短季棉遗传多样性分析及其重要农艺和经济性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是重要的经济作物,为纺织工业提供了大部分的天然纤维,是重要的纺织工业原料,在世界及我国国民经济中占有重要的战略地位。短季棉作为一种特殊的生态类型,在我国未来棉业可持续发展中有着不可替代的作用。利用分子标记可以对短季棉种质资源进行快速、准确的评价。本研究利用分子标记—RAPD评价了短季棉的遗传多样性,使育种工作者能更全面地了解早熟短季棉的亲缘关系和遗传基础,并且为指导早熟短季棉育种提供参考数据。
     本研究利用RAPD标记对我国29份不同年代不同生态区的早熟短季棉品种进行了遗传多样性的比较分析。从600条RAPD引物中筛选出了122条带型清晰且重复性好的多态性引物,在29个短季早熟棉品种中共产生181个多态性位点。采用Jaccard's相似系数,使用NTSYS-pc 2.10数据分析软件,非加权组平均法(UPGMA)对数据进行聚类,对不同年代品种间平均相似系数进行了分析以及和系谱进行了比较分析,结果表明我国生产上推广的短季棉品种的遗传基础很窄,短季棉育种要取得新突破,必须收集与创新优良种质资源。
     随着纺织技术的不断更新(环锭纺纱发展到气流转子纺纱到正在发展的喷气纺纱),以及人民生活水平的提高,现有的棉花品种已经不能满足要求。因此,培育高产、优质的棉花品种成为当务之急。然而棉花的产量和纤维性状是复杂的数量性状,而且是负相关的;另外,陆地棉遗传基础狭窄,迫切需要引进海岛棉以及其它野生棉的优质基因。但是陆海种间杂交又存在连锁累赘等问题,传统育种很难打破性状间的连锁和同时兼顾产量和品质的改良。利用分子标记可以构建高密度遗传连锁图谱,可以对重要性状进行QTL定位,并利用与目标性状紧密连锁的标记进行辅助选择育种。
     本研究利用多种类型(TRAP、SRAP、AFLP和SSR)的分子标记,以陆地棉×海岛棉F_2为作图群体,构建高密度的栽培棉的连锁图谱,并对纤维、产量、早熟相关性状进行了QTL定位分析。研究的主要结果如下:
     1.以陆地棉“中棉所36”为母本,海岛棉品种“海7124”为父本配置杂交组合F_1,F_1自交后代的222个F_2单株(“永久”F_2群体)的宿根活体长期保存于海南三亚中国农业科学院棉花研究所野生棉种植园,选取186个F_2单株作为作图群体。
     2.利用不同类型的分子标记对两个作图亲本进行多态性筛选,进而利用多态性引物分析186个F_2单株的基因型,共得到1250个分子标记。包括198个TRAPs,758个SSRs,143个AFLPs,151个SRAPs。同时考察了两个形态标记:黄色花药和基部红斑。将1252个标记位点进行X~2适合性检验,在5%的水平上共有249个(19.9%)标记位点不符合孟德尔分离比例,表现显著偏分离。SSR、TRAP、SRAP和AFLP的偏分离标记分别有124、38、24和27个,偏分离比例分别为19.2%、18.9%、15.9%和16.3%。
     3.利用MapMaker/EXP.3.0对所得到的1252个标记进行连锁分析,最终有1097个标记进入35个连锁群,包括SSR 697个,TRAP 171个,SRAP 129个,AFLP 98个和两个形态标记。图谱总长4536.8 cM.,标记间平均距离4.1cM。根据锚定或公共的SSR标记确定连锁群,最后确定了和26条染色体对应的大连锁群和4个未知的小连锁群。每个连锁群的长度在3.5-235.1 cM,标记位点个数为2到63个不等,标记间平均距离为1.8-11.9 cM。其中最长的连锁群染色体9,长度为235.1 cM,含有56个标记。NL1-NL8这8个小的连锁群共有17个标记,长118.6 cM。染色体A亚组有590个标记,遗传距离2215.2 cM,平均距离3.8 cM;D染色体亚组有490个标记,共2203 cM,标记间平均距离4.1 cM。其中45个SSR重复位点建立了异源四倍体棉花13对同源染色体中的11对同源关系。构建到连锁群上的偏分离标记有198个,占图谱总标记的18.1%,其中SSR标记116个、TRAP标记42个、SRAP标记18个、AFLP标记22个,两个形态标记也是偏分离。大部分偏分离标记位点在连锁群上表现为明显的不同程度聚集现象,主要聚集在连锁群的中上部或中下部或末端。有几个可能是偏分离热点区。
     4.本研究首次利用新型标记TRAP构建棉花的遗传连锁图谱。TRAP(Target Reglon Amplification polymorphism)是一种新型的基于PCR的标记。本研究根据与棉花纤维发育相关的cDNAs或ESTs设计了57条TRAP锚定引物,和SRAP的随机引物随机组合,其中93对引物组合共得到198个多态性位点,每个引物组合可产生1—7个不等的多态性位点,平均每个引物组合产生2.1个多态性位点。共显性标记有19个(9.6%),偏分离标记有45个(22.7%)。最终,有171个TRAP(86.4%)标记进入所构建的连锁图谱上,除了三个小的连锁群上没有TRAP标记外,其它连锁群上都有TRAP标记,主要分布在染色体c2、c4、c5、c6、c9、c10、c14、c20、A02、A03等染色体上。
     5.考查F_2单株纤维产量及品质性状以及F_(2:3)家系的产量(因为未收到足够的纤维,F_(2:3)没能考察纤维品质性状)和早熟性状(包括果枝始节和各个生育期)。利用软件QTL Cartographer V2.0,用复合区间作图法进行QTL检测,当LOD=3.0时,共检测出79个QTLs:纤维品质性状25个QTLs,能解释8.69%(qFU-c6-1)到23.19%(qFL-c1-2)表型变异;产量性状共检测出36个;F_2检测出16个QTLs,F_3共检测出20个QTLs,每个性状有1到6个QTLs不等。早熟农艺性状共检测到18个QTLs。对于同一性状,等位基因的增效作用既有来自母本方的,也有来自父本方的,即高值或低值亲本都可能存在对性状增效的等位基因。
     6.与纤维品质QTLs相连锁的TRAP标记。8个TRAP标记分别和纤维长度、整齐度和马克隆值相关的QTLs连锁。有的TRAP标记和QTL紧密连锁,例如,染色体c1上的关于纤维长度的一个QTL(qFL-c1-2)和TRAP标记T16E2c紧密连锁(0.01cM内),TRAP标记T16E2c的T16是根据参与棉花纤维发育相关的一个β-微管蛋白基因GhTub1设计的锚定引物而来,而GhTub1基因可能在纤维细胞延伸阶段的极性延伸中具有功能;而有的位于QTL区间内。例如与纤维整齐度相关的QTL(qFU-c17-1),位于QTL的标记T9E10b-JESP195区间。T9是根据棉花纤维优势表达基因。GhCAP设计的,GhCAP基因是编码腺苷环化酶相关蛋白CAP,可能是细胞骨架改建中的信号。说明了利用TRAP标记不仅能增加图谱的饱和度,而且能增加目标QTL区域的标记饱和度,并且和性状相关联。
Cotton is one of the most important economic crops in the world; it provides the mostimportant material, natural fiber, for textile industry. So, cotton has an important strategicstatus in national economy. Short-season upland cotton plays an important role in thecultivation reform in china. We used molecular marker to detect the genetic diversityamong the short-season upland cotton varieties.
