非线性方程的混合有限元研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对不同类型的非线性方程(包括磁流体动力学方程、带有阻尼项的Stokes方程、对流扩散方程、反应-扩散方程及非线性抛物方程等),分别从非协调有限元方法、最小二乘有限元方法、误差常数的精细估计、新的混合变分形式下的二重网格法、变网格法等不同角度出发,对混合有限元方法的构造,收敛性分析、超逼近和超收敛等方而进行深入系统的探讨.
     首先考虑了一类低阶非协调单元(包括四而体元和六而体元),用于逼近一个三维的定常不可压、完全耦合的非线性磁流体动力学方程,在磁场分别属于H1(Ω)3和H(curl;Ω)时,采用非协调混合有限元法来分析文献[14]和[27]中的方程,证明了离散问题解的存在惟一性并给出了相应未知量的最优误差估计.而且采用一种新的方法证明了离散的Poincare-Friedrichs不等式.
     其次用带约束的非协调旋转Q1元和分片常数元来逼近定常的、不可压带有阻尼项的Stokes方程的速度和压力.证明了逼近解的存在惟一性.再利用精确解和逼近解的先验估计,并恰当选择方程中出现的参数α,ν和r,得到了最优误差估计及超逼近结果.最后,通过插值后处理技术,导出了速度的H1-模和压力L2-模的O(h2)阶的整体超收敛.
     再次研究了对流扩散方程的最小二乘非协调有限元格式及其两种修正格式,用矩形EQ1rot元和零阶R-T元分别来逼近位移和应力,借助于单元本身的特殊性质,给出了逼近问题解的存在惟一性,得到了位移H1-模和应力H(div)-模的O(h)阶的误差估计.同时,在直角三角形网格下,采用最小二乘有限元法,用零阶的R-T元和P1元去离散该方程,给出了应力的H(div)-模及位移的H1-模的误差常数的精细估计,并给出了数值算例验证了理论分析的正确性.
     而后构造了一种新的混合变分形式,用最低阶矩形协调混合元去逼近半线性反应扩散方程,利用椭圆投影的特殊性质,得到了新的混合变分全离散形式下的未知量L2-模的误差收敛阶为O(△t+h2)比[136]传统的混合变分形式下的误差提高了一阶.随后,采用二重网格算法,迭代两步得到了网格比H=O(h1/3)及收敛阶O(Δt+h+H3)的结果,这一结果文献[136]需迭代三步才能达到.而本章迭代三步后,得到了网格比是H=O(h2/9),收敛阶为O(Δt+h+H9/2)和[136]相比,达到了迭代同样步数可以增加网格比而减少计算量的目的.
     最后利用非协调EQ1rot元和零阶R-T元,对一类非线性抛物方程构造了一种新的混合变网格格式.根据该单元相容误差在能量模意义下比插值误差高一阶的特殊性质,给出了收敛性分析并得到了最优阶误差估计.本章的结果可推广到协调混合有限元逼近的任意收敛阶情形.
In this thesis, we consider some kinds of nonlinear equations (including magne-tohydrodynamics (MHD) equations、Stokes equations with damped term、convection-diffusion equations、reaction-diffusion equations and nonlinear parabolic equations, etc), study the nonconforming finite element methods, the least-square nonconform-ing finite element methods, sharp estimates of error constants and two-grids and moving grids for new mixed variational forms, etc, from different points of view and give deep and comprehensive investigations on the construction of the mixed finite element methods、convergence analysis、superclose and supercorivergence, etc.
     Firstly, a family of low order nonconforming elements (including tetrahedra el-ements and hexahedra elements) are used to approximate a nonlinear, fully coupled stationary incompressible MHD equation in 3D. When the magnetic field belongs to H1(Ω)3 and H(curl;Ω), the nonconforming mixed finite element methods are ana-lyzed for the MHD equations discussed in [14] and [27], respectively. The existence and uniqueness of the approximate solutions are proved and the optimal error es-timates about the corresponding unknown variables are given. Furthermore, a new approach is adopted to prove the discrete Poincare-Friedrichs inequality.
     Secondly, we apply the constrained nonconforming rotated Q1 element and the piecewise constant element to approximate the velocity and the pressure for the stationary.. impressible Stokes equations with damped term, respectively. The existence and uniqueness of the approximated solutions are proved. Employing the prior estimates of the exact and approximate solutions and choosing the appropriate parameters a, v and r, the optimal error estimates and the superclose results are derived. Finally, the O(h2) global superconvergence in H1-norm for the velocity and L2-norm for the pressure is obtained by use of a postprocessing technique.
