tight junctionassembly via activation of AMP-activated protein kinase in Caco-2cell monolayers. J Nutr,2009,139(9):1619-1625
    173. Cani PD,Possemiers S,Van de Wiele T,et al. Changes in gut microbiota control inflammation inobese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut,2009,58(8):1091-1103
    174. Gassull M A. Review article: the intestinal lumen as a therapeutic target in inflammatory boweldisease. Aliment Pharmacol Ther,2006,24(S3):90-95
    175. Liu C,Finegold S M,Song Y,et al. Reclassification of Clostridium coccoides,Ruminococcushansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus andRuminococcus schinkii as Blautia coccoides gen. nov.,comb. nov.,Blautia hansenii comb. nov.,Blautiahydrogenotrophica comb. nov.,Blautia luti comb. nov.,Blautia producta comb. nov.,Blautia schinkii comb.nov. and description of Blautia wexlerae sp. nov.,isolated from human faeces. Int J Syst Evol Microbiol,2008,58(8):1896-1902
    176. Park S K,Kim M S,Roh S W,et al. Blautia stercoris sp. nov.,isolated from human faeces. Int J SystEvol Microbiol,2012,62(4):776-779
    177. Koren O,Spor A,Felin J,et al. Human oral,gut,and plaque microbiota in patients withatherosclerosis. Proc Natl Acad Sci U S A,2011,108(S1):4592-4598
    178. Sakurai-Komada N,Koike K A,Kaku Y,et al. Chlamydia pneumoniae infection was associated withrisk of mortality from coronary heart disease in Japanese women but not men: the JACC Study. JAtheroscler Thromb,2010,17(5):510-516
    179. Ott S J,El Mokhtari N E,Musfeldt M,et al. Detection of diverse bacterial signatures in atheroscleroticlesions of patients with coronary heart disease. Circu,2006,113(7):929-937
    180. McMullen M H,Hamilton-Reeves J M,Bonorden M J L,et al. Consumption of Lactobacillusacidophilus and Bifidobacterium longum does not alter phytoestrogen metabolism and plasma hormones inmen: A pilot study. J Altern Complem med,2006,12(9):887-894
    181. Lewis S J,Burmeister S A double-blind placebo-controlled study of the effects of Lactobacillusacidophilus on plasma lipids. Eur J Clin Nutr,2005,59(6):776-780
    182. Simons L A,Amansec S G,Conway P. Effect of Lactobacillus fermentum on serum lipids in subjectswith elevated serum cholesterol. Nutr Metab Cardiovas,2006,16(8):531-535
    183. Ataie-Jafari A,Larijani B,Majd HA,et al. Cholesterol-Lowering Effect of Probiotic Yogurt inComparison with Ordinary Yogurt in Mildly to Moderately Hypercholesterolemic Subjects. Amm NutrMetab,2009,54(1):22-27
    184. Xiao J Z,Kondo S,Takahashi N,et al. Effects of milk products fermented by Bifidobacterium longumon blood lipids in rats and healthy adult male volunteers. J Dairy Sci,2003,86(7):2452-2461
    185. Anderson J W,Gilliland S E. Effect of fermented milk (yogurt) containing Lactobacillus acidophilusL1on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr,1999,18(1):43-50
    186. Schuit A J,Schouten E G,Miles T P,et al. The effect of six months training on weight,body fatnessand serum lipids in apparently healthy elderly Dutch men and women. Int J Obes Relat Metab Disord,1998,22(9):847-853
    187. Jackson K G,Taylor G R,Clohessy A M,et al.The effect of the daily intake of inulin on fasting lipid,insulin and glucose concentrations in middle-aged men and women. Br J Nutr,1999,82(1):23-30
    188. Davidson M H,Maki K C. Effects of dietary inulin on serum lipids. J Nutr,1999,129(S7):1474-1477
    189. Balcazar-Munoz B R,Martinez-Abundis E,Gonzalez-Ortiz M. Effect of oral inulin administration onlipid profile and insulin sensitivity in subjects with obesity and dyslipidemia. Rev Med Chil,2003,131(6):597-604
    190. Letexier D,Diraison F,Beylot M. Addition of inulin to a moderately high-carbohydrate diet reduceshepatic lipogenesis and plasma triacylglycerol concentrations in humans. Am J Clin Nutr,2003,77(3):559-564
    191. DerSimonian R,Laird N. Meta-analysis in clinical trials. Control Clin Trials,1986,7(3):177-188
    192. Agerholm-Larsen L,Raben A,Haulrik N,et al. Effect of8week intake of probiotic milk products onrisk factors for cardiovascular diseases. Eur J Clin Nutr,2000,54(4):288-297
    193. Agerbaek M,Gerdes L U,Richelsen B. Hypocholesterolaemic effect of a new fermented milk productin healthy middle-aged men. Eur J Clin Nutr,1995,49(5):346-352
    194. Bertolami M C,Faludi A A,Batlouni M. Evaluation of the effects of a new fermented milk product(Gaio) on primary hypercholesterolemia. Eur J Clin Nutr,1999,53(2):97-101
    195. Naruszewicz M,Johansson M L,Zapolska-Downar D,et al. Effect of Lactobacillus plantarum299von cardiovascular disease risk factors in smokers. Am J Clin Nutr,2002,76(6):1249-1255
    196. Fabian E,Elmadfa I. Influence of daily consumption of probiotic and conventional yoghurt on theplasma lipid profile in young healthy women. Ann Nutr Metab,2006,50(4):387-393