     In this research, RAPDs analysis was used to assess the genetic diversity of 29 eliteshort-seasoned cotton cultivars. From 600 10-mer arbitrary primers, we selected 122primers that could produce legible and repetitive bands. 29 cotton varieties were screenedwith these 122 primers to generate 181 polymorphism loci. Cluster analysis and UPGMA(with NTSYS-PC2.10) showed that these 29 varieties could be classified into two groups.The correlation coefficients between species mostly range from 0.60 to 0.79; only 0.99percent was between 0.30 and 0.39. And this is agreed with the pedigree. In a word, thegenetic basis of popular short season upland cotton in China is narrow, and the Kings isthe main sources of earliness gene.
     For cotton breeders, the major task is to improve the yield and the fiber quality, andduring the past decades of years, under the continuous efforts of the breeders, the yieldand fiber quality has been greatly improved. But, with the development of textile industryand increased consumption demands on cotton fiber commodity, most of the cottoncultivars are out of date, especially for cotton quantity. Consequently, it is eager to breedthe cultivars with high yield and good quality. However, cotton yield traits and qualitytraits are complicated quantitative traits; what is more, yield traits are negativelyassociated with quality trait, so it is difficult to improve yield and quantity simultaneity bytraditional breeding ways. The appearance of molecular markers and the development ofthe molecular quantitative genetics, make it possible to build high density linkage mapand QTL mapping, and then by using the linked markers, marker-assisted selection can beperformed during breeding process.
     Based on a F_2 population from cross between Ghirsutum L.×G.barbadense L., acombined TRAP-SSR-AFLP-SRAP genetic map of tetraploid cotton was constructed andQTL mapping was performed. The main results were summarized as follows:
     1. An interspecific F_2 population of 222 individuals between Ghirsutum L. cv CRI36×G.barbadense L. cv Hai7124 was planted in Hainan, from which 186 individuals werepicked out and used as mapping population.
     2. Four kinds of molecular markers were used to identify polymorphism between twoparents. Finally, a total of 1250 polymorphic loci were obtained including 198TRAPs, 758 SSRs, 143 AFLPs and 151 SRAPs. Also, two morphologic markers,yellow pollen and red spot, were investigated. The 1252 polymorphic loci weresubsequently analyzed by X~2 test, at the 5% significant level, 249 loci deviated fromthe expected ratio (1:2:1 or 3:1), which included 124 SSRs (19.2%), 38 TRAPs(18.9%), 24 SRAPs (15.9) and 27 AFLPs (16.3%).
     3. 1252(A thousand two hundred and fifty-two) marker loci were used to constructgenetic linkage groups using MapMaker/EXP. 3.0. The map consisted of 1097markers mapped into 35 linkage groups, including 697 SSRs, 171 TRAPs, 129SRAPs, 98 AFLPs, and two morphological markers, and spanned 4,536.7 cM with anaverage genetic distance of 4.1 cM per marker. According to the assigned SSRs orcommon loci, linkage groups were assigned to the 26 chromosomes of the tertraploidgenome and eight novel small linkage groups. The distance of single linkage groupwas from 106.5 cM to 235.1 cM, the loci number in every group was from 2 to 63,and the average distance between each locus was from 1.8 cM to 11.9 cM. The 13A-genome groups span 2,215.2 cM containing 590 makers with an average distanceof 3.8 cM, the 13 D-genome groups span 2,203 cM with 490 markers with an averagedistance of 4.1 cM. In this research, 11 of 13 pairs of homoeologous chromosomeswere bridged with a total of 45 SSR duplicated loci, except for c2-c14 and c3-c17.200 distorted segregation loci (116 SSRs, 42 TRAPs, 18 SRAPs, 22 AFLPs and 2morphological markers) were mapped in the 26 groups of allotetroploid cotton. At thepresent map, skewed markers were clustered in different degrees, which were usuallyobserved at the end or in the middle of the group. And maybe, some of them wereSegregation Distortion Regions(SDR).
