中国部分地方黄牛品种遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中国部分地方黄牛皖南牛、吉安黄牛、威宁黄牛、务川黑牛、隆林黄牛、涠洲黄牛、秦川牛、迪庆黄牛、三江牛、徐闻牛和三个引进品种西门塔尔牛、夏洛来牛、德国黄牛为研究对象,采用联合国粮农组织(FAO)和国际动物遗传学会(ISAG)联合推荐的15对微卫星DNA引物,以ABI3100-Avant全自动基因序列分析仪为平台,结合荧光-多重PCR技术,检测了10个中国地方黄牛和3个引进品种,共计756个个体的基因型,并对标记后扩增产物进行序列分析。通过计算等位基因数和频率、特有等位基因数、杂合度、多态信息含量、有效等位基因数、Nei氏遗传距离(DA)和Nei氏标准遗传距离(DS),采用非加权组平均法等方法,分析了中国地方黄牛群体内和群体间的遗传变异。结果如下:
     1、在15个微卫星座位上共检测到了242个等位基因,每个座位平均等位基因是16.1个,ILSTS034座位的等位基因最多,达到26个,ILSTS054和BM1824座位的等位基因最少,为10个,其余座位等位基因在11~22之间。13个黄牛品种中,平均等位基因数在7~11个,三江牛和西门塔尔牛、德国黄牛的平均等位基因数最少,威宁黄牛、务川黑牛和隆林黄牛的平均等位基因数最多。13个黄牛品种的遗传多样性丰富,遗传变异较大。
     2、在13个黄牛品种中,共发现32个特有等位基因,除务川黑牛、隆林黄牛和德国黄牛没有特有等位基因,其他黄牛都至少在某一微卫星座位上有一特有等位基因,其中秦川牛和迪庆黄牛的特有等位基因数最多,达到5个。在15个微卫星座位中,ILSTS054和SPS115两个座位没有发现特有等位基因,TGLA122的特有等位基因数最多,为6个。13个中外黄牛品种在15个微卫星座位中的特有等位基因频率都比较低,只有夏洛来牛在ETH185座位上的243bp等位基因频率(0.052)和德国黄牛在TGLA122座位上的180bp等位基因频率(0.112)大于0.05。13个中外黄牛品种在15个微卫星座位中一共发现19个优势等位基因,等位基因频率都大于0.50。
     3、13个黄牛品种在15个微卫星座位上,多态信息含量(PIC)、群体杂合度和有效等位基因数,分别为0.3232~0.8973,0.3340~0.9043和1.5016~10.4534。务川黑牛在ILSTS034座位上最高,西门塔尔牛在INRA032座位上最低。ILSTS034座位的平均多态信息含量和平均杂合度都最高,达到0.8250和0.8381,HEL13座位的最低,分别为0.6052和0.6479 ;迪庆黄牛的这三项指标最高,分别为0.7744,0.8003和5.3573,德国黄牛的最低,分别为0.6203,0.6651和3.3308。13个黄牛品种遗传变异较大,迪庆黄牛的遗传变异最大,德国黄牛最小。本研究所选用的15个微卫星座位,属于高度多态性座位,可以用于黄牛的遗传多样性的分析研究。
     4、10个地方黄牛品种与3个引进品种之间有很大差异,两者之间的遗传距离较大。10个地方黄牛品种中,皖南牛、吉安黄牛、隆林黄牛、涠洲黄牛和徐闻牛之间的遗传距离都很小(DA为0.0646~0.1286,DS为0.0356~0.0987);而三江牛与其它地方黄牛品种间的遗传距离较大,为0.1373~0.2647(DA)和0.1628~0.3466(DS)。在3个引进品种之间的遗传距离较小。
     5、13个黄牛品种聚为三大类,第一类为皖南牛、吉安黄牛、隆林黄牛、涠洲黄牛和徐闻牛;第二大类为威宁黄牛、务川黑牛、迪庆黄牛、秦川牛和三江牛;第三大类为西门塔尔牛、夏洛来牛和德国黄牛三个外来品种。
The genetic diversity of thirteen cattle breeds, including ten native breeds in China and three introduced breeds from Europe, were studied by using 15 microsatellite DNA markers which were recommended by FAO and ISAG. .A total of 756 genotypes were detected and amplified products were analyzed based on ABI3100-Avant auto gene sequenator and fluorescence multiplex PCR. By calculating the alleles frequency, peculiar allele, heterozygosity(H), polymorphism information content (PIC), effective number of alleles(Ne), Nei’s genetic distance(DA) and Nei’s standard genetic distance(DS) among cattle breeds and constructing dendrogram as well as UPGMA method to analyze the genetic variability and genetic relationship between yellow cattle breeds. The results were as follows:
     1. A total of 242 alleles were detected from fifteen microsatellite loci, and the average number was 16.1. The most allele number was 26 for ILSTS034, the least was 10 for ILSTS054 and BM1824, and other loci were from 11 to 22 in fifteen microsatellite loci. In thirteen cattle breeds, the mean allele number was from 7 to 11, the most was Weining, Wuchuan Black and Longlin, and the least was Sanjiang, Simmental and Germany Yellow. The genetic diversity of thirteen cattle breeds was plentiful and the genetic variation was relatively great.