     Thirdly, we analyze the least-square nonconforming finite element scheme and its two modified forms for the convection-diffusion equations. The rectangular EQ1rot element and zero order R-T element are used to approximate to the displacement and the stress. The existence and uniqueness of the approximate solutions are proved by means of some special properties of the elements. The O(h) order error estimates for the stress in H(div)-norm and the displacement in broken H1-norm are derived. At the same times, we use zero order R-T element and P1 triangular element to discrete the equations by the least-square finite element methods, we get sharp estimations of error constants in H(div)-norm for the stress and L2-norm for the displacement under right angled triangular meshes. Furthermore, the corresponding numerical experiments are carried out to verify the theoretical analysis.
     Then, we construct a new mixed variational form for the semilinear reaction-diffusion equations by lowest rectangular conforming mixed finite elements. The error convergence order of O(Δt+h2) in L2-norm about the corresponding unknown functions are derived in the fully-discrete schemes by use of the special properties of elliptic projections and one order is improved than that of [136] using the traditional mixed variational form. Based on two grids algorithms, we derive the meshes ratio H= O(h1/3) and the convergence order O(Δt+h+H3) under the condition of two steps iteration, in order to obtain the results, the literature [136] need iterative three steps. The meshes ratio H= O(h2/9) and the convergence order O(Δt+h+H9/2) are obtained in this chapter under the condition of three steps iteration. Thus, we achieve the purpose of iterating the same step number, increasing the meshes ratio and reducing computation costs.
     Finally, we use the nonconforming EQ1rot clement and zero order R-T element and construct a new mixed scheme for nonlinear parabolic equations with moving grids. By use of the special property of the element, i.e., its consistency error is one order higher than the interpolation error in the broken energy norm, the convergence analysis is presented and the optimal order error estimates are derived. The results of this chapter can be extended to any convergence order by conforming mixed finite element approximations.
引文
[1]李立康,索伯列夫空是引论,上海科技出版社,上海,1978.
    [2]王烈衡,许学军,有限元方法的数学基础,科学出版社,北京,2004.
    [3]V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin,1997.
    [4]Q. Lin, J.F. Lin, Finite Element Methods:Accuracy and Improvement, Mathematics Monograph Series 1, Science Press, Beijing, China,2006.
    [5]P. G. Ciarlet, The finite element method for elliptic problems, Amsterdam, North-Holland,1978.
    [6]J. A. Shercliff, Steady motion of conducting fluids in pipes under transverse magnetic fields, Proceedings of the Cambridge Philosophical Society,1953,49:136-144.
    [7]J.-F. Gerbeau, C. Le Bris, T. Lelievre, Mathematical methods for the magnetohy-drodynamics of liquid metals. Oxford University Press, New York,2006.
    [8]M. Sermange, R. Temam, Some mathematical questions related to the MHD equa-tions, Comm. Pure Appl. Math. XXXVI,1983,36:635-664.
    [9]J.-F. Gerbeau, C. LeBris, On a coupled system arising in magnetohydrodynamics, Appl. Math. Letters,1999,12:53-57.
    [10]A. J. Meir, P. G. Schmidt, Variational methods for stationary MHD flow under natural interface conditions, Nonlinear Anal:TMA.,1996,26(4):659-689.
    [11]T. V. S. Sekhar, T. V. R Ravikumar, H. Kumar, MHD flow past a sphere at low and moderate Reynolds numbers, Comput. Mech.,2003,31:437-444.
    [12]T. W. H. Sheu, R. K. Lin, Development of a convection-diffusion-reaction magneto-hydrodynamic solver on a non staggered grids, Int. J. Numer. Meth. Fluids,2004, 45:1209-1233.
    [13]H. Kumamaru, S. Kodama, H. Hirano, K. Itoh, Three-dimensional numerical cal-culations on liquidmetal magnetohydrodynamic flow in magneticfield inletregion. J. Nuclear Sci. Tech.,2004,41(5):624-631.
    [14]M. D. Gunzburger. A..1. Meir,.1. S. Peterson, On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics, Math. Comput.,1991,50:523-563.
    [15]M. Wiedmer, Finite element approximation for equations of magnetohydrodynamics, Math. Comput.,1999,69(229):83-101.
    [16]F. Armero, J. C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg.,1996,131:41-90.
    [17]J.-L. Guermond, P. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions:the 2D case, Math. Model. Nurner. Anal.,2002,36:517-536.
    [18]N. B. Salah, A. Soulaimani, W.G. Habashi, A finite element method for magnetohy-drodynamics, Comput. Methods Appl. Mech. Engrg.,2001,190:5867-5892.
    [19]J.-F. Gerbeau, A stabilized finite element method for the incompressible magneto-hydrodynamic equations, Numer. Math.,2000,87:83-111.
    [20]R. Codina, N. H. Silva, Stabilized finite element approximation of the stationary magnetohydrodynamics equations, Comput. Mech.,2006,38:344-355.
    [21]M. Gunzburger, C. Trenchea, Optimal control of the time-periodic MHD equations, Nonlinear Anal:TMA.,2005,63:1687-1699.
