定常不可压缩流的若干稳定化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定常不可压缩流可以近似地看做常数的一种流体,它刻划着一些流体的运动规律,如海洋流动、大气运动以及透平机械内部流动等.特别地,它的研究对人们认识和控制湍流至关重要.描述这种流体的控制方程主要是不可压缩Navier–Stokes方程.由于人们对非线性现象本质认识有限,因而数值模拟就成为一种十分重要的研究手段.但直接数值模拟Navier–Stokes方程有一个很大的困难就是巨大的解题规模与有限的计算资源及算法稳定性之间的矛盾.因此,构造和研究具有良好稳定性和收敛性的高效算法就显得尤为重要.本文基于局部高斯积分公式,研究了定常不可压缩流的若干稳定化算法,主要做了下面的工作:
     一、基于局部高斯积分公式,提出了求解定常Navier–Stokes方程的一种新亏量校正格式.它主要用一个双线性项来代替原先的人工粘性稳定化项.该双线性项是由二次多项式的精确高斯积分公式和线性多项式的精确高斯积分公式做差得到.不同于通常的亏量校正方法,新格式对参数依赖较小且不依赖于网格.并且通过数值实验发现,用我们提出方法得到的解比通常的亏量校正方法得到的解更为精确一些.
     二、提出了基于三种校正算法的两水平二次等阶稳定化有限元方法.采用的P2P2元不满足离散的inf-sup条件,故而用基于局部高斯积分公式的压力投影技巧来稳定.得到了三种算法: Stokes校正、Newton校正和Oseen校正.数值理论分析和计算结果发现Stokes和Newton校正对大粘性问题处理较好,而Oseen校正求解小粘性系数问题则有一定的优越性.接着,建立了两水平亏量校正稳定化方法.在处理大雷诺数问题的时候,采用亏量校正方法来求解,但是往往需要很多的计算时间.而两水平方法是一种高效的算法,它能节约大量的CPU时间.双赢的组合对求解Navier–Stokes方程的大雷诺数问题有了很大的帮助.接着,基于P_1-P_1高斯积分稳定化方法,给出了三种算法: m次亏量步采用Oseen迭代,1次校正步采用Oseen迭代(m-Oseen-1-Oseen); m次亏量步采用Oseen迭代,1次校正步采用Simple迭代(m-Oseen-1-Simple); m次亏量步采用Oseen迭代,1次校正步采用Newton迭代(m-Oseen-1-Newton).
     三、采用L2投影方法,对基于P_1-P_1元求解定常Navier–Stokes方程的稳定化非协调有限元方法和稳定化有限体积方法,分别建立了它们的超收敛结果.该方法的主要思想是把数值结果投影到另一个不同的较粗网格空间上.经过后处理,用两种网格尺度的差别来达到超收敛结果.数值例子验证了数值理论的准确性.
     四、基于用局部高斯积分来做稳定化的P_1-P_1元,提出了解Stokes特征值问题的一种两水平有限元方法.该方法求得的解和一般的稳定化有限元求得的解具有相同的收敛阶,且我们的方法能够节省大量的计算时间.数值试验验证了理论结果.进而,给出了一些求解Stokes特征值问题的基于最低等阶元的稳定化方法,包括加罚方法、正则化方法、丰富多尺度方法、局部高斯积分方法以及非协调局部高斯积分方法.接着,对这些稳定化混合有限元方法在数值求解Stokes特征值问题时的表现做了比较和分析.最后,指出了相比其他方法,用非协调局部高斯积分方法求解Stokes特征值问题具有较好的稳定性和误差结果.
The stationary incompressible flow can be seen as a flow in steady, which de-scribes the motion law of some fluids. For example, the movement of the atmosphere,the transport in the ocean, the flow in the turbomachinery and so on. Particularly,it is very important to help people to understand and control turbulent. The maingoverning equations are the incompressible Navier–Stokes equations. Because it isnot very easy to realize the essence of the nonlinear phenomena, the numerical meth-ods have played an important role. However, numerical simulation of Navier–Stokesequations has a great difculty, i.e., the contradiction between huge problem sizeand very limited computing ability. Hence, constructing and studying an algorithmwith good stability and convergence are very important. In this thesis, based on thelocal Gauss integration, several stabilized methods for the stationary incompressibleflow are studied as follows:
     1、Based on the local Gauss integration, we propose a novel defect-correctionmethod for the stationary Navier–Stokes equations. The method uses a bilinear termto replace an artificial viscosity stabilized term (i.e. adding to the bilinear form thediference between an exact Gaussian quadrature rule for quadratic polynomialsand an exact Gaussian quadrature rule for linear polynomials to ofset the inf-supcondition). Diferent from the common defect-correction method, it is independentof mesh size. Besides, from the numerical experiment, we can see that the results ofour method are much better than those of the common defect-correction method.