     4. This is the first time that the novel molecular marker, TRAP (Target RegionAmplification polymorphism), was used to construct genetic map in cotton. A total of57 fixed primers were designed on EST sequences using Primer Premier 5.0.Combined with the random primers of SRAP, 198 polymorphic loci were observedby using 93 primer pairs. Every primer combination could generate 1-7 polymorphicloci, with an average 2.1 polymorphic loci per primer pair. 19 of the 198 loci wereco-dominant loci, and 45 were distorted segregation loci. Totally, 171 loci weremapped on 26 linkage groups. Except for three short linkage groups (NL6, NL7, NL8), it could be found in the remained groups, and most distributed on the c2, c4, c5,c6, c9, c10, c14, c20, A02, A03.
     5. The fiber yield, fiber quality, and some traits related to short-season of F_2 plants andcorresponding F_(2:3) families were investigated; but the fiber quality trait of F_(2:3) was notobtained because not enough fiber was harvest. QTLs were scanned by the method ofcomposite interval mapping (CIM) in program QTL Cartographer V2.0. When the logodds-ration threshold of QTL detection was 3.0, 79 QTLs could be detected,including 25 QTLs related to fiber quality traits explained from 8.69% (qFU-c6-1)to 23.19% (qFL-c1-2) of phenotypic variation (PV); 36 QTLs related to fiber yield(16 QTLs in F_2 plants, 20 QTLs in F_3 plants); and 18 QTLs related to short-season.
     6. 8 TRAP markers linked to the QTLs of fiber length, fiber uniformity ratio andmacronaire value, were detected. For example, T16E2c was linked to a QTL(qFL-c1-2) in chromosome 1 (within 0.01cM), and a QTL (qFU-c17-1) related tofiber uniformity ratio was positioned at the interval of T9E10b-JESP195. And thesetwo primers were designed from the genes related to fiber extension and fiberformation respectively. So, TRAP marker is not only benefiting for increasing thegenetic map density, but also it is easy to link with the related QTLs.
引文
1.陈海梅,李林志,卫宪云,李斯深,雷天东,胡海洲,王洪刚,张宪省.小麦EST-SSR标记的开发、染色体定位和遗传作图[J1.科学通报,2005,50(20):2208-2216.
    2.房卫平,许守明,孙玉堂,唐中杰,王家典.棉花抗黄萎病的RAPD标记[J].河南农业科学,2001,(09):11-13.
    3.高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位[J].棉花学报,2003,15(02):73-78.
    4.耿川东,龚蓁蓁,黄骏麒,张震林.用RAPD鉴定棉花品种间差异[J].江苏农业学报,1995,11(04):21-24.
    5.郭旺珍,王凯,张天真.利用SSR标记技术研究棉属A、D染色体组的进化[J].遗传学报,2003,30(02):183-188.
    6.郭旺珍,张天真,潘家驹,何金龙.我国棉花主栽品种的RAPD指纹图谱研究[J].农业生物技术学报,1996,4(02):129-134.
    7.胡晋,徐海明,朱军.保留特殊种质材料的核心库构建方法fJ].生物数学学报,2001,16(03):348-352.
    8.胡晋,徐海明,朱军.基因型值多次聚类法构建作物种质资源核心库[J].生物数学学报,2000,15(01):103-109.
    9.李宏伟,高丽锋,刘曙东,李永强,贾继增.用EST-SSRs研究小麦遗传多样性[J].中国农业科学,2005,38(01):7-12.
    10.李心宽.特早熟种质资源在早熟育种中的作用[J].中国棉花,1990,17(06):2-3.
    11.李园莉,孙杰,李春红,朱勇清,夏桂先.Specific expression of a B.tubulin gene(GhTubl)in developing cotton fibers Specific expression of a b-tubulin gene (GhTub1) in developing cotton fibers[J]. Science in China, Ser. C, 2003, (03):
    12.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    13.刘文欣,孔繁玲,郭志丽,张群远,彭惠茹,付小琼,杨付新.建国以来我国棉花品种遗传基础的分子标记分析[J].遗传学报,2003,30(06):560-570.
    14.陆光远,杨光圣,傅廷栋.应用于油菜研究的简便银染AFLP标记技术的构建[J].华中农业大学学报,2001,(05):11-13.
    15.潘家驹.棉花育种学[M].北京:中国农业出版社,1998:
    16.任立华,郭旺珍,张天真.利用置换系检测棉花第16染色体的产量、纤维品质QTLs[J].Acta Botanica Sinica,2002,44(07):815-820.
    17.宋国立,崔荣霞,王坤波,黎绍惠,张金发,郭介华,张家明.澳洲棉种遗传多样性的RAPD分析[J].棉花学报,1999,11(02):65-69.
    18.宋宪亮.异源四倍体棉花栽培种分子遗传图谱的构建及部分性状QTL标记定位[D].泰安:山东农业大学,年份2004:
    19.王道均,王漱云.从金字棉看棉花早熟种质在育种的作用fJl.中国棉花,1982,9(2):12-15.
    20.王刚,潘俊松,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传连锁图的构建及侧枝基因定位[J].中国科学C辑,2004,34(06):510-516.
