炭疽芽孢杆菌MLVA分子分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭疽病是由炭疽芽孢杆菌(Bacillus anthracis)引起的人兽共患传染病,曾多次被恐怖分子用来发动生物恐怖袭击。随着国际上生物战剂的研究发展和恐怖组织的活动频繁,炭疽越来越对人畜构成了威胁,因此建立快速、经济的分子分型方法,对预防和控制炭疽芽孢杆菌的大面积爆发和流行来说显得非常必要。
     本研究对我国的炭疽芽孢杆菌进行了可变数目串联重复序列分析(Multiple Locus Variable- Number Tandem Repeats Analysis, MLVA)分析,初步探讨了可变数目串联重复(Variable Number Tandem Repeat, VNTR)位点在炭疽芽孢杆菌中的多态性,以及中国地区的主要流行菌株之间的遗传关系。
     本文使用经典的苯酚氯仿方法,对全国各炭疽自然疫源地分离到的198株炭疽芽孢杆菌的基因组DNA进行了提取。利用Tandem Repeats Finder软件进行生物信息学分析后,最终选取了18个VNTR多态性位点。针对不同的VNTR多态性位点两端的基因组序列,设计了特异性荧光标记引物,PCR扩增后通过毛细管电泳检测。通过Genemarker软件确定PCR扩增片段长度,计算每个菌株不同串联重复位点拷贝数。采用Bionumerics软件分析,选用非加权组平均法(UPGMA)对炭疽芽孢杆菌进行聚类分析,研究炭疽芽孢杆菌菌株之间的遗传差异。
     结果表明:使用18个串联重复位点进行UPGMA聚类分型,可鉴定出96个基因型。按遗传学距离归纳为2个集群A和B,共分为4个组Al,A2,B 1,B2。A1组可划分为两个亚组A1.a,Ai.b,B1组可划分为两个亚组B1.a,B1.b。B2组也可划分为两个亚组B2.a,B2.b。炭疽芽孢杆菌分布主要集中在A1.b亚群以及B1组和B2组中。A1.b亚群主要分布的基因型为4、18和31,Bl组主要分布的基因型为57、59、68、77和78,B2组主要分布的基因型为84和92。VNTR多态性位点多态性信息含量分析结果显示,Bams1、Bams34、A031、Bams3、VrrC1、Bams30、VrrC2、Bams31八个VNTR多态性位点具有较高的多态性,确定了一个新的VNTR多态性位点A031。选用这八个多态信息含量最高位点进行组合后对炭疽芽孢杆菌进行UPGMA聚类分析,可鉴定出66个基因型。
     本论文的初步研究结果将对推动我国炭疽芽孢杆菌的分子分型,保障我国在生物防控领域的监控水平,起到积极的推动作用。
Anthrax is a zoonotic disease caused by Bacillus anthracis, which has been used as biological weapon by terrorists to launch bio-terrorist attacks. With the development of biological weapon and the activities of international terrorist organizations, anthrax is a new developing threat to humans and animals. Therefore it is necessary to establish a rapid, effective and economical method to prevent and control outbreak of B. anthracis diseases. In this research, we analyzed the B. anthracis isolated from China by Multiple Locus Variable- Number Tandem Repeats Analysis (MLVA) in order to reveal the polymorphism of different Variable Number Tandem Repeat (VNTR) locus and the genetic relationship among major epidemic strains in China.
     The classic phenol chloroform extraction method was used to obtain the genome of 198 strains of B. anthracis isolated in China.18 VNTR loci were selected after biological information analysis by tandem repeats finder software. Specific fluorescent labeled primers were selected according to the information of 18 VNTR loci. The PCR products were detected by electrophoresis. The length of PCR product of all strains was analyzed by Genemarker software, and thereafter the copies of all strains were calculated. UPGMA cluster analysis method was analyzed to obtain the genetic differences among B. anthracis with the aid of bionumerics analysis software.