     2、The two-level quadratic equal-order stabilized finite element method for thestationary Navier–Stokes equations based on the local Gauss integration is consid-ered. The method includes three corrections: Stokes correction, Newton correctionand Oseen correction. The theoretical analysis and numerical results confirm thatthe Stokes and Newton corrections are useful for large viscosity and the Oseen cor-rection is the best method for small viscosity. Moreover, two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier–Stokesequations based on the local Gauss integration are considered. The methods combinethe defect-correction method and the two-level strategy with the locally stabilizedmethod. It includes three algorithms: m defect steps by Oseen iteration and oncecorrection by Oseen iteration (m-Oseen-1-Oseen); m defect steps by Oseen itera-tion and once correction by Simple iteration (m-Oseen-1-Simple); m defect steps byOseen iteration and once correction by Newton iteration (m-Oseen-1-Newton).
     3、Applying an L2-projection, we present the superconvergence results for thestationary Navier–Stokes equations by the stabilized nonconforming finite elementmethod and the stabilized finite volume method. The basic idea is to project theapproximate solution to another finite dimensional space on a diferent, but coarsermesh. The diference in the two mesh sizes can be used to achieve a superconvergenceafter the post-processing procedure. Numerical results are shown to support thedeveloped theory analysis.
     4、A two-level stabilized finite element method for the Stokes eigenvalue prob-lem based on the local Gauss integration is considered. It provides an approximatesolution with the convergence rate of same order as the usual stabilized finite ele-ment solution. Hence, our method can save a large amount of computational time.Numerical tests confirm the theoretical results of the presented method. Moreover,several stabilized finite element methods for the Stokes eigenvalue problem basedon the lowest equal-order finite element pair are numerically investigated. They arepenalty, regular, multiscale enrichment, local Gauss integration, and nonconforminglocal Gauss integration method. Comparisons between them are carried out, whichshow that the nonconforming local Gauss integration method has good stability,efciency and accuracy properties and it is a favorite method among these methodsfor the Stokes eigenvalue problem.
引文
[1]黄艾香,等.有限元理论与方法(第一、二、三分册)[M].北京:科学出版社,2009.
    [2]李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].北京:科学出版社,2006.
    [3]李开泰,马逸尘,王立周.广义函数和Sobolev空间[M].西安:西安交通大学出版社,2008.
    [4]李开泰,马逸尘.数学物理方程Hilbert空间方法[M].北京:科学出版社,2008.
    [5]林群,严宁宁.高效有限元构造与分析[M].保定:河北大学出版社,1996.
    [6]陆金甫,关治.偏微分方程数值解法[M].第2版.北京:清华大学出版社,2004.
    [7]马逸尘,梅立泉,王阿霞.偏微分方程现代数值方法[M].北京:科学出版社,2006.
    [8]李剑.二维不可压缩Navier-Stokes方程若干算法研究[D].西安:西安交通大学,2007.
    [9] R.A. Adams, Sobolev Spaces[M], Academic Press, New York,1975.
    [10] R. Araya, G.R. Barrenechea, F. Valentin, Stabilized finite element methodsbased on multiscale enrichment for the Stokes problem[J], SIAM J. Numer.Anal.44(2006)322–348.
    [11] O. Axelsson, W. Layton, Defect correction methods for convection dominated,convection difusion equations[J], RAIRO J. Numer. Anal.24(1990)423–455.
    [12] I. Babuska, J.E. Osborn, Finite element-Galerkin approximation of the eigen-values and eigenvectors of selfadjoint problems[J], Math. Comp.52(1989)275–297.