    [22]S. H. Aydin, A. I. Nesliturk and M. Tezer-Sezgin, Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations, Int. J. Numer. Meth. Fluids.,2010,62:188-210.
    [23]Z. D. Luo, Y. K. Mao, J. Zhu, Nonlinear Galerkin mixed element methods for the stationary incompressible magnetohydrodynamics, Appl. Math. Mech.,2006, 27(12):1697-1707.
    [24]Z. D. Luo, Y. K. Mao, J. Zhu, A Petrov-Galerkin least mixed element method for the stationary incompressible magnetohydrodynamics, Appl. Math. Mech.,2007, 28(3):395-404.
    [25]陈静,罗振东,孙萍,定常的磁流体力学方程的非线性Galerkin - Petrov最小二乘混合元法,计算数学,2007,29(4):421-432.
    [26]M. Costabel, M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math.,2002,93:239-277.
    [27]D. Scho'tzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math.,2004,96:771-800.
    [28]U. Hasler, A. Schneebeli, D. Schotzau, Mixed finite element approximation of in-compressible MHD problems based on weighted regularization, Appl. Numer. Math., 2004,51:19-45.
    [29]S. Q. Gao, H. Y. Duan, Negative norm least-squares methods for the incompressible magnetohydrodynamic equations, Acta Math. Sci.,2008,28B(3):675-684.
    [30]P. Houston, D. Schotzau, X. X. Wei, A mixed DG method for linearized incompress-ible magnetohydrodynamics, J. Sci. Comput.,2009,40:281-314.
    [31]C. Greif, D. Li, D. Schotzau, X. X. Wei, A mixed finite element method with ex-actly divergence-free velocities for incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg.,2010,199:2840-2855.
    [32]A. Prohl, Convergent finite element discretizations of the nonstationary incompress-ible magnetohydrodynamic system, Math. Model. Numer. Anal.,2008,42:1065-1087.
    [33]L. Banas, A. Prohl, Convergent finite element discretization of the multi-fluid non-stationary incompressible magnetohydrodynamics equations, Math. Comput.,2010, 79:1957-1999.
    [34]M. Crouzeix, P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Numer. Anal.1973,7(R-3):33-76.
    [35]R. Rarnnacher, S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Meth. for PDEs,1992,8:97-111.
    [36]D. Y. Shi, Y. R. Zhang, A nonconforming anisotropic finite element approximation with moving grids for Stokes problem, J. Comput. Math.2006,24(5):561-578.
    [37]Z. Q. Cai, J. Douglas Jr., X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations, Calcolo,1999,36:215-232.
    [38]Q. P. Deng, X. J. Xu, S. M. Shen, Maximum norm error estimates of Crouzeix-Raviart nonconforming finite element approximation of Navier-Stokes problem, J. Comput. Math.,2000,18(2):141-156.
    [39]D. Y. Shi, J. C. Ren, Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes, Nonlinear Anal:TMA., 2009,71(9):3842-3852.
    [40]S. Q. Zhang, X. P. Xie, Y. M. Chen, Low order nonconforming rectangular finite element methods for Darcy-Stokes problems,J. Comput. Math.,2009,27(2-3):400-424.
    [41]D. Y. Shi, J. C. Ren, Nonconforming mixed finite element method for the stationary conduction-convection problem, Int. J. Nurner. Anal. Model.,2009,6(2):293-310.
    [42]D. Y. Shi, J. C. Ren, A least squares Galerkin-Petrov nonconforming mixed finite element method for the stationary Conduction-Convection problem, Nonlinear Anal: TMA.2010,72:1653-1667.
    [43]G. Matthies, F. Schieweck, Nonconforming finite elements of higher order satisfying a new compatibility condition, J. Nurner. Math.,2008,16(1):23-50.
    [44]D. Y. Shi, L. F. Pei, Low order Crouzeix-Raviar type nonconforming finite element for the 3-D time-dependent Maxwell's equation, Appl. Math. Comput.,2009,211(1):1-9.
    [45]D. Y. Shi, L. F. Pei. Low order C-R type nonconforming finite element methods for approximating Maxwell equations, Int. J. Numer. Anal. Model.2008,5(3):373-385.
    [46]V. Girault, P. A. Raviart, Finite Element Method for Navier-Stokes Equations:The-ory and Algorithms. Springer-Vcrlag, New York,1986.
    [47]L. Vardapetyan, L. Demkowicz,hp-adaptive finite elements in electromagnetics. Com-put. Methods Appl. Mech. Eng.1999,169:331-344.
    [48]L. Demkowicz, L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements, Comput. Methods Appl. Mech. Engrg., 1998,152:103-124
    [49]R. Temam, Navicr-Stokes Equation Theory and Numerical Analysis, North-Holland, Amsterdam, New York,1984.