    21.王心宇,郭旺珍,张天真,潘家驹.我国短季棉品种的RAPD指纹图谱分析[J].作物学报,1997,23(06):669-676.
    22.吴茂清,张献龙,聂以春,贺道华.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443-452.
    23.吴为人,李维明,卢浩然.数量性状基因座的动态定位策略[J].生物数学学报,1997,(S1):490-495.
    24.武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性[J].遗传学报,2001,28(11):1040-1050.
    25.徐秋华,张献龙,聂以春.长江、黄河流域两棉区陆地棉品种的遗传多样性比较研究[J].遗传学报,2001,28(07):683-690.
    26.徐云碧,朱立煌.分子数量遗传学[M].中国农业出版社,1994:
    27.严建兵,汤华,黄益勤,郑用琏,李建生.玉米F_2群体分子标记偏分离的遗传分析[J].遗 传学报,2003,30(10):913-918.
    28.殷剑美,武耀廷,张军,张天真,郭旺珍,朱协飞.陆地棉产量性状QTLs的分子标记及定位[J].生物工程学报,2002,18 (02):162-166.
    29.喻树迅.我国短季棉遗传改良成效评价及其早熟不早衰的生化遗传研究[D].杨陵:西北农林科技大学,年份2003:
    30.喻树迅,黄祯茂.短季棉品种早熟性构成因素的遗传分析[J].中国农业科学,1990,23(06):48-54.
    31.喻树迅,黄祯茂.短季棉在我国棉花生产中的地位[J].中国棉花,1991,18(03):7-8.
    32.喻树迅,黄祯茂.我国短季棉生产现状与发展前景[J].中国棉花,1989,16(02):6-8.
    33.喻树迅,张存信.我国短季棉育种概论[M].济南:山东农业科技出版社,2003:
    34.张桂寅,王省芬,马峙英.抗黄萎病低酚棉品种资源RAPD分析[J].棉花学报,2002,14(02):80-84.
    35.周盛汉.中国棉花品种系谱图[M].成都:四川科学技术出版社,2000:
    36.周元昌,陈启锋,吴为人,李维明.作物QTL定位研究进展[J].福建农业大学学报,2000,29(02):138-144.
    37.朱青竹,赵国忠,赵丽芬.不同来源棉花种质资源基于RAPD的遗传变异[J].河北农业大学学报,2002,25(04):17-19.
    38.左开井,孙济中,张献龙,聂以春,刘金兰,冯纯大.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图(英文)[J].华中农业大学学报,2000,19(03):190-193.
    39. Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2. 2: A major fruit weight quantitative trait locus in tomato[J]. Proc Natl Acad Sci U S A, 1996, 93 (26): 15503-15507.
    40. Altaf M K, Stewart J M, Wajahatullah M K, Zhang J F, Cantrell R G. Molecular and morphological genetics of a trispecies F2 population of cotton. Proc. Beltwide Cott. Conf., 1997, 448-452.
    41. Altar M K, Zhang J, Stewart J M, Cantrell R G. Integrated molecular map based on a trispecific F2 population of cotton[J]. Proc. Beltwide Cott. Conf., 1998, 491-492.
    42. Alwala S, Suman A, Arro J A, Veremis J C, Kimbeng C A. Target Region Amplification Polymorphism (TRAP) for Assessing Genetic Diversity in Sugarcane Germplasm collections[J]. Crop Science, 2006, 46 (): 448-455.
    43. Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan H S, Gupta P K. DNA polymorphism among 18 species of Triticurn-Aegilops complex using wheat EST-SSRs [J]. Plant Science 2004, 166 (2): 349-356
    44. Bentsink L, Yuan K, Koornneef M, Vreugdenhil D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation[J]. Theor Appl Genet, 2003, 106 (7): 1234-1243.
    45. Bezawada C, Saha S, Jenkins J N, Creech R G, McCarty J C. SSR marker(s) associated with root knot nematode resistance gene(s) in cotton[J]. Journal of Cotton Science, 2003, 7 (4): 179-184
    46. Bowman D T, Gutirez O A. Sources of Fiber Strength in the U. S. Cotton Crop from 1980-2000 [J]. Journal of Cotton Science, 2000, 7 164-169.
    47. Brouwer D J, St Clair D A. Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs[J]. Theor Appl Genet, 2004, 108 (4): 628-638.
    48. Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors[J]. Genome, 1999, 42 (): 184-203.
    49. Budak H, Shearman R C, Parmaksiz I, Dweikat I. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs[J]. Theor Appl Genet, 2004, 109 (2): 280-288.
    50. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics, 2000, 156 (2): 847-854.
    51. Chee P, Draye X, Jiang C X, Decanini L, Delmonte T A, Bredhauer R, Smith C W, Paterson A H. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: Ⅰ. Fiber elongation[J]. Theor Appl Genet, 2005, 111 (4): 757-63.
    52. Chee P W, Draye X, Jiang C X, Decanini L, Delmonte T A, Bredhauer R, Smith C W, Paterson A H. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length[J]. Theor Appl Genet, 2005, 111 (4): 772-81.
    