    [13] I. Babuska, J.E. Osborn, Eigenvalue Problems[M], in: P.G. Ciarlet, J.L. Lions(Eds.), Handbook of Numerical Analysis, vol. II, Finite Element Method (PartI), North-Holland, Amsterdam,1991, pp.641–787.
    [14] R. Becker, P. Hansbo, A simple pressure stabilization method for the Stokesequation[J], Commun. Numer. Meth. Engrg.24(2008)1421–1430.
    [15] C. Bernardi, F. Hecht, R. Verfu¨rth, A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions[J],ESAIM: Math. Model. Numer. Anal.43(2009)1185–1201.
    [16] P. Bochev, C.R. Dohrmann, M.D. Gunzburger, Stabilization of low-ordermixed finite elements for the Stokes equations[J], SIAM J. Numer. Anal.44(2006)82–101.
    [17] J. Brandts, Y. Chen, Superconvergence of least-squares mixed finite ele-ments[J], Int. J. Numer. Anal. Model.3(2006)303–310.
    [18] C.A. Brebbia, The Boundary Element Method for Engineers[M], PentechPress, London,1984.
    [19] B. Brefort, J.M. Ghidaglia, R. Temam, Attractor for the penalty Navier–Stokesequations[J], SIAM J. Math. Anal.19(2001)1–21.
    [20] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods[M], Vol.15,Springer Series in Computational Mathematics, Springer-Verlag, New York,1991.
    [21] Z. Cai, J. Mandel, S. McCormick, The finite volume element method for difu-sion equations on general triangulations[J], SIAM J. Numer. Anal.28(1991)392–403.
    [22] Z.Q. Cai, J. Douglas Jr., X. Ye, A stable nonconforming quadrilateral finiteelement method for the stationary Stokes and Navier–Stokes equations[J], Cal-colo36(1999)215–232.
    [23] Z.X. Chen, Finite Element Methods and Their Applications[M], Springer-Verlag, Heidelberg,2005.
    [24] W. Chen, Q. Lin, Approximation of an eigenvalue problem associated withthe Stokes problem by the stream function-vorticity-pressure method[J], Appl.Math.51(2006)73–88.
    [25] Z. Chen, The control volume finite element methods and their applications tomultiphase flow[J], Netw. Heterog. Media1(2006)689–706.
    [26] H. Chen, S. Jia, H. Xie, Postprocessing and higher order convergence forthe mixed finite element approximations of the Stokes eigenvalue problems[J],Appl. Math.54(2009)237–250.
    [27] H. Chen, S. Jia, H. Xie, Postprocessing and higher order convergence for themixed finite element approximations of the eigenvalue problem[J], Appl. Nu-mer. Math.61(2011)615–629.
    [28] S.H. Chou, Q. Li, Error estimates in L2, H1and L∞in co-volume methods forelliptic and parabolic problems: a unified approach[J], Math. Comp.69(1999)103–120.
    [29] S.H. Chou, X. Ye, Superconvergence of finite volume methods for the secondorder elliptic problem[J], Comput. Methods Appl. Mech. Engrg.196(2007)3706–3712.
    [30] P.G. Ciarlet, The Finite Element Method for Elliptic Problems[M], North-Holland, New York,1978.
    [31] K.A. Clife, E. Hall, P. Houston, Adaptive discontinuous galerkin methodsfor eigenvalue problems arising in incompressible fluid flows[J], SIAM J. Sci.Comput.31(2010)4607–4632.
    [32] M. Cui, X. Ye, Superconvergence of finite volume methods for the Stokesequations[J], Numer. Meth. Part. Difer. Equ.25(2009)1212–1230.
    [33] J. Douglas, T. Dupont, Superconvergence for Galerkin methods for the two-point boundary problem via lacal projections[J], Numer. Math.21(1973)270–278.
    [34] J. Douglas Jr., J. Wang, An absolutely stabilized finite element method forthe Stokes problem[J], Math. Comp.52(1989)495–508.
    [35] J. Douglas Jr., J. Wang, A superconvergence for mixed finite element methodson rectangular domains[J], Calcolo26(1989)121–134.
    [36] E. Erturk, T. Corke, C. Gokcol, Numerical solutions of2-D steady incompress-ible driven cavity flow at high Reynolds numbers[J], Int. J. Numer. MethodsFluids48(2005)747–774.