    [50]C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci.,1998,21:823-864.
    [51]J. C. Nede lec, Mixed finite elements in R3, Numer. Math.,1980,35:315-341.
    [52]P. Monk, Finite element methods for Maxwell's equations, Oxford University Press, New York,2003.
    [53]A. Alonso, A. Valli, An optimal domain decomposition preconditioner for low- frequency time-harmonic Maxwell equations, Math. Comput.,1991,68:607-631.
    [54]T. Apel, S. Nicaise, J. Schoberl, Crouzeix-Raviart type finite elements on anisotropic meshes, Numer. Math.,2001,89:193-223.
    [55]C. Park, D. Sheen, P1-nonconforming quadrilateral finite element methods for Second-order elliptic problems, SIAM J. Numer. Anal.,2003,41(2):624-640.
    [56]Z. X. Chen, Finite Element Methods and their Applications. Springer-Verlag, Berlin Heidelberg,2005.
    [57]Q. Lin, L. Tobiska, A. Zhou, Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation, IMA J. Numer. Anal.2005, 25(l):160-181.
    [58]D. Y. Shi, J. C. Ren, X. B. Hao, A new second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations, Appl. Math. Comput.,2009,207:462-477.
    [59]D. Y. Shi, C. Wang, A new low order nonconforming mixed finite element scheme for second order elliptic problems, Inter. J. Comput. Math.,2011,88(10):2167-2177.
    [60]D. Y. Shi, J. Ren, W. Gong, A new nonconforming mixed finite element scheme for the stationary Navier-Stokes equations, Acta Math. Sci.,2011,31 (2)367-382.
    [61]L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, vol.1605. Springer:Berlin,1995.
    [62]Q. Zhu, A review of two different approaches for superconvergence analysis. Appl. Math.,1998,43(6):401-411.
    [63]J. Li, M. F. Wheeler, Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids, SIAM J. Numer. Anal.,2000, 38(3):770-798.
    [64]Q. Lin, J. Lin, Finite Element Methods:Accuracy and Improvement, Science Press: Beijing,2006.
    [65]林群,严宁宁,高效有限元构造与分析,河北大学出版社,保定,1996.
    [66]N. Yan, Superconvergence Analysis and a Posteriori Error Estimation in Finite Ele-ment Methods, Science Press:Beijing,2008.
    [67]G. Matthies, P. Skrzypacz, L. Tobiska, Superconvergence of a 3D finite element method for stationary Stokes and Navier-Stokes problems, Numer. Meth. PDEs,2005, 21(4):701-725
    [68]J. Li, L. Mei, Z. Chen, Superconvergence of a stabilized finite element approximation for the Stokes equations using a Local Coarse Mesh L2 Projection, Numer. Meth. PDEs,2010, DOI 10.1002/num.20610.
    [69]H. Eichel, L. Tobiska, H. Xie, Superclosness and superconvergence of stabilized low order finite element discretizations of the Stokes problem, Math. Comput.,2011, 80(274):697-722.
    [70]W. Chen, P. Chen, M. Gunzburger, N. Yan, Superconvergence analysis of FEMs for the Stokes-Darcy system, Math. Methods Appl. Sci.,2010,33:1605-1617.
    [71]S. S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly, 1980,87:359-370.
    [72]V. Georgicv, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations,1994,109:295-308.
    [73]D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys, 2003,238:211-223.
    [74]Y. Zhou, Global existence and nonexistence for a nonlinear wave equation with damp-ing and source terms, Math. Nach.,2005,278(11):1341-1358.
    [75]P. Constantin, Inviscid limit for damped and driven incompressible Navier-Stokes equations in R2, Comm. Math. Phys.,2007,275:529-551.
    [76]丁夏畦,吴永辉,二维全平而上具线性阻尼Navier-Stokes方程组解的有限维行为,应用数学学报,1997,20(4):509-520.
    [77]赵春山,李开泰,二维全空是上线性阻尼Navier-Stokes方程的全局吸引子及其维数估计,应用数学学报,2000,23(1):90-98.
    [78]X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equa-tions with damping term, J. Math. Anal. Appl.,2008,343:799-809.
    [79]X. Cai, L. Lei, L2 decay of the incompressible Navier-Stokes equations with damping, Acta Math. Scientia,2010,30B(4):1235-1248.
    [80]刘德民,李开泰,带有阻尼项的Stokes方程的有限元分析.计算数学,2010,32(4):433-448.
    [81]D. Y. Shi, H. Liang, Superconvergence analysis and extrapolation of a new mcon- ventional Hermite-type anisotropic rectangular element, Math. Numer. Sinica,2005, 27(4):369-382.
    [82]D. Y. Shi, Y. C. Peng, S. C. Chen, Superconvergence of a nonconforming finite ele-ment approximation to viscoelasticity type equations on anisotropic meshes, Numer. Math. A Journal of Chinese Universities (English Series),2006,15:375-384.