    53. Chen X, Salamini F, Gebhardt C. A potato molecular-function map for carbohydrate metabolism and transport[J]. TAG Theoretical and Applied Genetics, 2001,102 (2 - 3): 284-295.
    
    54. Chin E C, Senior M L, Shu H, Smith J S. Maize simple repetitive DNA sequences: abundance and allele variation[J]. Genome, 1996, 39 (5): 866-873.
    
    55. Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum[J]. Plant Sci, 2001, 160 (6): 1115-1123.
    
    56. Davila J A, Loarce Y, Ferrer E. Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley[J]. TAG Theoretical and Applied Genetics, 1999, 98 (2): 265-273.
    
    57. Delmer D P, Pear J R, Andrawis A, Stalker D M. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers[J]. Mol Gen Genet, 1995,248 (1): 43-51.
    
    58. Dorweiler J, Stec, A, Kermicle, J. Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution[J]. Science, 1993, 262 (): 233-235.
    
    59. Draye X, Chee P, Jiang C X, Decanini L, Delmonte T A, Bredhauer R, Smith C W, Paterson A H. Molecular dissection of interspecific variation between Gossypium hirsutum and G barbadense (cotton) by a backcross-self approach: II. Fiber fineness[J]. Theor Appl Genet, 2005, 111 (4): 764-71.
    
    60. El-Din El-Assal S, Alonso-Blanco C, Peeters A J, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2[J]. Nat Genet, 2001,29 (4): 435-40.
    
    61. Endrizzi J E, Turcotte E L, Kohel R J. Genetics cytology and evolution of Gossypium [J]. Advances in Genetics, 1985,23 ():271-375.
    
    62. Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. TAG Theoretical and Applied Genetics, 2002,104 (2 - 3): 399-407.
    
    63. Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.)[J]. Theor Appl Genet, 2005, 111(3): 456-66.
    
    64. Ferriol M, Pico B, de Cordova P F, Nuez F. Molecular Diversity of a Germplasm Collection of Squash (Cucurbita moschata) Determined by SRAP and AFLP Markers[J]. Crop Sci, 2004,44 (2): 653-664.
    
    65. Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289 (5476): 85-88.
    
    66. Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene[J]. Proc Natl Acad Sci U S A, 2000, 97 (9): 4718-4723.
    
    67. Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by computational and experimental approaches[J]. Molecular Breeding, 2003,12 (3): 245-261.
    
    68. Glazier A M, Nadeau J H, Aitman T J. Finding genes that underlie complex traits[J]. Science, 2002,298 (5602): 2345-2349.
    
    69. Gupta P K, Balyan H S, Sharma P C, Ramesh B. Microsatellites in plants: A new class of molecular markers[J]. Current Science 1996,(): 7045-7054.
    
    70. Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat[J]. Mol Genet Genomics, 2003, 270 (4): 315-323.
    
    71. Gutierrez O A, Basu S, Saha S, Jenkins J N, Shoemaker D B, Cheatham C L, McCarty J C, Jr. Genetic Distance among Selected Cotton Genotypes and Its Relationship with F2 Performance[J]. Crop Sci, 2002,42 (6): 1841-1847.
    
    72. Haigler C H, Ivanova-Datcheva M, Hogan P S, Salnikov V V, Hwang S, Martin K, Delmer D P. Carbon partitioning to cellulose synthesis[J]. Plant Molecular Biology, 2001,47 (1 - 2): 29-51.
    
    73. Han F, Romagosa I, Ullrich S E, Jones B L, Hayes P M, Wesenberg D M. Molecular marker-assisted selection for malting quality traits in barley[J]. Molecular Breeding, 1997, 3 (6):427-437.
    
    74. Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton[J]. Theor Appl Genet, 2006,112 (3): 430-439.
    
    75. Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton[J]. Mol Genet Genomics, 2004, 272 (3): 308-327.
    
    76. Harmer S E, Orford S J, Timmis J N. Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton)[J]. Mol Genet Genomics, 2002,268 (1): 1-9.
    
    77. Hatey F, Tosser-Klopp G, Clouscard-Martinato C, Mulsant P, Gasser F. Expressed sequence tags for genes: a review [J]. GENETICS SELECTION EVOLUTION 1998,30 (6): 521-541
    
    78. He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart M. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica, 2005, 144 ():141-149.
    
    79. Holton T A, Christopher J T, McClure L, Harker N, Henry R J. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat[J]. Molecular Breeding, 2002, 9 (2): 63-71.
    
    80. Hu J, Ochoa O E, Truco M i J e, Vick B A. Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping[J]. Euphytica, 2005, 244 (): 225-235.
    
    81. Hu J, Vick B A. Target region amplification polymorphism: a novel marker technique for plant genotyping[J]. Plant Molecular Biology Report, 2003,21 (): 289-294.
    
    82. Iqbal M J, Aziz N, Saeed N A, Zafar Y, Malik K A. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis [J]. THEORETICAL AND APPLIED GENETICS 1997, 94 (1): 139-144
    
    83. Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci[J]. TAG Theoretical and Applied Genetics, 1989,78 (5): 613-618.
    
    84. Ji S J, Lu Y C, Feng J X, Wei G, U J, Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array[J]. Nucleic Acids Res, 2003, 31 (10): 2534-2543.
    
    85. Jiang C, Wright R J, El-Zik K M, Paterson A H. Polyploid formation created unique avenues for response to selection in gossypium[J]. Proc Natl Acad Sci U S A, 1998,95 (8): 4419-4424.
    
    86. Jiang C, Wright R J, Woo S S, DelMonte T A, Paterson A H. QTL analysis of leaf morphology in tetraploid Gossypium (cotton)[J]. TAG Theoretical and Applied Genetics, 2000, 100 (3 - 4): 409-418.
    