    [37] V. Ervin, W. Layton, J. Maubach, A posteriori error estimators for a two-levelfinite element method for the Navier–Stokes equations[J], Numer. Meth. Part.Difer. Equ.12(1996)333–346.
    [38] R.E. Ewing, R.D. Lazarov, J. Wang, Superconvergence of the velocity alongthe Gauss lines in mixed finite element methods[J], SIAM J. Numer. Anal.28(1991)1015–1029.
    [39] F. Hecht, O. Pironneau, A. Le Hyaric, K. Ohtsuka, FREEFEM++[P/OL],version2.3-3, Paris,2008[2012-03-08], http://www.freefem.org.
    [40] X.L. Feng, I. Kim, H. Nam, D. Sheen, Locally stabilized P1-nonconformingquadrilateral and hexahedral finite element method for the Stokes equations[J],J. Comput. Appl. Math.236(2011)714–727.
    [41] U. Ghia, K.N. Ghia, C.T. Shin, High-resolutions for incompressible flow usingthe Navier–Stokes equations and a multigrid method[J], J. Comput. Phys.48(1982)387–411.
    [42] V. Girault, P.A. Raviart, Finite Element Method for Navier–Stokes Equations:Theory and Algorithms[M], Springer-Verlag, Berlin,1987.
    [43] M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: AGuide to Theory, Practice and Algorithms[M], Academic Press, Boston,1989.
    [44] Y.N. He, Two-level method based on finite element and Crank-Nicolson extrap-olation for the time-dependent Navier–Stokes equations[J], SIAM J. Numer.Anal.41(2003)1263–1285.
    [45] Y.N. He, A fully discrete stabilized finite element method for the time-dependent Navier–Stokes equations[J], IMA J. Numer. Anal.23(2003)665–691.
    [46] Y.N. He, Optimal error estimate of the penalty finite element method for thetime-dependent Navier–Stokes problem[J], Math. Comp.74(2005)1201–1216.
    [47] Y.N. He, A.W. Wang, L.Q. Mei, Stabilized finite-element method for the sta-tionary Navier–Stokes equations[J], J. Eng. Math.51(2005)367–380.
    [48] Y.N. He, K.T. Li, Two-level stabilized finite element methods for the steadyNavier–Stokes problem[J], Computing74(2005)337–351.
    [49] Y.N. He, Y.P. Lin, W.W. Sun, Stabilized finite element methods for the non-stationary Navier–Stokes problem[J], Discrete Contin. Dyn. Syst. B6(2006)41–68.
    [50] Y.N. He, W.W. Sun, Stabilized finite element methods based on Crank-Nicolson extrapolation scheme for the time-dependent Navier–Stokes equa-tions[J], Math. Comp.76(2007)115–136.
    [51] Y.N. He, J. Li, A stabilized finite element method based on local polynomialpressure projection for the stationary Navier–Stokes equations[J], Appl. Nu-mer. Math.58(2008)1503–1514.
    [52] Y.N. He, A.W. Wang, A simplified two-level method for the steady Navier–Stokes equations[J], Comput. Methods Appl. Mech. Engrg.197(2008)1568–1576.
    [53] Y.N. He, J.C. Xu, A.H. Zhou, J. Li, Local and parallel finite element algorithmsfor the Stokes problem[J], Numer. Math.109(2008)415–434.
    [54] Y.N. He, J. Li, Convergence of three iterative methods based on the finiteelement discretization for the stationary Navier–Stokes equations[J], Comput.Methods Appl. Mech. Engrg.198(2009)1351–1359.
    [55] Y.N. He, L.Q. Mei, Y.Q. Shang, J. Cui, Newton iterative parallel finite elementalgorithm for the steady Navier–Stokes equations[J], J. Sci. Comput.44(2010)92–106.
    [56] Y.N. He, C. Xie, H.B. Zheng, A posteriori error estimate for stabilized low-order mixed FEM for the Stokes equations[J], Adv. Appl. Math. Mech.2(2010)798–809.
    [57] Y.N. He, J. Li, Two-level methods based on three corrections for the2D/3Dsteady Navier–Stokes equations[J], Inter. J. Numer. Anal. Model. Ser. B2(2011)42–56.