     2. A total of 32 peculiar alleles were found in thirteen cattle breeds, and other cattle breeds had a peculiar allele at least in one microsatellite loci except Wuchuan Black, Longlin and Germany Yellow, and the most was 5 for Qinchuan and Diqing. There were no peculiar allele in ILSTS054 and SPS115, and the most was 6 in TGLA122 at fifteen microsatellite loci. The frequency of peculiar allele was lower at fifteen microsatellite loci in thirteen cattle breeds, no other breeds but alleles frequency of ETH185 in the 243bp (0.052) for Simmental and TGLA122 in the 180bp (0.112) for Gemany Yellow were bigger than 0.05. There were 19 superior alleles at fifteen microsatellite loci in thirteen cattle breeds and the allele frequency were all larger than 0.50.
     3. At fifteen loci the PIC was from 0.3232 to 0.8973 and the heterozygosity was from 0.3340 to 0.9043 and the Ne was from 1.5016 to 10.4534 in thirteen cattle breeds. Three indexes were maximum at ILSTS034 for Wuchuan Black and minimum at INRA032 for Simmental. The mean PIC and heterozygosity of ILSTS034 locus were the highest as 0.8250 and 0.8381; however that of HEL13 locus were the lowest as 0.6052 and 0.6479. Three indexes that were the mean PIC and heterozygosity and Ne were the highest for Diqing as 0.7744, 0.8003 and 5.3573; that were the lowest for Germany Yellow as 0.6203, 0.6651 and 3.3308. The genetic variation for thirteen cattle breeds was remarkably, and it for Diqing was maximum and Germany Yellow was minimum. The fifteen microsatellite loci that were used in the disquisition were highly polymorphic and are applied to analyze the genetic diversity for cattle breeds.
     4. The genetic distance of the ten native cattle breeds was larger than three introduced breeds. The genetic distance among Wannan, Ji’an, Longlin, Weizhou and Xuwen was samll, and DA ranging from 0.0646 to 0.1286 and DS from 0.0356 to 0.0987. The genetic distance between Sanjian and other native cattle breeds was large, and DA was from 0.1373 to 0.2647 and DS from 0.1628 to 0.3466. The genetic distance was smallest among three introduced breeds.
     5. Thirteen cattle breeds were clustered into three groups based on the UPGMA tree. The first group included Wannan, Ji’an, Longlin and Weizhou breeds; the second group included Weining, Wuchuan Black, Diqing, Qinchuan and Sanjiang breeds; Simmental and Charolais and Germany yellow breeds was belong to the third group.
引文
[1] 陈幼春,马月辉,王端云. 家养动物多样性研究要素和成就[J]. 生物多样性, 2003, 11(5): 407-413.
    [2] 刘旭. 中国生物种质资源科学报告[M], 科学出版社, 2003.
    [3] 李鹰. 中国畜禽育种,敢问路在何方[J]. 畜禽业, 2005, 5: 2-5.
    [4] 马月辉,时建忠. 中国畜禽遗传资源保护刻不容缓[J]. 中外科技信息, 2003, 9: 13-16.