     The results showed that all B. anthracis strains were classified into 96 genotypes by UPGMA cluster analysis with 18 VNTR loci. All strains were grouped into clusters A and B, and further into group Al, A2, B1 and B2. Al group strains was divided into two subgroups A1.a and A1.b, and B1 group into two subgroups B1.a and B1.b., and B2 group into B2.a and B2.b. The main genotypes of 198 strains were mainly distributed in A1.b, B1 and B2. Al.b subgroups were mainly distributed in the sequence type 4、18 and 31, B1 group was mainly distributed in genotype 57,59,68, 77 and 78, and B2 group was mainly distributed genotype type 84 and 92.
     The analysis results of VNTR polymorphism information content showed that eight VNTR Locus, namely, Bams1, Bams34, A031, Bams3, VrrCl, Bams30, VrrC2 and Bams31 presented high polymorphism, thereof A031 was a novel VNTR site. Combined the eight VNTR locus with highest polymorphic information content for UPGMA cluster analysis, B. anthracis was grouped into 66 genotypes.
     In conclusion, the preliminary results in this thesis will promote the development of genotyping technology of Bacillus anthracis, thus ensure the level of monitoring and prevention of bio-terrorist in China.
引文
1. Jernigan DB, Raghunathan PL, Bell BP, et al. Investigation of bioterrorism-related anthrax, United States,2001:epidemiologic findings[J]. Emerg Infect Dis 2002;8:1019-1028
    2. Little SF, Webster WM, Fisher DE. Monoclonal antibodies directed against protective antigen of Bacillus anthracis enhance lethal toxin activity in vivo[J]. FEMS Immunol Med Microbiol 2011;62:11-22
    3. Gill SC, Rubino CM, Bassett J, et al. Pharmacokinetic-pharmacodynamic assessment of faropenem in a lethal murine Bacillus anthracis inhalation postexposure prophylaxis model[J]. Antimicrob Agents Chemother 2010;54:1678-1683
    4. Swartz MN. Recognition and management of anthrax--an update[J]. N Engl J Med 2001;345:1621-1626
    5. Cui X, Su J, Li Y, et al. Bacillus anthracis cell wall produces injurious inflammation but paradoxically decreases the lethality of anthrax lethal toxin in a rat model [J]. Intensive Care Med 2010:36:148-156
    6. Bolhuis A, Tjalsma H, Stephenson K, et al. Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants[J]. J Biol Chem 1999;274:15865-15868
    7. Walsh JJ, Pesik N, Quinn CP, et al. A case of naturally acquired inhalation anthrax:clinical care and analyses of anti-protective antigen immunoglobulin G and lethal factor[J]. Clin Infect Dis 2007;44:968-971
    8. Fouet A, Mock M. Regulatory networks for virulence and persistence of Bacillus anthracis[J]. Curr Opin Microbiol 2006;9:160-166
    9. Sleytr UB. Regular arrays of macromolecules on bacterial cell walls:structure, chemistry, assembly, and function[J]. Int Rev Cytol 1978;53:1-62
    10. Smith H. Discovery of the anthrax toxin:the beginning of in vivo studies on pathogenic bacteria[J]. Trends Microbiol 2000;8:199-200
    11. Brossier F, Mock M. Toxins of Bacillus anthracis[J]. Toxicon 2001;39:1747-1755
    12. Bradley K.A, Mogridge J, Mourez M, Collier RJ, Young JA. Identification of the cellular receptor for anthrax toxin[J]. Nature 2001;414:225-229
    13. Pittman PR, Leitman SF, Oro JG, et al. Protective antigen and toxin neutralization antibody patterns in anthrax vaccinees undergoing serial plasmapheresis[J]. Clin Diagn Lab Immunol 2005:12:713-721
    14. Park S, Leppla SH. Optimized production and purification of Bacillus anthracis lethal factor[J]. Protein Expr Purif 2000; 18:293-302
    15. Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis[J]. J Bacteriol 1989; 171:722-730
    16. Uchida I, Makino S, Sekizaki T, Terakado N. Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis[J]. Mol Microbiol 1997;23:1229-1240