    [58] Y.N. He, Y. Zhang, Y. Shang, H. Xu, Two-Level Newton iterative methodfor the2D/3D steady Navier–Stokes equations[J], Numer. Meth. Part. Difer.Equ. DOI:10.1002/num.20695.
    [59] Y.N. He, H. Xu, Uniform stability and convergence of two-level Oseen iterativemethod for the2D/3D steady Navier–Stokes equations[J], submitted.
    [60] J.G. Heywood, R. Rannacher, Finite-element approximations of the nonsta-tionary Navier–Stokes problem. Part I: Regularity of solutions and second-order spatial discretization[J], SIAM J. Numer. Anal.19(1982)275–311.
    [61] J. Hu, Y. Huang, Q. Lin, The lower bounds for eigenvalues of elliptic operators:by nonconforming finite element methods[J], arXiv:1112.1145v1(2011)1–41.
    [62] P.Z. Huang, X.L. Feng, D.M. Liu, A stabilized nonconforming finite elementmethod for the steady incompressible flow problem with damping[J], Inter. J.Comput. Fluid Dyn.26(2012)133-144.
    [63] S. Jia, H. Xie, X. Yin, S. Gao, Approximation and eigenvalue extrapolation ofStokes eigenvalue problem by nonconforming finite element methods[J], Appl.Math.54(2009)1–15.
    [64] X.Y. Kang, D.H. Liu, J. Zhou, Y.J. Jin, Simulation of blood flow at vesselbifurcation by lattice boltzmann method[J], Chin. Phys. Lett.22(2005)2873–2876.
    [65] S. Kaya, W. Layton, B. Rivi`ere, Subgrid stabilized defect correction methodsfor the Navier–Stokes equations[J], SIAM J. Numer. Anal.44(2006)1639–1654.
    [66] R.B. Kellogg, J.E. Osborn, A regularity result for the Stokes problem in aconvex polygon[J], J. Funct. Anal.21(1976)397–431.
    [67] S. Larsson, The long-time behavior of finite-element approximations of solu-tions to semilinear parabolic problems[J], SIAM J. Numer. Anal.26(1989)348–365.
    [68] W. Layton, A two level discretization method for the Navier–Stokes equa-tions[J], Comput. Math. Appl.26(1993)33–38.
    [69] W. Layton, W. Lenferink, Two-level Picard and modified Picard methods forthe Navier–Stokes equations[J], Appl. Math. Comput.69(1995)263–274.
    [70] W. Layton, Solution algorithm for incompressible viscous flows at highReynolds number[J], Vestnik Mosk. Gos. Univ. Ser.15(1996)25–35.
    [71] W. Layton, L. Tobiska, A two-level method with backtracking for the Navier–Stokes equations[J], SIAM J. Numer. Anal.35(1998)2035–2054.
    [72] W. Layton, H. Lee, J. Peterson, A defect-correction method for the incom-pressible Navier–Stokes equations[J], Appl. Math. Comput.129(2002)1–19.
    [73] W. Layton, Introduction to Finite Element Methods for Incompressible Vis-cous Flows[M], SIAM, Philadelphia,2008.
    [74] R. Li, Generalized diference methods for a nonlinear Dirichlet problem[J],SIAM J. Numer. Math.24(1987)77–88.
    [75] R.H. Li, Z.Y. Chen, W. Wu, The Generalized Diference Methods for Diferec-tial Equations: Numerical Ananlysi of Finite Volume Methods[M], New York:Marcel Dekker,2000.
    [76] J. Li, L.Q. Mei, Y.N. He, A pressure-Poisson stabilized finite element methodfor the non-stationary Stokes equations to circumvent the inf-sup condition[J],Appl. Math. Comput.182(2006)24–35.
    [77] J. Li, Investigations on two kinds of two-level stabilized finite element methodsfor the stationary Navier–Stokes equations[J], Appl. Math. Comput.182(2006)1470–1481.
    [78] J. Li, Y.N. He, Z.X. Chen, A new stabilized finite element method for thetransient Navier–Stokes equations[J], Comput. Meth. Appl. Mech. Eng.197(2007)22–35.
    [79] J. Li, Y.N. He, Superconvergence of discontinuous Galerkin finite elementmethod for the stationary Navier–Stokes equations[J], Numer. Meth. Part.Difer. Equ.23(2007)421–436.