    [5] Ma Yue hui,Xu Gui fang,Wang Duan yun,et.al. Study on Dynamic Information of Animal Genetic Resources in China[J].Agricultural Sciences in China, 2003, 2(1): 80-84.
    [6] Michael W.Bruford, Daniel G. Bradley and Gordon Luikart. DNA markers reveal the complexity of livestock domestication[J]. Nature Reviews Genetics, 2003, 4: 900-910.
    [7] 王朝锋. 中国 8 个黄牛品种线粒体 DNA 遗传多样性研究[D]. 西北农林科技大学硕士论文, 2005.
    [8] 于汝梁. 黄牛起源和分类的研究现状及有待解决的问题[J]. 生物学通报, 2000,35(9):38-40.
    [9] 陈幼春,曹红鹤. 中国黄牛品种多样性及其保护[J]. 生物多样性, 2001, 9(3): 275-283.
    [10] 田允波,葛长荣,杨亮宇. 云南黄牛的起源与分类地位[J]. 黄牛杂志,1998, 24(2)
    [11] 陈幼春,王毓英. 中国黄牛生态种特征及其利用方向[M]. 北京: 中国农业出版社, 1990.
    [12] 邱怀. 中国牛品种志[M]. 上海: 上海科技出版社, 1988.
    [13] 常洪, 耿社民, 武彬, 等. 中国黄牛源流考之一[M]. 北京: 中国农业出版社, 1990.
    [14] 耿社民, 常洪. 中国黄牛毛色的演变及其遗传[J]. 黄牛杂志, 1996, 21(1): 4-7.
    [15] 陈幼春,常 洪. 编制中国牛种体型外貌调查提纲的探讨[J]. 中国黄牛, 1987, 3: 75-77.
    [16] 陈幼春,曹红鹤. 中国黄牛品种多样性及其保护[J]. 生物多样性, 2001, 9(3): 275-283.
    [17] 曾养志. 云南瘤牛起源与分类地位[J]. 畜牧兽医学报, 1984, 4: 217-222.
    [18] 杨关福, 吴显华, 丘 陵, 等. 中国黄牛品种特征及其培育方向[M]. 北京: 中国农业出版社, 1990, 136-139.
    [19] Schaal B.A. Comparison of methods for assessing genetic variation in plant conservation biology[J]. Genetics and conservation of rare paints New York: Oxford University Press, 1991, 123-134.
    [20] Prince S. C. Estimates of population differentiation obtained from enzyme polymorphisms and quantitative characters[J]. Journal of Heredity, 1984, 75: 141-142.
    [21] 根井正利著, 王家玉译. 分子群体遗传学与进化论[M]. 北京: 农业出版社, 1983.
    [22] Falconer D.S., Trudy F. C. Mackay .Introduction to quantitative genetics[C]. Forth editon, Longman Group Ltd, 1996.
    [23] 洪德元. 植物细胞分类学[M]. 北京: 科学出版社, 1990.
    [24] 张细权. 用微卫星多态性和 RAPD 分析广东地方鸡种的群体遗传变异[J]. 遗传学报, 1998, 25(2): 112-129.
    [25] 邱芳. 遗传多样性的分子检测[J]. 生物多样性, 1998, 6(2 ): 143-150.
    [26] Ellegren H.. DNA fingerprinting in horses using a simple (TG)n probe and its application to population comparisons[J]. Animal Genetics, 1992, 23: 1-9.
    [27] Moore S, Sargoant L. L king T J., et al. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in cosely related species[J]. Genomics, 1991, 10: 654-670.
    [28] Winter Ф.A.K., Fredholm. Variable (dG-dT)n (dA-dC)n sequences in the porcine genome[J]. Genomics, 1992, 12: 281-288.
    [29] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nuleic Acids Res, 1989, 17(6): 6463-6467.
    [30] Shriver M. D.. VNIT allele frequency distributions under the stepwise mutation model: a computer simulation approach[J]. Genetics, 1993, 24: 345-348.
    [31] Valdes A.M.. Allele frequencies at microsatellite loci: stepwise mutation model revisited[J]. Genetics, 1993, 133: 737-749.