    [83]Z. H. Qiao, C. H. Yao, S. H. Jia, Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-Harmonic Maxwell's equations, J. Sci. Comput.,2011,46:1-19.
    [84]J. Wang, X. Ye, Superconvergence of finite element approximations for the Stokes problem by projection methods, SIAM J. Numer. Anal.,2002,30:1001-1013.
    [85]X. Ye, Superconvergence of nonconforming finite element method for the Stokes equa-tions. Numer. Meth. PDEs,2002,18:143-154.
    [86]石东洋,王彩霞,Stokes问题非协调混合有限元超收敛分析.应用数学学报,2007,30(6):1056-1065.
    [87]H. Liu, N. Yan, Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations, Adv. Comput. Math.,2008,29:375-392.
    [88]胡俊,满红英,石钟慈,带约束非协调旋转Q1元在Stokes和平而弹性问题的应用,计算数学,2005,27(3):311-324.
    [89]J. Hu, Z. C. Shi, Constrained quadrilateral nonconforming rotated Q1 element, J. Comput. Math.,2005,23:561-586.
    [90]D. Y. Shi, S. P. Mao, An anisotropic nonconforming finite element with some super-convergence resultes. J. Comput. Math.,2005,23(3):261-274.
    [91]Po-Wen Hsieh, Suh-Yuh Yang, On efficient least-squares finite element methods for convection-dominated problems, Comput. Methods Appl. Mech. Engrg.,2009,199: 183-196.
    [92]L. P. Franca, S. L. Frey, T. J. R. Hughes, Stabilized finite element methods:I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 1992,95:253-276.
    [93]A. N. Brooks, T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with a particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg.,1982,32:199-259.
    [94]L. P. Franca, G. Hauke, A. Masud, Revisiting stabilized finite element methods for the advective diffusive equation, Comput. Methods Appl. Mech. Engrg.,2006,195:1560-1572.
    [95]T. J. R. Hughes, L. P. Franca, G. M. Hulbert, A new finite element formulation for computational fluid dynamics:Ⅷ. The Galerkin/least squares method for advective diffusive equations, Comput. Methods Appl. Mech. Engrg.,1989,73:173-189.
    [96]F. Brezzi, L. P. Franca, A. Russo, Further considerations on residual-free bubbles for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg.,1998,166: 25-33.
    [97]F. Brezzi, A. Russo, Choosing bubbles for advection diffusion problems, Math. Mod. Methods Appl. Sci.,1994,4:571-587.
    [98]F. Brezzi, T.J.R. Hughes, L. D. Marini, A. Russo, E. Suli, A priori error analysis of residual-free bubbles for advection-diffusion problems, SIAM.J. Numer. Anal.,1999, 36:1933-1948.
    [99]L. P. Franca, A. Nesliturk, M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Methods Appl. Mech. Engrg.,1998,166:35-49.
    [100]P. B. Bochev, M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev.,1998,40:789-837.
    [101]B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998.
    [102]P. B. Bochev, M.D. Gunzburger, Analysis of least-squares finite element methods for the Stokes equations, Math. Comput.,1994,63:479-500.
    [103]Z. Cai, T. A. Manteuffel, S. F. McCormick, First order system least squares for second order partial differential equations:Part Ⅱ, SIAM,J. Numer. Anal.,1997, 34:425-454.
    [104]Z. Cai, R. Lazarov, T. A. Manteuffel, S. F. McCormick, First-order system least squares for second-order partial differential equations:Part I, SIAM J. Numer. Anal., 1994,31:1785-1799.
    [105]C. L. Chang, B.-N. Jiang, An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem, Comput. Methods. Appl. Mech. Engrg.,1990,84:247-255.
    [106]C. L. Chang, S.-Y. Yang, C.-H. Hsu, A Least-squares finite element method for in-compressible flow in Stress-Velocity-Pressure version, Comput. Methods Appl. Mech. Engrg.,1995,128:1-9
    [107]R. D. Lazarow, I. D. Mishev, P. S. Vassileveski, Finite volume methods for convection diffusion problems, SIAM J. Numer. Anal.,1996,33:31-55.
    [108]Z. Cai, J. Mandel, S. McCormick, The finite volume element methods for diffusion equations on general triangulations, SIAM J. Numer. Anal.,1991,28:392-402.
    [109]M. Farhloul, A. S. Mounim, A mixed-hybrid finite element method for convection-diffusion problems, Appl. Math. Comput.,2005,171:1037-1047.
    [110]R. C. Almeida, R. S. Silva, A stable Petrov-Galerkin method for convection domi-nated problems, Comput. Methods Appl. Mech., Engrg.,1997,40:291-304.