    [80] J. Li, Z. Chen, A new local stabilized nonconforming finite element methodfor the Stokes equations[J], Computing82(2008)157–170.
    [81] J. Li, Y.N. He, A stabilized finite element method based on two local gaussintegrations for the Stokes equations[J], J. Comput. Appl. Math.214(2008)58–65.
    [82] J. Li, Z.X. Chen, A new stabilized finite volume method for the stationaryStokes equations[J], Adv. Comput. Math.30(2009)141–152.
    [83] J. Li, J.P. Wang, X. Ye, Superconvergence by L2-projections for stabilizedfinite element methods for the Stokes equations[J], Int. J. Numer. Anal. Model.6(2009)711–723.
    [84] J. Li, Y.N. He, Z.X. Chen, Performance of several stabilized finite elementmethods for the Stokes equations based on the lowest equal-order pairs[J],Computing86(2009)37–51.
    [85] J. Li, L.H. Shen, Z.X. Chen, Convergence and stability of a stabilized finitevolume method for the stationary Navier–Stokes equations[J], BIT Numer.Math.50(2010)823–842.
    [86] Y. Li, R. An, Two-level pressure projection finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions[J], Appl. Numer.Math.61(2011)285–297.
    [87] Z.C. Li, Superconvergence of coupling techniques in combined methods forelliptic equations with singularities[J], Comput. Math. Appl.41(2001)379–398.
    [88] Z.C. Li, T.T. Lu, Global superconvergence of finite element methods for bi-harmonic equations and blending surfaces[J], Comput. Math. Appl.44(2002)413–437.
    [89] Q. Lin, H. Xie, Asymptotic error expansion and Richardson extrapolation ofeigenvalue approximations for second order elliptic problems by the mixedfinite element method[J], Appl. Numer. Math.59(2009)1884–1893.
    [90] Q. Lin, Fourth order eigenvalue approximation by extrapolation on domainswith reentrant corners[J], Numer. Math.58(1991)631–640.
    [91] H. Liu, N. Yan, Global superconvergence for optimal control problems gov-erned by Stokes equations[J], Int. J. Numer. Anal. Model.3(2006)283–302.
    [92] Q.F. Liu, Y.R. Hou, A two-level defect-correction method for Navier–Stokesequations[J], Bull. Aust. Math. Soc.81(2010)442–454.
    [93] C. Lovadina, M. Lyly, R. Stenberg, A posteriori estimates for the Stokes eigen-value problem[J], Numer. Meth. Part. Difer. Equ.25(2009)244–257.
    [94] F. Luo, Q. Lin, H. Xie, Computing the lower and upper bounds of laplaceeigenvalue problem: by combining conforming and nonconforming finite ele-ment methods[J], arXiv:1109.5977v1(2011)1–19.
    [95] F.Y. Ma, Y.C. Ma, W.F. Wo, Local and parallel finite element algorithmsbased on two-grid discretization for steady Navier–Stokes equations[J], Appl.Math. Mech.-Engl. Ed.28(2007)27–35.
    [96] B. Mercier, J. Osborn, J. Rappaz, P.A. Raviart, Eigenvalue approximation bymixed and hybrid methods[J], Math. Comp.36(1981)427–453.
    [97] X.Q. Qin, Y.C. Ma, Y. Zhang, Two-grid method for characteristics finite-element solution of2d nonlinear convection-dominated difusion problem[J],Appl. Math. Mech.-Engl. Ed.26(2005)1506–1514.
    [98] A.H. Schatz, I.H. Sloan, L.B. Wahlbin, Superconvergence in finite elementmethods and meshes that are symmetric with respect to a point[J], SIAM J.Numer. Anal.33(1996)505–521.
    [99] Y.Q. Shang, Z.D. Luo, A parallel two-level finite element method for theNavier–Stokes equations[J], Appl. Math. Mech.-Engl. Ed.31(2010)1429–1438.
    [100] Y.Q. Shang, A parallel two-level linearization method for incompressible flowproblems[J], Appl. Math. Lett.24(2011)364–369.
    [101] J. Shen, T. Tang, Spectral and High-Order Methods with Applications[M],Science Press, Beijing,2006.