    197. Sadrzadeh-Yeganeh H,Elmadfa I,Djazayery A,et al. The effects of probiotic and conventionalyoghurt on lipid profile in women. Br J Nutr,2010,103(12):1778-1783
    198. Del Piano M,Morelli L,Strozzi G P,et al. Probiotics: from research to consumer. Dig Liver Dis,2006,38(S2):248-255
    199. Houston MC,Fazio S,Chilton F H,et al. Nonpharmacologic treatment of dyslipidemia. ProgCardiovasc Dis,2009,52(2):61-94
    200. Rogers S L,Magliano D J,Levison D B,et al. A dose-specific meta-analysis of lipid changes inrandomized controlled trials of atorvastatin and simvastatin. Clin Ther,2007,29(2):242-52
    201. Jeun J,Kim S,Cho S Y,et al. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928byincreased bile acid excretion in C57BL/6mice. Nutrition,2010,26(3):321-330
    202. Park Y H,Kim J G,Shin Y W,et al. Effect of dietary inclusion of Lactobacillus acidophilus ATCC43121on cholesterol metabolism in rats. J Microbiol Biotechnol,2007,17(4):655-662
    203. Ridlon J M,Kang D J,Hylemon P B. Bile salt biotransformations by human intestinal bacteria. J LipidRes,2006,47(2):241-259
    204. Jia L,Betters J L,Yu L. Niemann-pick C1-like1(NPC1L1) protein in intestinal and hepaticcholesterol transport. Annu Rev Physiol,2011,73(1):239-259
    205. Huang Y,Wang J,Cheng Y,et al. The hypocholesterolaemic effects of Lactobacillus acidophilusAmerican type culture collection4356in rats are mediated by the down-regulation of Niemann-PickC1-like1. Br J Nutr,2010,104(6):807-812
    206. Liong M T,Shah N P. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. JDairy Sci,2005,88(1):55-66
    207. Lye H S,Rusul G,Liong M T. Removal of cholesterol by lactobacilli via incorporation andconversion to coprostanol. J Dairy Sci,2010,93(4):1383-1392
    208. van Dokkum W,Wezendonk B,Srikumar T S,et al. Effect of nondigestible oligosaccharides onlarge-bowel functions,blood lipid concentrations and glucose absorption in young healthy male subjects.Eur J Clin Nutr,1999,53(1):1-7
    209. Pedersen A,Sandstrom B,Van Amelsvoort J M. The effect of ingestion of inulin on blood lipids andgastrointestinal symptoms in healthy females. Br J Nutr,1997,78(2):215-222
    210. Causey J L,Feirtag J M,Gallagher D D,et al. Effects of dietary inulin on serum lipids,blood glucoseand the gastrointestinal environment in hypercholesterolemic men. Nutr Res,2000,20(2):191-201
    211. de Luis D A,de la Fuente B,Izaola O,et al. Randomized Cinical Trial with a Inulin Enriched Cookieon Risk Cardiovascular Factor in Obese Patients. Nutricion Hospitalaria,2010,25(1):53-59
    212. Ooi L G,Liong M T. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo andin vitro findings. Int J Mol Sci,2010,11(6):2499-2522
    213. Dikeman C L,Murphy M R,Fahey G C,Jr. Dietary fibers affect viscosity of solutions and simulatedhuman gastric and small intestinal digesta. J Nutr,2006,136(4):913-919
    214. Levrat M A,Remesy C,Demigne C. High propionic acid fermentations and mineral accumulation inthe cecum of rats adapted to different levels of inulin. J Nutr,1991,121(11):1730-1737
    215. Trautwein EA,Rieckhoff D,Erbersdobler H F. Dietary inulin lowers plasma cholesterol andtriacylglycerol and alters biliary bile acid profile in hamsters. J Nutr,1998,128(11):1937-1943
    216. Rossi M,Corradini C,Amaretti A,et al. Fermentation of fructooligosaccharides and inulin bybifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol,2005,71(10):6150-6158
    217. Roberfroid M B. Inulin-type fructans: functional food ingredients. J Nutr,2007,137(S11):2493-2502
    218. Girard J,Ferre P,Foufelle F. Mechanisms by which carbohydrates regulate expression of genes forglycolytic and lipogenic enzymes. Annu Rev Nutr,1997,17:325-352
    219. Dawson P A,Rudel L L. Intestinal cholesterol absorption. Curr Opin Lipidol,1999,10(4):315-320
    220. Kirby R J,Howles P N,Hui D Y. Rate of gastric emptying influences dietary cholesterol absorptionefficiency in selected inbred strains of mice. J Lipid Res,2004,45(1):89-98
    221. Evers B M. Neurotensin and growth of normal and neoplastic tissues. Peptides,2006,27(10):2424-2433
    222. Li W,Shi Y H,Yang R L,et al. Effect of somatostatin analog on high-fat diet-induced metabolicsyndrome: involvement of reactive oxygen species. Peptides,2010,31(4):625-629
    223. Russo F,Clemente C,Linsalata M,et al. Effects of a diet with inulin-enriched pasta on gut peptidesand gastric emptying rates in healthy young volunteers. Eur J Nutr,2011,50(4):271-277
    224. Kruse H P,Kleessen B,Blaut M. Effects of inulin on faecal bifidobacteria in human subjects. Br JNutr,1999,82(5):375-382
    225. Kleessen B,Hartmann L,Blaut M. Oligofructose and long-chain inulin: influence on the gut microbialecology of rats associated with a human faecal flora. Br J Nutr,2001,86(2):291-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700