    [111]E. G. D. do Carmo, G. B. Alvarez, A new stabilized finite element formu-lation for scalar convection-diffusion problems:the streamline and approximate upwind/Petrov-Galerkin method, Comput. Methods Appl. Mech. Engrg.,2003, 192:3379-3396.
    [112]V. John, J. M. Maubach, L. Tobiska, Nonconforming streamline-diffusion-finite ele-ment methods for convection-diffusion problems, Numer. Math.,1997,78:165-188.
    [113]R.D. Lazarov, L. Tobiska, P.S. Vassilevski, Streamline diffusion least-squares mixed finite element methods for convection-diffusion problems, East-West J. Numer. Math. 1997,5:249-264.
    [114]R.D. Lazarov, P.S. Vassilevski, Least-squares streamline diffusion finite element ap-proximations to singularly perturbed convection-diffusion problems, in:L.G. Vulkov, J. J. H. Miller, G.I. Shishkin (Eds.), Analytical and Numerical Methods for Singularly Perturbed Problems, Nova Science Publishing House,2000, pp.83-94.
    [115]P. Knobloch, L. Tobiska, The P1mod element:a new nonconforming finite element for convection-diffusion problems, SIAM J. Numer. Anal.,2003,41:436-456.
    [116]B. Achchab1, A. Agouzal, K. Bouihat, A posteriori error estimates on stars for convection diffusion problem, Math. Model. Nat. Phenom.,2010,7:67-72.
    [117]D. Y. Shi, X. L. Wang, A low order anisotropic nonconforming characteristic finite element method for a convection-dominated transport problem, Appl. Math. Com- put.,2009,213:411-418.
    [118]D. Y. Shi, X. L. Wang, Two low order characteristic finite element methods for a convection-dominated transport problem, Comput. Math. Appl.,2010,59:3630-3639.
    [119]Q. Lin, H. Wang, S. H. Zhang, Uniform optimal-order estimates for finite element methods for advection-diffusion equations, J. Syst. Sci. Complexity,2009,22:555-559.
    [120]R. E. Barnhill, J. H. Brown, A. R. Mitchell, A Comparison of finite element error bounds for Poisson's equation, IMA J. Numer. Anal.,1(1),1981:95-103.
    [121]R. Lehmann, Computable error bounds in the finite element method, TMA J. Numer. Anal.,6(3),1986:265-271.
    [122]P. Arbenz, Computable finite element error bounds for Poission'S Equation, IMA J. Numer. Anal.,1982,2(5):475-479.
    [123]王华,杨一都,有限元近似可计算的误差界,数学杂志,2005,4:468-472.
    [124]M.T. Nakao, N. Yamamoto, A guaranteed bound of the optimal constant in the error estimates for linear triangular element, Computing,2001,15:163-173.
    [125]F. Kikuchi, X. F. Liu, Estimation of interpolation error constants for the P0 and P1 triangular finite elements. Comput. Methods Appl. Mech. Engrg.,2007,196:3750-3758.
    [126]S.P. Mao, Z.C. Shi, On the interpolation error estimates for Q1 quadrilateral finite elements, SIAM J. Numer. Math.,2008,47:467-486.
    [127]S. P. Mao, Z. C. Shi, Explicit error estimates for mixed and nonconformoing finite elements, J. Comput. Math.,2009,27:425-440.
    [128]L. D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Math.,1985,22:493-496.
    [129]陈秀英,非线性发展方程的有限元分析,硕士学位论文.郑州:郑州大学,2010.
    [130]J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM.J. Numer. Anal.1996,33:1759-1777.
    [131]J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sc:i. Com-put.,1994,15:231-237.
    [132]C. Bi, V. Ginting, Two-grid discontinuous Galerkin method for Quasi-linear elliptic problems, J. Sci. Comput.,2011,49:311-331.
    [133]C.N. Dawson, M. F. Wheeler, Two-grid methods for mixed finite element approxi- mations of nonlinear parabolic equations, Contemp. Math.,1994,180:191-203.
    [134]C. N. Dawson, M. F. Wheeler, C. S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal.,1998,35:435-452.
    [135]L. Wu, M. B. Allen, A two-grid method for mixed finite-element solutions of reac-tiondiffusion equations, Numer. Meth. PDEs,1999,15:317-332.
    [136]Y. Chen, Y. Huang, D. Yu, A two-grid method for expanded mixed finite element solution of semilinear reaction diffusion equations, Int. J. Numer. Methods Engrg., 2003,57:193-209.
    [137]Y. Chen, H, Liu, S. Liu, Analysis of two-grid methods for reaction-diffusion equa-tions by expanded mixed finite element methods, Int. J. Numer. Methods Engrg., 2007,69:408-422
    [138]Y. Chen, L. Li, IP error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comput.,2009,209:197-205
    [139]Y. Chen, P. Luan, Z. Lu, Analysis of two-grid methods for nonlinear parabolic equa-tions by expanded mixed finite element methods, Adv. Appl. Math. Mech.,2009,1:1-15.