    [32] Sunden S.L., Fstone R.T., Bishop.M.D.,et al. A highly polymorphic bovine microsatellite locus BM2113[J]. Anim.Genet, 1993, 24: 69-73.
    [33] Yang L.. Detection of five Bovine microsatellites polymorphism in four goat breeds[J]. Animal Biotechnology bulletin, 1998, 6 (1): 102-102.
    [34] Degortari M. J.. Extensine genomic conservation of cattle microsatellite heterozygosity in sheep[J]. Animal Genetics, 1997, 28 : 274-290.
    [35] 黄海根. 牛的高变异小卫星和微卫星序列的克隆、结果分析及应用[D]. 北京: 北京农业大学博士学位论文, 1995.
    [36] Olson M, Hood L., Cantor C., et al.. Comparative evaluation of within-cultival variation of rice[J]. Genome, 1997, 40:370-378.
    [37] Beckmann, J.S., Soller M. Toward a Unified approach to genetic mapping of evkaryotes based on sequence tagged microsatellite sites[J]. Genome, 1990, 8: 930-932.
    [38] Tachida Hand lizuka M. Persistence of repeated sequences that evolve by replication slippage[J]. Genetics, 1992, 131:471-478.
    [39] Ma R.Z, Russ I, Park C., et al. Isolation and characterization of 45 polymorphic microsattl-ites from the bovine genome[J].Animal Genetics, 1996, 27: 43-47.
    [40] Hearne.C.M., Ghosh S., Todd, J.A.. Microsatellite for linkage analysis of genetic traits TIG[J]. Animal Genetics, 1992, 8(8): 288-294.
    [41] Epplen J.T., Maueler W., Santos EJ. On GATAGATA and other “junk” in the barren stretch of genomic desert[J]. Cytogenet Cell Genet, 1996, 80(4): 75-82.
    [42] Alis. DNA fingerprinting by oligonucletide probes specific for simple repeats[J]. Human Genetics, 1986, 74: 239-243.
    [43]孟安明.畜禽的DNA多态性及其应用[C].第四次全国畜禽遗传标记研讨会论文集,1993,101-104.
    [44] Gatei M.. DNA fingerprints of sheep using an Ml3 probe[J]. Animal Genetics, 1991, 22: 285-290.
    [45] Ellegren H.. DNA fingerprinting in horses using a simple (TG)n probe and its application to population comparisons[J]. Animal Genetics, 1992, 23: 1-9.
    [46] Schlotterer C.. Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster[J]. Genetics, 1997, 146(1): 309-320.
    [47] Bishop M .D.. A genetic linkage map for cattle[J]. Genetics, 1994, 13(6): 619-639.
    [48] Georges M.. DNA fingerprinting in domestic animals using four different minisatellite probes[J]. Cytogenetic Cell Genetic, 1995, 47: 127-131.
    [49] Ma R.Z .. Isolation and characterization of 45 polymorphic Microsatellites from the bovine genome[J]. Animal Genetics, 1996, 27: 43-47.
    [50] 吴登俊, 马丁·费尔斯特. 牛基因组研究进展[J]. 草食家畜, 1999, 6 (2): 2~5.
    [51] Barker J.S.F.. A global protocol for determining genetic distance among domestic livestock breeds[J], Proc 5th WCGALP, 1994, 21: 501-508.
    [52] Arranz J.J.. Comparison of protein markers and microsatellite in differentiation of cattle population[J]. Animal Genetics, 1996, 27: 415-419.
    [53] Barker J.S.F. Moore S. S, Hetzel D. J S.,et al. Genetic diversity of asian water buffalo(Bubalus bubalis):microsatellite variety on and a comparison with protein coding loci[J]. Anim.Genet, 1997, 28: 103-115.
    [54] Mac-Hugh D. E., Lofors R. T., Bradley D. G., et al. Microsatellite DNA variation with and among European Cattle breeds[J]. Proc. R Soc.Lond β, 1994, 25(6): 25-31.
    [55] 曹红鹤, 王雅春, 陈幼春. 五种微卫星 DNA 标记在肉牛群体中的研究[J]. 中国农业科学, 1999, 32(1): 69-73.