    87. John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs[J]. Proc Natl Acad Sci U S A, 1992, 89 (13): 5769-5673.
    
    88. Kao C H, Zeng Z B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm[J]. Biometrics, 1997,53 (2): 653-665.
    
    89. Karaca M, Saha S, Jenkins J N, Zipf A, Kohel R, Stelly D M. Simple Sequence Repeat (SSR) Markers Linked to the Ligon Lintless (Li1) Mutant in Cotton[J]. J Hered, 2002, 93 (3): 221-224.
    
    90. Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation[J]. Plant Cell Physiol, 1998, 39 (12): 1380-1383.
    
    91. Kawai M, Aotsuka S, Uchimiya H. Isolation of a Cotton CAP Gene: a Homologue of Adenylyl Cyclase-Associated Protein Highly Expressed during Fiber Elongation[J]. Plant Cell Physiol., 1998,39 (12): 1380-1383.
    
    92. Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps[J]. TAG Theoretical and Applied Genetics, 1990,79 (5): 583-592.
    
    93. Knox M R, Ellis T H N. Excess Heterozygosity Contributes to Genetic Map Expansion in Pea Recombinant Inbred Populations[J]. Genetics, 2002,162 (2): 861-873.
    
    94. Kohel R J, Yu J, Park Y-H, Lazo G R. Molecular mapping and characterization of traits controlling fiber quality in cotton[J]. Euphytica, 2001,121 (2): 163-172.
    
    95. Koumproglou R, Wilkes T M, Townson P, Wang X Y, Beynon J, Pooni H S, Newbury H J, Kearsey M J. STAIRS: a new genetic resource for functional genomic studies of Arabidopsis[J]. Plant J, 2002, 31 (3): 355-64.
    96. Lacape J-M, Nguyen T-B, Courtois B, Belot J-L, Giband M, Gourlot J-P, Gawryziak G, Roques S, Hau B. QTL Analysis of Cotton Fiber Quality Using Multiple Gossypium hirsutum x Gossypium barbadense Backcross Generations[J]. Crop Sci, 2005,45 (1): 123-140.
    
    97. Lacape J M, Nguyen T B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton[J]. J Hered, 2005,96 (4): 441-444.
    
    98. Lacape J M, Nguyen T B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R G, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population[J]. Genome, 2003,46 (4): 612-626.
    
    99. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989,121 (1): 185-199.
    
    100. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J]. Theor Appl Genet, 2003,107 (1): 168-180.
    
    101. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. TAG Theoretical and Applied Genetics, 2001,103 (2 - 3): 455-461.
    
    102. Li X-B, Cai L, Cheng N-H, Liu J-W. Molecular Characterization of the Cotton GhTUB1 Gene That Is Preferentially Expressed in Fiber[J]. Plant Physiol., 2002,130 (2): 666-674.
    
    103. Li Z, Pinson S R M, Park W D, Paterson A H, Stansel J W. Epistasis for Three Grain Yield Components in Rice (Oryza sativa L.)[J]. Genetics, 1997,145 (2): 453-465.
    
    104. Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J M. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD[J]. Plant Breeding, 2005,124 (): 180-187.
    
    105. Liu D, Guo X, Lin Z, Nie Y, Zhang X. Genetic Diversity of Asian Cotton (Gossypium arboreum L.) in China Evaluated by Microsatellite Analysis[J]. Genetic Resources and Crop Evolution, 2006, ():
    
    106. Liu H C, Creech R G, Jenkins J N, Ma D P. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3(1)[J]. Biochim Biophys Acta, 2000,1487 (1): 106-111.
    
    107. Liu J, Van Eck J, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit[J]. Proc Natl Acad Sci U S A, 2002, 99 (20): 13302-13306.
    
    108. Liu S, Saha S, Stelly D, Burr B, Cantrell R G Chromosomal assignment of microsatellite loci in cotton[J]. J Hered, 2000, 91 (4): 326-332.
    
    109. Liu Z H, Anderson J A, Hu J, Friesen T L, Rasmussen J B, Faris J D. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci[J]. Theor Appl Genet, 2005, 111 (4): 782-94.
    
    110. Loguerico L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.)[J]. Mol Gen Genet, 1999,261 (4-5): 660-671.
    
    111. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize[J]. Theor Appl Genet, 2002,105 (4): 622-628.
    
    112. Lyttle T W. Segregation Distorters[J]. Annual Review of Genetics, 1991,25 (1): 511-581.
    
    113. Ma D P, Liu H C, Tan H, Creech R G, Jenkins J N, Chang Y F. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells[J]. Biochim Biophys Acta, 1997,1344 (2): 111-114.
    
    114. Ma D P, Tan H, Si Y, Creech R G, Jenkins J N. Differential expression of a lipid transfer protein gene in cotton fiber[J]. Biochim Biophys Acta, 1995,1257 (1): 81-84.
    
    115. McCouch S R, Cho Y G, Yano M. Report on QTL nomenclature[J]. Rice Genet Newsl, 1997,14 (): H-13.
    
    116. McCouch S R, Doerge R W. QTL mapping in rice[J]. Trends Genet, 1995,11 (): 482-487.
    
    117. Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton ( Gossypium)[J]. Theor Appl Genet, 2004, 108 (2): 280-291.
    
    118. Meredith W R. cotton yield progress why has it reached a plateau? [J]. Better Crops, 2000, 84 (4): 6-9.
    
    119. Multani D S, Lyon B R. Genetic fingerprinting of Australian cotton cultivars with RAPD markers[J]. Genome, 1995,38 (5): 1005-1008.
    
    120. Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet, 2004,109 (1): 167-175.
    