    [140]W. Liu, H. Rui, H. Guo, A Two-grid Method with Expanded Mixed Element for Nonlinear Reaction-diffusion Equations, Acta Math. Appl. Sinica, English Series A, 2011,27(3):495-502.
    [141]L. Chen, Y. Chen. Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput.,2011,49:383-401.
    [142]刘伟,芮洪兴,鲍永平.求解半线性抛物问题的两种二重网格算法,系统科学与数学,2010,2:181-190.
    [143]C. Chen, M. Yang, C. Bi, Two-grid methods for finite volume element approxima-tions of nonlinear parabolic equations, J. Comput. Appl. Math.,2009,228:123-132.
    [144]C. Chen, W. Liu, Two-grid finite volume element methods for semilinear parabolic problems, Appl. Numer. Math.,2010,60:10-18.
    [145]T. Utnes, Two-grid finite element formulations of the incompressible Naviers-Stokes equations, Commun. Numer. Methods Engrg.,1997,13:675-684.
    [146]W. Layton, L. Tobiska, A two-level method with backtracking for the Navier-Stokes equations, SIAM J. Anal.,1998,35(5):2035-2045.
    [147]V. John, Residual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations, Appl. Numer. Math.,2001,37:503-518.
    [148]V. Girault, J.-L. Lions, Two-grid finite element schemes for the steady Navier-Stokes problem in ployhedra, Port. Math.,2001,58:25-56.
    [149]Y. He, Two-level method based on finite element and Crank-Nicolson extrapola-tion for the time dependent Navier-Stokes equations, SIAM J Numer. Anal.,2004, 41(4):1263-1285.
    [150]Y. He, A two-level finite element Galerkin method for the nonstationary Naviers-Stokes I:spatial discretization, J. Comput. Math.,2004,22:21-32
    [151]Y. He, H. Miao, C. Ren, A two-level finite element Galerkin method for the nonsta-tionary Navier-Stokes Ⅱ:time discretization, J. Comput. Math.,2004,22:33-54.
    [152]X. Dai, X. Cheng, A two-grid method based on Newton iteration for the Navier-Stokes equations, J. Comput. Appl. Math.,2008,220:566-573.
    [153]Y. Shang. A parallel two-level linearization method for incompressible flow problems, Appl. Math. Letters,2011,24(3):364-369.
    [154]Y. He,.1. Li, X. Yang, Two-level penalized finite element methods for the stationary Navier-Stokes equations, Inter. J. Inform. Syst. Sci.,2006,2(1):131-143
    [155]S. Kaya, B. Riviere, A two-grid stabilization method for solving the steady-state Navier-Stokes equations, Numer. Meth. For PDEs,2006,22(3):728-743.
    [156]K. Wang, M. Feng Y. He, Two-level stabilized finite element method for the transient Navier-Stokes equations, Int. J. Comput. Math.,2010,87(10):2341-2360.
    [157]Q. Liu, Y. Hou, A two-level finite element methods for Navier-Stokes based on a new projection, Appl. Math. Model.,2010,34(2):383-399.
    [158]Y. Li, R. An, Two-level pressure projection finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions, Appl. Numer. Math.,2011, 61(3):285-297.
    [159]J. Xu, A. Zhou, A two-grid discretization scheme for eigenvalue problem, Math. Comput.,2001,70:17-25.
    [160]C. Chien, B. W. Jong, A two-grid finite element discretization scheme for nonlinear eigenvalue problems, Comput. Methods,2006:1951-1955.
    [161]C. Chien, R. W. Jcng, A two-grid finite element discretization scheme for semilinear elliptic eigenvalue problems, SIAM J. Sci. Comput.,2006,27:1287-1304.
    [162]H. Bi, Y. Yang, Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, SIAM J. Numer. Anal.,2011, 49:1602-1624.
    [163]Q. Li, Y. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput.,2011,36:129-139.
    [164]X. Qin, Y. Ma, Two-grids scheme for characteristics finite element solutions of non-linear convection-diffusion problems, Appl. Math. Comput.,2005,165(2):419-431.
    [165]C. Chen, C. Bi, Two-grid methods for characteristic finite volume element solution of semilinear convection-diffusion equations, Appl. Math. Comput.,2010,217:1896-1906.
    [166]Z. Si, Y. Shang, T. Zhang. New one and two-level Newton iterative mixed finite element methods for stationary conduction-convection problems, Finite Elements in Anal. Design,2011,47(2):175-183
    [167]W. J. Layton, A. J. Meir, P. G. Schmidtz, A two-level discretization method for the stationary MHD equations, Electr. Tran. Numer. Anal.,1997,6:198-210.