    [56] 孙少华. 肉牛微卫星 DNA 的群体遗传变异分析及其应用研究[D]. 北京:中国农业大学博士学位论文,1999.
    [57] 吴伟, 王栋. 微卫星 DNA 标记对 5 个中外黄牛品种/群体遗传结构的研究[J]. 吉林农业大学学报, 2000, 22 (4): 5-10.
    [58] 单雪松, 张沅. 奶牛 Weaver 基因连锁微卫星位点多态性分析[J]. 吉林农业大学学报, 2003, 25 (2): 208-210.
    [59] 赵庆明. 微卫星遗传标记与超声波活体测定相结合对肉牛主要产肉性能性状的研究[D]. 山西农业大学硕士学位论文, 2003.
    [60] Arranze, J.J., Bayon,Y., Primitivo, F.S., et al. Comparision of protein markers and microsatellites in differentiation of cattle population[J]. Anim. Genet, 1996, 27: 415-419.
    [61] 刘 榜, 张庆德, 李 奎. 微卫星 DNA 作为遗传标记的优点及前景[J].湖北农业科学, 1997, 2: 49-51.
    [62] 吴登俊. 家畜基因组遗传多态标记[J]. 国外畜牧科技, 1999, 26(1): 33-35, 26(2): 37-40.
    [63] Pemberton, J.M., Coltman, et al. Microsatellite as a marker of fitness in free-living population[J]. Anim. Genet, 1998, 29 (suppl.1): 1.
    [64] Lamont SJ. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers[J]. Anim Genet, 1999, 30: 256-264.
    [65] 杨 勇, 朱 庆, 胡刚安. 利用微卫星标记分析家鸡的群体遗传变异[J]. 四川大学学报, 2000, 32(增刊): 148-152.
    [66] Romanov M N , Weigend S. Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers[J]. Poultry Science, 2001 (80): 1057-1063.
    [67] Van Zeveren A, Peelman L J, van de Weghe A, et al. A genetic study of four Belgian pig population by means of seven microsatellite loci[J]. Journal Animal Breed Genet, 1995, 112(3): 191-204.
    [68] 樊 斌, 李 奎, 彭中镇, 等. 湖北省三品种猪 27 个微卫星座位的遗传变异[J]. 生物多样性, 1999, 7(2): 91-96.
    [69] 牛 荣, 商海涛, 魏泓, 等. 西双版纳小耳猪近交系 5 家系 35 个微卫星座位的遗传分析[J]. 遗传学报, 2001, 28(6): 518-526.
    [70] 卢圣栋. 现代分子生物学实验技术[M]. 北京: 高等教育出版社, 1993.
    [71] Crawford, A.M., Dodds, et al. An autosomal genetic linkage map of the sheep genome[J]. Genetics,1995, 140: 703-724.
    [72] Bostein D, White R.L., Skolnick M.. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. AmJ.Hum.Genet, 1980, 32: 314-331.
    [73] Kimura M.. The number of alleles that can be maintained in a finite population[J]. Genetice, 1964, 49: 725-738.
    [74] Nei M.. Genetic distance between populations[J]. American Naturalist, 1972, 10(6): 283-292.
    [75] Nei M, Tajima F, Tateno Y.. Accuracy of estimated phylogenetic trees from molecular data[J]. Mol Evol. 1983, 19:153-170.
    [76] Takezaki N,Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA[J]. Genetics, 1996, 144: 389-399.
    [77] Kim M.. The number of alleles that can be maintained in a finite population[J]. Genetics, 1988, 49: 725-738.
    [78] Saitou N, Nei M. The neighbor-joining method: A new method for reconstruction phylogenetic trees[J]. Mol. Biol.Evol, 1987,4: 406-425.
    [79] Baker J.S.F. A global protovol for determining genetic distances among domestic livestock breeds[A]. In Proocedings of the 5 World Congress on Ggenetic Applied to Livestock Production, Gulph, Ontario, Canada, 1994, 21: 501-508.
    [80] Montg G W, lord EA, Penty J M, et al. The Booroola fecundity (FecB) gene maps to sheep chromosome 6[J]. Genomics, 1994, 22: 148-153.
