丛粒藻形态多样性、遗传多样性分析与培养条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛粒藻(Botry coccus braunii)能够大量合成并积累烃类物质,总烃含量一般可占细胞干重的25%-40%,最高可达76%,其组分和结构与石油十分接近,燃烧后产热值高。因此,丛粒藻是一种具有潜在应用价值的能源微藻。
     本文对3株采集自不同地点的丛粒藻(AGB-Bb01、AGB-Bb02和AGB-Bb03)进行了显微结构和亚显微结构观测,研究了不同藻株间的形态变化。PCR扩增了18S rDNA、ITS和rbcL基因序列,并结合GenBank数据库中已登录的丛粒藻相应序列比较分析了16株丛粒藻藻株的遗传距离和序列相似性,重建了系统发生树。结果表明:采集自不同地理位点的丛粒藻藻株在细胞大小、聚落大小和聚落细胞数目方面存在较明显的差异,亚显微结构显示不同藻株的杯状鞘厚度及细胞的包埋程度也存在差异;不同地理株间具有较高的遗传多样性,系统发生树显示所有藻株可分成2个簇群和4个亚群,存在一定程度的地理隔离。研究证明了18S rDNA和ITS区基因序列是进行丛粒藻基因分型和遗传多样性研究的良好位点,而通过分析3株丛粒藻与分类归属地位有争议的不同目的微藻rbcL基因序列发现,采用邻接法、最小进化法、最大简约法和非加权组平均法构建的系统树均显示,该藻与衣藻目的亲缘关系较近且,这与日本学者用18S rDNA研究的结果相一致,为系统了解丛粒藻的遗传多样性和开展优良藻株选育工作奠定了基础。
     要实现丛粒藻产烃的工厂规模化生产,优良藻株的选育和培养条件优化必不可少,总烃、总脂含量高和生长速度快的藻株是筛选的首要目标。分别选取丛粒藻藻株AGB-Bb01、AGB-Bb02和AGB-Bb03处于延滞期、对数生长前期、对数生长后期和稳定期的藻细胞,分别采用正己烷法和索氏提取法进行总烃含量及总脂含量的测定,发现3株丛粒藻在不同的生长时期总烃、总脂含量不同,最高值出现在对数生长后期。丛粒藻在Chu10、Chu13、BG11和BBM这4种培养基中的生长适应情况不同,3株实验微藻在不同培养基中的生长速率、生物量、总烃和总脂含量表现出差别。结果表明:AGB-Bb01在Chu13培养基中的生物量最高,AGB-Bb02和AGB-Bb03在BG11培养基中的生物量最高;AGB-Bb01和AGB-Bb02在Chu10培养基中总烃及总脂含量较高,AGB-Bb03在Chul3培养基中总烃及总脂含量最高,为丛粒藻烃类最佳收获期的选择和工业化大规模养殖提供实验基础。
Botryococcus braunii is considered as an energy microalgae having great protential applications because of that it can synthesize and accumulate considerable quantities of hydrocarbons in the metabolic process. The calorific value, composition and structure of these hydrocarbons are very similar to those of oil. Generally the content of total hydrocarbons could reach 25% to 40% of dry biomass and the maximum value that have reported was 76%.
     The microscopic structure and sub-microscopic structure of three B. braunii strains (AGB-Bb01,AGB-Bb02 and AGB-Bb03) isolated from different sites were observed by light and electronic microscope observations based on morphological features. AGB-Bb01, AGB-Bb02 and AGB-Bb03 were identified as different genotype and geographical strains of B. braunii by amplifying the 18S-28S rDNA and rbcL gene sequences and blastn analysis, genetic distance and sequence similarities calculation. And it is the first time that the rbcL gene sequences were obtained from this energy microalgae. The phylogenetic trees involved in 16 strains of B. braunii were reconstructed based on the genetic distances and sequence similarities of 18S rDNA, ITS region and rbcL gene sequences at the same time. The results showed that the cell size, colony size and cell number in one colony of the three geographical strains were significantly different. The sub-microscopic structures demonstrated that the thickness of the cup-sheath and extent of cell embedded by the cup-sheath had difference among the three strains as well. There existed high genetic diversity among the different strains living in the different sites and phylogenetic tree showed that all the strains can be divided into 2 groups and 4 sub-groups because of the geographical isolation. It is proved that sequences of 18S rDNA and ITS region can be considered as good tools for gene-type identification and genetic diversity research in B. braunii. Phylogenetic trees were constructed using Neighbor-joining, Minimum evolution, Maximum parsimony and Unweighted pair-group method with arithmetic method, and their reliability was estimated using bootstrap analysis. All the results show the closest relatives are in the Chlamydomonadales with high bootstrap. The study lays the solid basement for the research of the genetic diversity and cultivation in B. braunii.