    [168]C. Chen, W. Liu, A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations, J. Comput. Appl. Math.,2010, 233:2975-2984.
    [169]X. Gong, L. Shen, D. Zhang, A. Zhou, Finite element approximations for Schrodinger equations with applications to electronic structure computations, J. Comput. Math., 2008,26:310-323.
    [170]H. Chen, F. Liu, A. Zhou, A two-scale higher-order finite element discretization for Schrodinger Equation, J. Comput. Math.,2009,27:315-337
    [171]L. Wu, Two-grid strategy for unsteady state nonlinear Schrodinger equations, Inter. J. Pure Appl. Math.,2011,4(68):465-475
    [172]L. Wu, Two-grid mixed finite element methods for nonlinear Schrodinger Equations, Numer. Meth. PDEs.,2012,28:63-73.
    [173]C. Wang, Z. Huang, L. Li, Two-grid nonconforming finite element method for second order elliptic problems, Appl. Math. Comput.,2006,177:211-219.
    [174]L. Zhen, Z. Chen, A two-level stabilized nonconforming finite element method for the stationary Navier-Stokes equations, Lecture Notes Comput. Science,2010:579-585.
    [175]Y. Yang, Two-grid discretization schemes of the nonconforming FEM for eigenvalue problems, J. Comput. Math.,2009,27(6):748-763.
    [176]H. Bi, Y. Yang, A two-grid method of the nonconforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput.,2011,217(23):9669-9678.
    [177]P. A. Raviart,J. M. Thomas, A mixed finite element method for second order elliptic problems, Lecture notes in math,606, Springer-Verlag, Berlin and New York,1977: 292-315.
    [178]罗振东,混合有限元法基础及其应用,北京:科学出版社,2006.
    [179]陈绍春,陈红如,二阶椭圆问题新的混合元格式,计算数学,32(2)(2010):213-218.
    [180]史峰,于佳平,李开泰.椭圆型方程的一种新型混合有限元格式,工程数学学报,2011,28(2):231-237.
    [181]李明浩,两类椭圆型方程的混合有限元方法及超收敛分析,硕士学位论文,郑州:郑州大学,2011.
    [182]梁国平,变网格有限元方法,计算数学,1985,7:377-384.
    [183]王立俊,双曲型方程变网格有限元法,计算数学,1990,12:119-128.
    [184]沈树民,抛物型变分不等式的变网格有限元法,计算数学,1986,8(4):377-387.
    [185]戴培良,沈树民,抛物型积分微分方程的变网格有限元法.高等学校计算数学学报,1994,16:243-249.
    [186]袁益让,一类退化非线性抛物型方程组的变网格有限元法.计算数学,1986,8:121-136.
    [187]杨道奇,抛物型问题的变网格混合有限元方法,计算数学,1988,10(3):266-271.
    [188]刘小华,刘质斌,非线性抛物方程的变网格有限元法,高等学校计算数学学报,2002,2:119-126.
    [189]刘小华,陈瑜,非线性双曲型方程的变网格有限元法应用数学,2001,14(2):74-79.
    [190]石东洋,关宏波,双曲型方程的非协调变网格有限元方法,纯粹数学与应用数学,2009,25:26-33.
    [191]石东洋,关宏波,粘弹性方程的非协调变网格有限元方法,高校应用数学学报,2008,23(4):452-458.
    [192]张学凌,黄堃,石东洋,粘弹性方程的变网格非协调有限元方法,河南师范大学 学报,2009,37(3):152-154.
    [193]戴培良,许学军,Stokes问题的变网格非协调有限元法,高等学校计算数学学报,1995,1:74-81.
    [194]石东洋,张熠然.非定常Stokes问题的矩形Crouzeix-Raviart型各向异性非协调元变网格方法,数学物理学报,2006,26A(5):659-670.
    [195]R. L. Taylor, P. J. Beresford, E. L. Wilson, A nonconforming element for stress analysis, Int. J. Numer. Math. Engrg.,1976,10:1211-1219.
    [196]石东洋,张斐然,Sine-Gordon方程的一类低阶非协调有限元分析,计算数学,2011,33(3):289-297.
    [197]江金生,程晓良,二阶问题的一个类Wilson非协调元,计算数学,1992,14(3):274-278.
    [198]石东洋,陈绍春,一类改进的Wilson任意四边形单元,高等学校计算数学学报,1994,16(2):161-167.
    [199]S. C. Chen, D. Y. Shi, Accuracy analysis for Quasi-Wilson element, Acta. Math. Sci.,2000,20(1):44-48.
    [200]G. F. Carey, An analysis of finite element equations and mesh subdivision, Comput. Methods Appl. Mech. Engrg.,1976,9:165-179.
    [201]D. Y. Shi, X. B. Hao, Accuracy analysis for Quasi-Carey element, J. Syst. Sci. Complexity,2008,21(3):456-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700