    [81] 常洪, No zawa K, 刘小林, 等. 黄河中下游流域固有山羊亲缘系统的研究[J]. 中国农业科学, 2000, 33(3) : 79-87.
    [82] 常国斌, 常洪, 刘向萍, 等. 运用微卫星 DNA 标记分析我国野生鹌鹑遗传多样性[J]. 遗传学报 2005, 32 (8): 795-803.
    [83] 张柳. 我国四个牛亚科畜种 12 个微卫星位点遗传分化研究[D]. 扬州大学硕士学位论文, 2006.
    [84] 张爱兵, 王正军, 谭声江. 分子生态学重要概念-遗传距离及其测度的理论研究概况[J]. 生态学报, 2002, 22 (6): 943-947.
    [85] 李雪梅, 谷中新, 李 奎,等. 应用微卫星标记对中国 10 个品种猪遗传变异的研究[J]. 山东农业大学学报(自然科学分析). 2000, 31(3): 261-264.
    [86] Hedrick P W. Population Biology[M]. Boston: Jones and Bartlett Publishers, 1984.
    [87] 陈幼春. 品种内亚群定点随机抽样法的应用研究[J]. 黄牛杂志, 2001, 27(1), 1-3.
    [88] 陈幼春. 关于分子水平下遗传距离检测的模型和适宜样本数的讨论[A].第五次全国畜禽遗传标记研讨会论文集[C],成都: 1996, 130-132.
    [89] 常洪. 家畜遗传资源学纲要[M]. 中国农业出版社, 1999.
    [90] 张继权, 陈幼春. Nei 氏标准遗传距离的估测[J]. 畜牧兽医学报, 1998, 29(1): 27-32.
    [91] Barker J S F, Moore S S, Hazel D J S, et al. Genetic diversity of Asian water Buffalo (Bubalus bubals) microsatellite variation and a comparison with protein-coding loci[J]. Animal Genetics, 1997, 28 (2): 103-115.
    [92] 陈幼春. 现代肉牛生产[M] . 北京: 中国农业出版社,1999.
    [93] 张继全, 于汝梁. 畜禽品种间遗传距离测定精度影响因素[A]. 第六次全国畜禽遗传标记研讨会论文集[C], 1998, 12-14.
    [94] Barker J S F. A global protocol for determining genetic distances among domestic livestock breeds[A].Proceedings 5th World Congress[C]. Genetics, 1994, 21: 501-508.
    [95] Fiona C, Buchanan, Tracey D, et al. Interbreed polymorphic information content of microsatellites in cattle and sheep[J]. Canadian Journal of Animal Science, 1998, 78:425-428.
    [96] Dietz A B, Womack J E. Assignment of five polymorphic ovine microsatellites to bovine systemic groups[J]. Animal Genetics, 1993, 24: 433-436.
    [97] Arrant J, BayonY, San F. Primitive comparison of protein markers and microsatellites in differentiation of cattle populations[J]. Animal Genetics, 1996, 27:415-419.
    [98] Glowatzki-Muliis M L, Govillard C. Microsatellite-base parentage control in cattle[J]. Animal Genetic, 1995, 26 (1):7-12.
    [99] 孙飞舟. 采用微卫星 DNA 标记评估中国地方猪种遗传多样性[D]. 中国农业大学博士论文. 2002.
    [100] Chambercian J S, Gibbs R.A, Ranier J.E, et al. Detection screening of the duchenne muscular dystrophy locus via mutiplex DNA amplification[J]. Nucl Acids Res, 1988(16):1141-1156.
    [101] Mullisk, Falcoma F., Scharf S, et al. Specific amplification of DNA in vitro: the polymerase chain reaction[J]. Cold Spring Habor Symp Quant Biol, 1986, 51:26-29.
    [102] Ponce M R, Robles P., Micol J. L.,et al. High-throughput genetic mapping in Arabidopsos thaliana[J]. Mol Gen Genet, 1999, 26(1): 408-415.
    [103] Rosenfield S. I,Jaykus L A. A mutiplex reverse transcription polymerase chain reaction method for the detection of foodborne viruses[J]. J. Food Prot, 1999, 6(2): 1210-1214.