     It is very necessary to breed algae strains and optimize culture conditions in order to achieve large-scale production. The preferred target is to obtain high-yield varieties which can both grow rapidly and have high content of total hydrocarbons and total lipids. Total hydrocarbons and total lipids of B. braunii AGB-Bb01, AGB-Bb02 and AGB-Bb03 was different in different growth phases. The maximum of those appeared in the post-logarithmic phase after algae cells in the lag phase, the early-logarithmic phase, the post-logarithmic phase and the stationary phase were collected and fragmented for determination. The effect of the media on the growth, contents of total hydrocarbons and total lipids of Botryococcus braunii AGB-Bb01, AGB-Bb02 and AGB-Bb03 was studied using different media such as modified Chu10 medium, modified Chul3 medium,BGll and bold basal medium(BBM). Biomass of B. braunii AGB-Bb01 cultured in Chu13 was higher than that cultured in Chu10, BG11 and BBM, while biomass of B. braunii AGB-Bb02 and AGB-Bb03 cultured in BG11 were higher than those cultured in the other medium respectively;Chu10 was found to be the best medium for total hydrocarbon content and total lipid content of B. braunii AGB-Bb01 and AGB-Bb02, whereas Chul3 is the best for total hydrocarbon content and total lipid content of B. braunii AGB-Bb03. This research provides experimental basis for the selection of the best harvest time and industrial large-scale production of B. braunii.
引文
[1]Mori Y H, Ohnishi K. Energy and Environment:Technological challenges for the future. Tokyo:Springer-Verlag,2000:162-181
    [2]Hall D O, House J I. Trees and Biomass Energy:Carbon storage and/or fossil fuel substitution. Biomass and Bioenergy,1994, Vol.6:11-30
    [3]Turner J A. A realizable renewable energy future. Science.1999, Vol.285:687-689
    [4]缪晓玲,吴庆余.微藻生物质可再生能源的开发利用.可再生能源,2003,Vol.3:13-16
    [5]李俊峰,时景丽,王仲颖.大力推进可再生能源的发展.中国能源,2006,Vol.28:20-23
    [6]张伯泉,杨宜民.风力和太阳能光伏发电现状及发展趋势.中国电力,2006,Vol.39:65-69
    [7]Hall D O, Mynick H E, William R H. Cooling the greenhouse with bioenergy. Nature,1991, Vol.353:11-12
    [8]米铁,唐汝江,陈汉平,刘德昌.生物质能利用技术及研究进展.煤气与热力,2004,Vol.24:701-705
    [9]李守伟,李巍.生物质能源的开发与利用.应用能源技术,2007,Vol.11:40-42
    [10]官巧燕,聊福霖,罗栋粲.国内外生物质能发展综述.农机化研究,2007,Vol.11:20-24
    [11]余珂,胡兆吉,刘秀英.国内外生物质能利用技术研究进展.江西化工,2006,Vol.4:30-33
    [12]冯健雄,熊慧薇,幸胜平,欧阳玲花.生物质能源的开发现状和前景.江西农业学报,2007,Vol.19:108-110
    [13]Daniels F, Duffie J A. Solar Energy Research. Wisconsin:University of Wisconsin Press, 1955,179-184
    [14]Tsukahara K, Sawayama S. Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute,2005, Vol.48:251-259
    [15]Miyamoto K. Renewable biological systems for alternative sustainable energy production, FAO Agricultural Services Bulletin,1997, Vol.128:1-17
    [16]McKendry P. Energy production from biomass(part 1):overview of biomass. Bioresource Technology,2002, Vol.83:37-46
    [17]Richmond A. Handbook of microalgal culture:Biotechnology and applied phycology, Oxford: Blackwell Publishing,2003,430-438
    [18]Nakamura T, Olaizola M and Masutani S M. Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae. Quarterly Technical Progress Report,2002,1-75
    [19]Pedroni P, Davison J, Beckert H, Bergman P, Benemann J. A proposal to establish an international network on biofixation of CO2 and greenhouse gas abatement with microalgae. Journal of energy and environmental research,2002, Vol.1:136-150
    [20]周京.法国计划2007年前成为欧洲最大的生物燃料生产国.世界农业,2005,Vol.5: 61