    121. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction[J]. Genomics, 1989,5 (4): 874-879.
    
    122. Park Y H, Alabady M S, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G, Ulloa M. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line (RIL) cotton population[J]. Molecular and General Genetics, 2005,274 (): 428-441.
    
    123. Paterson A, Saranga, Menz, Jiang, Wright. QTL analysis of genotype x environment interactions affecting cotton fiber quality[J]. TAG Theoretical and Applied Genetics, 2003,106 (3): 384-396.
    
    124. Paterson A H, Curt L B, Wendel J F. A rapid method for extraction of cotton (Gossypium spp) genomic DNA suitable for RFLP and PCR analysis[J]. Plant Molecular Biology Report, 1993,11 ():112-127.
    
    125. Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine Mapping of Quantitative Trait Loci Using Selected Overlapping Recombinant Chromosomes, in an Interspecies Cross of Tomato[J]. Genetics, 1990,124 (3): 735-742.
    
    126. Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature, 1988,335 (6192): 721-726.
    
    127. Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase[J]. PNAS, 1996, 93 (22): 12637-12642.
    
    128. Peleman J, Wye C, Zethof J, Sorensen A S, Verbakel H, van Oeveren J, Gerats T, Rouppe van der Voort J. QTL Isogenic Recombinant (QIR) Analysis: a Method for High-Resolution Mapping of Quantitative Trait Loci within a Single Population[J]. Genetics, 2005, ():
    
    129. Qureshi S N, Saha S, Kantety R V, Jenkins J N. EST-SSR: a new class of genetic markers in cotton[J]. Journal of Cotton Science, 2004,8 (2): 112-123.
    
    130. Reddy OUK, Pepper A E, Abdurakhmonov I, Saha S, Jenkins J N, Brooks T, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research[J]. Journal of Cotton Science, 2001,5 (2): 103-113.
    
    131. Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome[J]. Genetics, 1994,138 (3): 829-847.
    
    132. Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)[J]. Genetics, 2004,166 (1): 389-417.
    
    133. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips R L. Toward positional cloning of Vgtl, a QTL controlling the transition from the vegetative to the reproductive phase in maize[J]. Plant Mol Biol, 2002,48 (5-6): 601-613.
    
    134. Saranga Y, Menz M, Jiang C-X, Wright R J, Yakir D, Paterson A H. Genomic Dissection of Genotype x Environment Interactions Conferring Adaptation of Cotton to Arid Conditions[J]. Genome Res., 2001,11 (12): 1988-1995.
    
    135. Shappley Z W, Jenkins J N, Meredith W R, McCarty J C. An RFLP linkage map of upland cotton, Gossypium hirsutum L.[J]. Theor Appl Genet, 1998,97 (): 756-761.
    
    136. Shappley Z W, Jenkins J N, Meredith W R, McCarty Jr J C. An RFLP linkage map of Upland cotton, Gossypium hirsutum L[J]. TAG Theoretical and Applied Genetics, 1998, 97 (5 - 6): 756-761.
    
    137. Shappley Z W, Jenkins J N, Zhu J, McCarty J C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton[J]. Journal of Cotton Science, 1998, 2 (4): 153-163.
    
    138. Shen L, Courtois B, McNally K L, Robin S, Li Z. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection[J]. TAG Theoretical and Applied Genetics, 2001,103 (1): 75-83.
    
    139. Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines[J]. TAG Theoretical and Applied Genetics, 1976,47 (1): 35-39.
    
    140. Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display[J]. Biochim Biophys Acta, 1997,1351 (3): 305-312.
    
    141. Song X, Wang K, Guo W, Zhang J, Zhang T. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L[J]. Genome, 2005,48 (3): 378-90.
    
    142. Song X, Wang K, Guo W, Zhang J, Zhang T. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L[J]. Genome, 2005,48 (3): 378-390.
    
    143. Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2[J]. Proc Natl Acad Sci U S A, 2001, 98 (14): 7922-7.
    
    144. Tanksley S D, Nelson, J.C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theor. Appl. Genet., 1996, 92 ():191-203.
    
    145. Tatineni V, Cantrell R G, Davis D D. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs [J]. CROP SCIENCE 1996, 36 (1): 186-192
    
    146. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes[J]. Nucl. Acids Res., 1984,12 (10): 4127-4138.
    
    147. Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.)[J]. TAG Theoretical and Applied Genetics, 2000,100 (5): 697-712.
    
    148. Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theor Appl Genet, 2003,106 (3): 411-422.
    
    149. Ueda Y, Takeshita D, Ando T. POLLINATION IN ROSA RUGOSA THUNB. EX MURRAY[J]. Acta Hort, 1996,424 (): 309-310.
    
    150. Ulloa M, Cantrell R G, Percy R G, Zeiger E, Eduardo Z, Zhenmin L. QTL Analysis of Stomatal Conductance and Relationship to Lint Yield in an Interspecific Cotton[J]. Journal of Cotton Science, 2000,4 (1): 10-18
    
    151. Ulloa M, Meredith Jr W R, Shappley Z W, Kahler A L. RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L[J]. TAG Theoretical and Applied Genetics, 2002,104 (2 - 3): 200-208.
    
    152. Ulloa M, Saha S, Jenkins J N, Meredith W R, Jr., McCarty J C, Jr., Stelly D M. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) Joinmap[J]. J Hered, 2005,96 (2): 132-144.
    
    153. Ulloa M, William R, Meredith J. Genetic Linkage Map and QTL Analysis of Agronomic and Fiber Quality Traits in an Intraspecific Population[J]. Journal of Cotton Science, 2000, 4 (3): 161-170.
    