    17. Muscillo M, La Rosa G, Sali M, et al. Validation of a pXO2-A PCR assay to explore diversity among Italian isolates of Bacillus anthracis strains closely related to the live, attenuated Carbosap vaccine[J]. J Clin Microbiol 2005;43:4758-4765
    18. Drum CL, Yan SZ, Bard J, et al. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin[J]. Nature 2002;415:396-402
    19. Marston CK, Hoffmaster AR, Wilson KE, et al. Effects of long-term storage on plasmid stability in Bacillus anthracis[J]. Appl Environ Microbiol 2005;71:7778-7780
    20. Mock M, Mignot T. Anthrax toxins and the host:a story of intimacy[J]. Cell Microbiol 2003;5:15-23
    21. Holty JE, Kim RY, Bravata DM. Anthrax:a systematic review of atypical presentations[J]. Ann Emerg Med 2006;48:200-211
    22. Blackburn JK, McNyset KM, Curtis A, Hugh-Jones ME. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling[J]. Am J Trop Med Hyg 2007;77:1103-1110
    23. Mongoh MN, Dyer NW, Stoltenow CL, Khaitsa ML. Risk factors associated with anthrax outbreak in animals in North Dakota,2005:a retrospective case-control study[J]. Public Health Rep 2008;123:352-359
    24. Jernigan JA, Stephens DS, Ashford DA, et al. Bioterrorism-related inhalational anthrax:the first 10 cases reported in the United States[J]. Emerg Infect Dis 2001;7:933-944
    25. Inglesby TV, O'Toole T, Henderson DA, et al. Anthrax as a biological weapon,2002:updated recommendations for management[J]. JAMA 2002;287:2236-2252
    26. Dierick K, Van Coillie E, Swiecicka I, et al. Fatal family outbreak of Bacillus cereus-associated food poisoning[J]. J Clin Microbiol 2005;43:4277-4279
    27. Carter T. Human and animal health:strengthening the link:politics and economics inhibited control of anthrax last century[J]. BMJ 2005;331:1407-1408; discussion 1408
    28. Yang J, Woo SS, Ryu YH, et al. Bacillus anthracis lethal toxin attenuates lipoteichoic acid-induced maturation and activation of dendritic cells through a unique mechanism[J]. Mol Immunol 2009;46:3261-3268
    29. Wu W, Mehta H, Chakrabarty K, et al. Resistance of human alveolar macrophages to Bacillus anthracis lethal toxin[J]. J Immunol 2009; 183:5799-5806
    30. Rosenfeld R, Marcus H, Ben-Arie E, et al. Isolation and chimerization of a highly neutralizing antibody conferring passive protection against lethal Bacillus anthracis infection[J]. PLoS One 2009;4:e6351
    31. Harrell LJ, Andersen GL, Wilson KH. Genetic variability of Bacillus anthracis and related species[J]. J Clin Microbiol 1995;33:1847-1850
    32. Zhong W, Shou Y, Yoshida TM, Marrone BL. Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis[J]. Appl Environ Microbiol 2007;73:3446-3449
    33. Shangkuan YH, Yang JF, Lin HC, Shaio MF. Comparison of PCR-RFLP, ribotyping and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains[J]. J Appl Microbiol 2000;89:452-462
    34. Jensen GB, Fisker N, Sparso T, Andrup L. The possibility of discriminating within the Bacillus cereus group using gyrB sequencing and PCR-RFLP[J]. Int J Food Microbiol 2005; 104:113-120
    35. Szymajda U, Bartoszcze M. Application of the multiplex PCR and PCR-RFLP method in the identification of the Bacillus anthracis[J]. Med Dosw Mikrobiol 2005;57:277-285
    36. Daffonchio D, Borin S, Frova G, et al. A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis[J]. Appl Environ Microbiol 1999;65:1298-1303
    37. Shangkuan YH, Chang YH, Yang JF, Lin HC, Shaio MF. Molecular characterization of Bacillus anthracis using multiplex PCR, ERIC-PCR and RAPD[J]. Lett Appl Microbiol 2001;32:139-145
    38. Helgason E, Okstad OA, Caugant DA, et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence[J]. Appl Environ Microbiol 2000;66:2627-2630
    39. Kim K, Cheon E, Wheeler KE, et al. Determination of the most closely related bacillus isolates to Bacillus anthracis by multilocus sequence typing[J]. Yale J Biol Med 2005;78:1-14
    40. Keim P, Kalif A, Schupp J, et al. Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers[J]. J Bacteriol 1997; 179:818-824