    [21]Pimentel D. Ethanol fuels:Energy balance, economics, and environmental impacts are negative. Natural Resources Research,2003, Vol.12:127-134
    [22]宫曼丽,任南琪,李永峰,唐婧.生物制氢反应器不同发酵类型产氢能力的比较.哈尔滨工业大学学报,2006,Vol.38:1826-1830
    [23]Appel J, Schulz R. Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? Journal of Photochemistry and Photobiology B:Biology,1998, Vol.47:1-11
    [24]龙敏南,林志.螺旋藻放氢的研究.厦门大学学报,1998,Vol.37:921-924
    [25]胡鸿钧.国外螺旋藻生物技术的现状及发展趋势.武汉植物学研究,1997,Vol.15:369-374
    [26]胡鸿钧.螺旋藻生物学及生物技术原理.北京:科学技术出版社,2003:81-97
    [27]Miyake J, Kawamura S. Hydrogen:the next generation cleaning up production of a future fuel. International Journal of Hydrogen Energy,1987, Vol.12:147-149
    [28]Belarbi E H, Molina E, Chisti Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme and Microbial Technology,2000, Vol.26:516-529
    [29]徐桂转,张百良.生物柴油的研究与进展.华中农业大学学报,2005,Vol.24:644-650
    [30]Sawayama S, Inoue S, Dote Y, Yokoyama S-Y. CO2 fixation and oil production through microalga. Energy Conversion and Management,1995, Vol.36:729-731
    [31]唐赢中,黄利群,严国安.藻类产烃研究进展.生物工程进展,1997,Vol.17:23-26
    [32]Brown A C, Knights B A, Conway E. Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry,1969, Vol.8: 543-547
    [33]Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry,1980, Vol.19: 1043-1051
    [34]Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O. Studies on Batch and Continuous Cultures of Botryococcus braunii. Biotechnology and Bioengineering,1985, Vol.27:286-295
    [35]宋一涛.丛粒藻烃类的研究.石油与天然气地质,1991,Vol.12:22-33
    [36]Held W, Peter M, Buhs C. Production of Hydrocarbon from Biomass, Energy Biomass,1985, Vol.25:744-748
    [37]Mckirdy D M, Cox R E, Volkman J K, Howell V J. Botryococcane in a new class of Australian non-marine crude oils. Nature,1986, Vol.320:57-59
    [38]周凤英,彭德华,边立增,黄第藩,王延斌.柴达木盆地未熟—低熟石油的生烃母质研究新进展.地质学报,2002,Vol.76:107-114
    [39]贺振建,贾凤华,蒋光秀,边雪梅,罗华仪.新疆和田杜瓦地区丛粒藻化石的发现及其意义.新疆石油地质,2004,Vol.25:400-402
    [40]吉利明,祝幼华,王少飞.鄂尔多斯盆地三叠系延长组丛粒藻形态特征.古生物学报,2008,Vol.47:185-194
    [41]Banerjee A, Sharma R, Chisti Y, Banerjee U C. Botryococcus braunii:A renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology,2002, Vol.22:245-279
    [42]Dayananda C, Sarada R, Usha Rani M, Shamala T R, Ravishankar GA. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass and Bioenergy,2007, Vol.31:87-93
    [43]Sawayama S, Minowa T, Yokoyama S-Y. Possibility of renewable energy production and carbon dioxide mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy,1999, Vol.17:33-39
    [44]姚向君,王革华,田宜水.国外生物质能的政策与实践.北京:化学工业出版社,2006
    [45]孙振钧.中国生物质产业及发展取向.农业工程学报,2004,Vol.20:1-5
    [46]马志珍.能源微藻的开发利用.国外水产,1990,Vol.2:17-20
    [47]Inoue S, Dote Y, Sawayama S, Minowa T, Ogi T, Yokoyama S-Y. Analysis of oil derived from liquefaction of Botryococcus braunii. Biomass and Bioenergy,1994, Vol.6:269-274
    [48]Simpson A J, Zhang X, Kramer R, Hatcher P G. New insights on the structure of algaenan from Botryococcus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques. Phytochemistry,2003, Vol.62:783-796
    [49]Templier J, Largeau C, Casadevall E. Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry,1984, Vol.23:1017-1028
    [50]Yamaguchi K, Nakano H, Murakami M, Konosu S, Nakayama O, Kanda M, Nakamura A, Iwamoto H. Lipid composition of a green alga, Botryococcus braunii. Agricultural and Biological Chemmistry.1987, Vol.51:493-498
    [51]Marwell J R, Douglas A G, Eglinton G. The Botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii Kutzing. Phytochemistry,1968, Vol.7:2157-2171