    154. Waghmare V N, Rong J, Rogers C J, Pierce G J, Wendel J F, Paterson A H. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum[J]. Theor Appl Genet, 2005, 111 (4): 665-676.
    
    155. Wan C Y, Wilkins T A. Isolation of multiple cDNAs encoding the vacuolar H(+)-ATPase subunit B from developing cotton (Gossypium hirsutum L.) ovules[J]. Plant Physiol, 1994, 106 (1): 393-394.
    
    156. Wang D L, Zhu J, Li Z K L, Paterson A H. Mapping QTLs with epistatic effects and QTL 脳 environment interactions by mixed linear model approaches[J]. TAG Theoretical and Applied Genetics, 1999,99 (7 - 8): 1255-1264.
    
    157. Wendel J F, Albert V A. Phylogenetics of the cotton genus (Gossypium L.): Character-state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications[J]. Systematic Botany 1992,17 0:115-143.
    
    158. Wendel J F, Brubaker C L, Percival A E. Genetic diversity in Gossypium hirsutum and the origin of upland cotton[J]. American Journal of Botany, 1992,79 (11): 1291-1310.
    
    159. Wendel J F, Jonathan F, Cronn R C. Polyploidy and the evolutionary history of cotton[J]. Advances in Agronomy, 2002,87 ():139-186.
    
    160. Wilkins T A. Vacuolar H(+)-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules[J]. Plant Physiol, 1993,102 (2): 679-680.
    
    161. Wright R J, Thaxton P M, El-Zik K M, Paterson A H. D-Subgenome Bias of Xcm Resistance Genes in Tetraploid Gossypium (Cotton) Suggests That Polyploid Formation Has Created Novel Avenues for Evolution[J]. Genetics, 1998,149 (4): 1987-1996.
    
    162. Wu J, Jenkins J N, Zhu J, McCarty J C, Watson C E. Comparisons of quantitative trait locus mapping properties between two methods of recombinant inbred line development[J]. Euphytica, 2003,132 (2): 159-166.
    
    163. Wu W-R, Li W-M, Tang D-Z, Lu H-R, Worland A J. Time-Related Mapping of Quantitative Trait Loci Underlying Tiller Number in Rice[J]. Genetics, 1999,151 (1): 297-303.
    
    164. Xiao J, Li J, Yuan L, Tanksley S D. Dominance Is the Major Genetic Basis of Heterosis in Rice as Revealed by QTLAnalysis Using Molecular Markers[J]. Genetics, 1995,140 (2): 745-754.
    
    165. Xu Y, Zhu L, Xiao J, Huang N, McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.)[J]. Mol Gen Genet, 1997, 253 (5): 535-545.
    
    166. Yamatomo T, Kuboki,Y, Lin, S.Y. Fine mapping of quantitative trait loci Hd-l,Hd-2 and Hd-3,controlling heading date of rice, as single Mendelian factors[J]. Theor. Appl. Genet, 1998, 97 (): 37-44.
    
    167. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.)[J]. TAG Theoretical and Applied Genetics, 1998,97 (1 - 2): 267-274.
    
    168. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant Cell, 2000, 12 (12): 2473-2484.
    
    169. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice[J]. Plant Mol Biol, 1997,35 (1-2): 145-53.
    
    170. Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes[J]. TAG Theoretical and Applied Genetics, 1989,77 (1): 95-101.
    
    171. Yousef G G, Juvik J A. Comparison of Phenotypic and Marker-Assisted Selection for Quantitative Traits in Sweet Corn[J]. Crop Sci, 2001,41 (3): 645-655.
    
    172. Yu J, Park Y H, Lazo G R, Kohel R. Molecular cotton genome with molecular markers[J]. Cotton Improvement Conference, 1997,447 ():
    
    173. Yue G H, Ho M Y, Orban L, Komen J. Microsatellites within genes and ESTs of common carp and their applicability in silver crucian carp [J]. Aquaculture 2004,234 (1): 85-98.
    
    174. Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci[J]. Proc Natl Acad Sci U S A, 1993, 90 (23): 10972-10976.
    
    175. Zeng Z B. Precision mapping of quantitative trait loci[J]. Genetics, 1994,136 (4): 1457-1468.
    
    176. Zhang J, Guo W, Zhang T. Molecular linkage map of allotetraploid cotton ( Gossypium hirsutum L. x Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet, 2002, 105 (8): 1166-1174.
    
    177. Zhang J, Lu Y, Yu S. Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for cotton[J]. Theor Appl Genet, 2005, 111 (7): 1385-1395.
    
    178. Zhang T, Yuan Y, Yu J, Guo W, Kohel R. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection[J]. TAG Theoretical and Applied Genetics, 2003, 106 (2): 262-268.
    
    179. Zhang Z-S, Xiao Y-H, Luo M, Li X-B, Luo X-Y, Hou L, Li D-M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.)[J]. Euphytica, 2005,144 (1 - 2): 91-99.
    
    180. Zhu H, Briceno G, Dovel R, Hayes P M, Liu B H, Liu C T, Ullrich S E. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross[J]. TAG Theoretical and Applied Genetics, 1999,98 (5): 772-779. Zhu J, Weir B S. Mixed model approached for genetic analysis of quantitative traits. In: Chen L S, Ruan S G and Zhu J (eds) Advanced Topics in Biomathematics: Proceedings of International Conference on Mathematical Biology[M], Singapore: World Scientific Publishing Co, 1998:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700