    41. Jackson PJ, Hill KK, Laker MT, Ticknor LO, Keim P. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis[J]. J Appl Microbiol 1999;87:263-269
    42. Hill KK, Ticknor LO, Okinaka RT, et al. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates[J]. Appl Environ Microbiol 2004;70:1068-1080
    43. Ryu C, Lee K, Hawng HJ, et al. Molecular characterization of Korean Bacillus anthracis isolates by amplified fragment length polymorphism analysis and multilocus variable-number tandem repeat analysis[J]. Appl Environ Microbiol 2005;71:4664-4671
    44. Henderson I, Yu D, Turnbull PC. Differentiation of Bacillus anthracis and other'Bacillus cereus group'bacteria using IS231-derived sequences[J]. FEMS Microbiol Lett 1995;128:113-118
    45. Andersen GL, Simchock JM, Wilson KH. Identification of a region of genetic variability among Bacillus anthracis strains and related species[J]. J Bacteriol 1996; 178:377-384
    46. Jackson PJ, Walthers EA, Kalif AS, et al. Characterization of the variable-number tandem repeats in VrrA from different Bacillus anthracis isolates[J]. Appl Environ Microbiol 1997;63:1400-1405
    47. Keim P, Price LB, Klevytska AM, et al. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis[J]. J Bacteriol 2000; 182:2928-2936
    48. Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States[J]. Emerg Infect Dis 2002;8:1111-1116
    49. 王秉翔,SmithKL, C K, et al.中国的炭疽芽孢杆菌DNA分型及其地理分布[J].微生物学免疫学进展2002:14-17
    50. Fouet A, Smith KL, Keys C, et al. Diversity among French Bacillus anthracis isolates[J]. J Clin Microbiol 2002;40:4732-4734
    51. Fasanella A, Van Ert M, Altamura SA, et al. Molecular diversity of Bacillus anthracis in Italy[J]. J Clin Microbiol 2005;43:3398-3401
    52. Le Fleche P, Hauck Y, Onteniente L, et al. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis[J]. BMC Microbiol 2001;1:2
    53. 田国忠,海荣,俞东征,et al.利用串联重复序列研究炭疽芽孢杆菌的基因分型[J].中华流行病学杂志2006:712-715
    54. Lista F, Faggioni Q Valjevac S, et al. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable-number tandem repeats analysis[J]. BMC Microbiol 2006;6:33
    55. Ciammaruconi A, Grassi S, De Santis R, et al. Fieldable genotyping of Bacillus anthracis and Yersinia pestis based on 25-loci Multi Locus VNTR Analysis[J]. BMC Microbiol 2008;8:21
    56. Garofolo G, Ciammaruconi A, Fasanella A, et al. SNR analysis:molecular investigation of an anthrax epidemic[J]. BMC Vet Res 2010;6:11
    57. Pearson T, Busch JD, Ravel J, et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing[J]. Proc Natl Acad Sci U S A 2004;101:13536-13541
    58. Van Ert MN, Easterday WR, Huynh LY, et al. Global genetic population structure of Bacillus anthracis[J]. PLoS One 2007;2:e461
    59. Kenefic LJ, Pearson T, Okinaka RT, et al. Texas isolates closely related to Bacillus anthracis Ames[J]. Emerg Infect Dis 2008; 14:1494-1496
    60. Simonson TS, Okinaka RT, Wang B, et al. Bacillus anthracis in China and its relationship to worldwide lineages[J]. BMC Microbiol 2009;9:71
    61. Kenefic LJ, Pearson T, Okinaka RT, et al. Pre-Columbian origins for North American anthrax[J]. PLoS One 2009;4:e4813
    62. Okutani A, Sekizuka T, Boldbaatar B, et al. Phylogenetic typing of Bacillus anthracis isolated in Japan by multiple locus variable-number tandem repeats and the comprehensive single nucleotide polymorphism [J]. J Vet Med Sci 2010;72:93-97
    63. Kuroda M, Serizawa M, Okutani A, et al. Genome-wide single nucleotide polymorphism typing method for identification of Bacillus anthracis species and strains among B. cereus group species[J]. J Clin Microbiol 2010;48:2821-2829
    64. Benson G. Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Res 1999;27:573-580
    65. Denoeud F, Vergnaud G. Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains:a web-based resource. BMC Bioinformatics 2004;5:4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700