    [52]Wake L V, Hillen L W. Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes. Journal of Marine and Freshwater Research, 1981, Vol.32:353-367
    [53]Metzger P, Berkaloff C, Casadevall E, Coute A. Alkadiene-and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry.1985, Vol.24:2305-2312
    [54]Okada S, Mastuda H, Murakami M, Yamaguchi K. Botryoxanthin A, a member of a new class of carotenoids from the green microalga Botryococcus braunii Berkeley. Tetrahedron Letters, 1996, Vol.37:1065-1068
    [55]Vblova T G, Kalacheva G S, Zhila N O. Characteristics of lipids from green alga Botryococcus braunii synthesizing liquid hydrocarbons. Doklady Biological Sciences,2000, Vol.370:96-99
    [56]Metzger P, Casadevall E. Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Letters,1987, Vol.28:3931-3934
    [57]Templier J, Largeau C, Casadevall E. Non-specific elongation-decarboxylation in biosynthesis of cis-and frans-alkadienes by Botryococcus braunii. Phytochemistry,1991, Vol.30:175-183
    [58]Sim S-J, An J-Y, Kim B-W. Two-phase extraction culture of Botryococcus braunii producing long-chain unsaturated hydrocarbons. Biotechnology Letters,2001, Vol.23:201-205
    [59]Frenz J, Largeau C, Casadevall E, Kollerup F, Daugulis A J. Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii. Biotechnology and Bioengineering,1989, Vol.34:755-762
    [60]Frenz J, Largeau C, Casadevall E. Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme and Microbial Technology,1989, Vol.11:717-724
    [61]Mendes R L, Jose P C, Helena L F. Applications of supercritical CO2 extraction to microglgae and plants. Journal of Chemical Technology & Biotechnology,1995, Vol.62:53-59
    [62]胡风庆,侯潇,吴庆余.利用微藻热解成烃制备可再生能源进展.辽宁大学学报:自然科学版,1999,Vol.26:181-187
    [63]Sawayama S, Minowa T, Dote Y, Yokoyama S. Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Applied Microbiology and Biotechnology,1992, Vol.38:135-138
    [64]Sawayama S, Inoue S, Yokoyama S. Continuous culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Applied Microbiology and Biotechnology,1994, Vol.41:729-731
    [65]Wolf F R, Nemethy E K, Blanding J H, Bassham J A. Biosynthesis of unusual acyclic isoprenoids in the Alga Botryococcus braunii. Phytochemistry,1985, Vol.24:733-737
    [66]Cepak V, Lukavsky J. The effect of high irradiances on growth, biosynthetic activities and the ultrastructure of the green alga Botryococcus braunii strain Droop 1950/807-1. Archiv fur Hydrobiologie, Supplement-Band,1994, Vol.101:1-17
    [67]Oh H-M, Kim S, Park E-R, Lee S-T, Kwon J-S, Yoon B-D. Effects of Light Intensity and Nutrients on the Growth of Botryococcus sp. UTEX 572. Misaengmul Hakhoechi,1997, Vol.25:339-343
    [68]Zhang K, Kojima E. Effect of light intensity on colony size of microalga Botryococcus braunii in bubble column photobioreactors. Journal of Fermentation and Bioengineering, 1998,Vol.86:573-576
    [69]Kalacheva G S, Zhila N O, Volova T G, Gladyshev M I. The effect of temperature on the lipid composition of the green alga Botryococcus. Microbiology,2002, Vol.71:286-293
    [70]王修垣,谢树华.几种因子对丛粒藻株A的效应.微生物学通报,1996,Vol.23:275-277
    [71]陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社,1999,38-48
    [72]Chu S P. The influence of the mineral composition of the medium on the growth of planktonic algae:part Ⅰ. Methods and culture media. Journal of Ecology,1942, Vol.30: 284-325