    [104] 邹浪萍, 杨燕, 褚嘉衤右, 等. 多重 PCR 检测 CSFIPO,TPOX 和 THOI 基因座在中国汉族中的多态性[J]. 遗传学报, 1998, 25(3): 199-204.
    [105] 胡晓湘. 通过基因组扫描定位鸡重要经济性状基因的初步研究[D]. 北京:中国农业大学博士论文, 2001.
    [106] 况少青. 应用多重 PCR 进行微卫星荧光标记-半自动基因组扫描[J]. 中华医学遗传学杂志, 1998, 15(2): 35-40.
    [107] 黄银花. 影响多重 PCR 扩增效果的因素[J]. 遗传, 2003, 25(1): 65-68.
    [108] 王凤格. 多重 PCR 技术在玉米 SSR 引物扩增中的应用[J]. 玉米科学, 2003, 11(4): 1-6.
    [109] 谢建云, 邵伟娟, 高诚. 多重 PCR 在几个近交系小鼠遗传检测中的应用初探[J]. 中国实验动物学报. 2003,11(2): 40-45.
    [110] 杨国忠, 任文陟, 张嘉保, 等. 草原红牛及其杂种牛群体微卫星DNA 遗传多态性研究[J]. 吉林农业大学学报, 2005, 27(4): 442-445.
    [111] 马月辉, 曹红鹤, 陈幼春, 等. 部分黄牛品种(群体)遗传多样性分析[J]. 中国农业科学, 2003, 36 (6): 696-699.
    [112] 亐开兴, 朱芳贤, 吴桂生, 等. 用 6 个微卫星座位研究 BMY 牛和婆罗门牛的遗传多样性和群体遗传结构[J]. 遗传, 2006, 28(3): 285-290.
    [113] 王敏强, 李萍莉, 陈礼学,等. 用20个微卫星标记研究鲁西黄牛和渤海黑牛的遗传多样性[J]. 河北农业大学学报, 2006, 29(6): 76-81.
    [114] 周国利, 金海国, 曹 阳, 等.北京荷斯坦奶牛中四个微卫星座位的遗传变异[J]. 延边大学农学学报, 2002, 24(2): 110-113.
    [115] Crawford A M, Littlejohn R P. The use of DNA marker in deciding conservation priorities in sheep and other livestock[J]. Animal Genetic Resources Information, 1998, 23:21-26.
    [116] Goldstein D B, Linares A R, Cavalli2SforzaLL Feldman M W. An evaluation of genetic distances foruse with microsatellite loci[J]. Genetics, 1995, 139: 463-471.
    [117] 王惠影, 常洪, 徐伟, 等. 家鹑与野生日本鸣鹑群体微卫星DNA 标记的遗传学分析[J]. 畜牧兽医学报, 2004,35 (4):367-371.
    [118] 朱庆, 李亮. 不同地方乌骨鸡种群遗传多样性的微卫星 DNA 分析[J]. 畜牧兽医学报, 2003, 34 (3): 213-216.
    [119] 陈红菊, 岳永生, 樊新忠, 等. 山东地方鸡种遗传距离与聚类分析方法比较研究[J]. 畜牧兽医学报, 2004, 35(1):33-36.
    [120] 陈红菊,岳永生,樊新忠,等. 利用微卫星标记分析山东地方鸡品种的遗传多样性[J]. 遗传学报, 2003, 30(9):855-860.
    [121] 杨 澜. 利用微卫星标记分析中国地方山羊品种的遗传多样性[J]. 华中农业大学学报, 1999, 20(9):21-27.
    [122] Lei Chu-zhao, Chen Hong, Hu Shen-rong. Studies on Y chromosome polymorphism and the origin and classification of Chinese yellow cattle[J]. Acta Agricultural Boreali-Occidentalis, 2000, 9 (4): 43-47 (in Chinese with English abstract).
    [123] Chen You-chun, Wang Yu-ying, Chang Hong, et al. The classification of Chinese yellow cattle[M]. Beijing: China Agriculture Press, 1990, 89-93. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700