    [73]Kantz T, Bold H C. Morphological and taxonomic investigation of Nostoc and Anabaena in Culture. Physiological Studies Ⅸ, University of Texas Publication No.6924. Austin: University of Texas Press,1969:67
    [74]Richmond A. CRC handbook of microalgal mass culture. Florida:CRC Press,1986:127
    [75]Beakes G W, Canter H M, Jaworski G H M. Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Canadian Journal of Botany,1988, Vol.66:1054-1067
    [76]Senousy H H, Beakes G W, Hack E. Phylogenetic placement of Botryococcus braunii(Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629(Chlorophyceae). Journal of Phycology,2004, Vol.40:412-423
    [77]Volova T G, Kalacheva G S, Zhilo N O, Plotnikov V F. Physiological and biochemical properties of the algae Botryococcus braunii. Russian Journal of Plant Physiology,1998, Vol.45:775-779
    [78]Volova T G, Kalacheva G S, Zhila N O. Specificity of lipid composition in two Botryococcus strains, the producers of liquid hydrocarbons. Russian Journal of Plant Physiology,2003, Vol.50:627-633
    [79]Yang S L, Wang J, Cong W, Cai Z L, Ouyang F. Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnology Letters,2004, Vol.26:239-243
    [80]Dayananda C, Sarada R, Bhattacharya S, Ravishankar G A. Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochemistry,2005, Vol.40:3125-3131
    [81]Bongers L H J. Aspect of nitrogen assimilation by cultures of green algae(Chlorella vulgaris, strain A and Scenedesmus). Mededelingen Landbouwhogeschool Wageningen,1956, Vol.56: 1-52
    [82]华汝成.单细胞藻类的培养与利用.北京:农业出版社,1980,71-91
    [83]王军,杨素玲,丛威,蔡昭铃.营养条件对产烃葡萄藻生长的影响.过程工程学报,2003,Vol.3:141-145
    [84]许常虹,余敏娟.成油藻——布朗葡萄藻的研究.水生生物学报,1988,Vol.12:90-93
    [85]Jones J G. Studies on freshwater bacteria:association with algae and alkaline phosphatase activity. Journal of Ecology,1972, Vol.60:59-75
    [86]Lynch J M. Hydrocarbons. In:Laskin A L, Lechevalier H A. CRC Handbook of Microbiology, Microbial Products 2nd Ed. Florida:CRC Press,1984, Vol.5:39-45
    [87]毕列爵,胡征宇.中国淡水藻志第八卷绿藻门绿球藻目(上),北京:科学出版社,2004,111-115
    [88]Pribyl P, Cepak V. Evidence for sexual reproduction and zoospore formation in Botryosphaerella sudetica UTEX 2629, previously assigned to the genus Botryococcus(Chlorophyceae, Chlorophyta). Nova Hedwigia,2007, Vol.85:63-71
    [89]胡鸿钧,魏印心.中国淡水藻类——系统、分类及生态.北京:科学出版社,2006:62-68
    [90]Belcher J H, Fogg G E. Biochemical evidence of the affinities of Botryococcus. New Phytologist,1953, Vol.54:81-83
    [91]张菊平,张兴志.植物游离细胞的扫描电镜样品的制备法.生物学通报,2008,Vol.43:56
    [92]Komarek J, Marvan P. Morphological differences in natural populations of the genus Botryococcus(Chlorophyceae). Archiv fur Protistenkunde,1992, Vol.141:65-100
    [93]Plain N, Largeau C, Derenne S, Coute A. Morphological variability of Botryococcus braunii(Chlorococcales, Chlorophyta):correlations with growth conditions and lipid content. Phycologia,1993, Vol.32:259-265
    [94]Templier J, Largeau C, Casadevall E. Biosynthesis of n-alkatrienes in Botryococcus braunii. Phytochemistry,1991, Vol.30:2209-2215
    [95]Hipkins M F, Baker N R. Photosynthesis-energy transduction:a practical approach. Oxford: IRL Press at Oxford University Press,1986,63-64
    [96]Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology,1959, Vol.37:911-917
    [97]Chen F, Johns M R. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology,1991, Vol.3:203-209
    [98]王军.葡萄藻357生长特性和培养方式的研究.2003:1-79
    [99]胡章喜,徐宁,李爱芬,段舜山.布朗葡萄藻在不同培养基中的生长效应.生态科学,2007,Vol.26:332-336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700