    [102] G.D. Smith, Numerical Solution of Partial Diferential Equations: Finite Dif-ference Methods[M], Oxford University Press, New York,1985.
    [103] H.J. Stetter, The defect correction principle and discretization methods[J],Numer. Math.29(1978)425–443.
    [104] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (Thirdedition)[M], North-Holland, Amsterdam,1984.
    [105] R. Verfu¨rth, A posteriori error estimators for the Stokes equations[J], Numer.Math.55(1989)309–325.
    [106] R. Verfu¨rth, A posteriori error estimators for the Stokes equations II non-conforming discretizations[J], Numer. Math.60(1991)235–249.
    [107] R. Verfu¨rth, Finite element approximation of incompressible Navier–Stokesequations with slip boundary condition II[J], Numer. Math.59(199l)615–636.
    [108] L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods[M], Lec-ture Notes in Mathematics, Vol.1605, Springer, Berlin,1995.
    [109] J. Wang, A superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems[J], J. Math.Stud.33(2000)229–243.
    [110] J. Wang, X. Ye, Superconvergence of finite element approximations for theStokes problem by projection methods[J], SIAM J. Numer. Anal.39(2001)1001–1013.
    [111] C. Wang, Z.P. Huang, L.K. Li, Two-grid partition of unity method for secondorder elliptic problems[J], Appl. Math. Mech.-Engl. Ed.29(2008)527–533.
    [112] K. Wang, A new defect correction method for the Navier–Stokes equations athigh Reynolds numbers[J], Appl. Math. Comput.216(2010)3252–3264.
    [113] X.S. Wang, X. Ye, Superconvergence analysis for the Navier–Stokes equa-tions[J], Appl. Numer. Math.41(2002)515–527.
    [114] J. Wang, X. Ye, A superconvergence finite element scheme for the Reissner-Mindlin plate by projection methods[J], Int. J. Numer. Anal. Model.1(2004)99–110.
    [115] M.F. Wheeler, J.R. Whiteman, Superconvergence recovery of gradient on sub-domains from piecewise linear finite element approximations[J], Numer. Meth.Part. Difer. Equ.3(1987)65–82.
    [116] J. Xu, A novel two-grid method for semilinear elliptic equations[J], SIAM J.Sci. Comput.15(1994)231–237.
    [117] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs[J],SIAM J. Numer. Anal.33(1996)1759–1778.
    [118] J.C. Xu, A.H. Zhou, A two-grid discretization scheme for eigenvalue prob-lems[J], Math. Comp.70(2009)17–25.
    [119] X. Ye, On the relationship between finite volume and finite element methodsapplied to the Stokes equations[J], Numer. Meth. Part. Difer. Equ.5(2001)440–453.
    [120] X.Ye, Superconvergence of nonconforming finite element method for the Stokesequations[J], Numer. Meth. Part. Difer. Equ.18(2002)143–154.
    [121] X. Yin, H. Xie, S. Jia, S. Gao, Asymptotic expansions and extrapolationsof eigenvalues for the Stokes problem by mixed finite element methods[J], J.Comput. Appl. Math.215(2008)127–141.
    [122] Y. Zhang, Y.N. He, A two-level finite element method for the stationaryNavier–Stokes equations based on a stabilized local projection[J], Numer.Meth. Part. Difer. Equ.27(2011)460–477.
    [123] Z. Zhang, Ultrconvergence of the patch recovery technique[J], Math. Comp.65(1996)1431–1437.
    [124] H.B. Zheng, Y.R. Hou, F. Shi, L.N. Song, A finite element variational multi-scale method for incompressible flows based on two local Gauss integrations[J],J. Comput. Phys.228(2009)5961–5977.
    [125] H.B. Zheng, L. Shan, Y.R. Hou, A quadratic equal-order stabilized method forStokes problem based on two local gauss integrations[J], Numer. Meth. Part.Difer. Equ.26(2010)1180–1190.
    [126] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteri-ori error estimates. Part1: The recovery technique[J], Int. J. Numer. Methods.Engrg.33(1992)1331–1364.
    [127] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a poste-riori error estimates. Part2: Error estimates and adaptivity[J], Int. J. Numer.Methods. Engrg.33(1992)1365–1383.
    [128] M. Zlamal, Superconvergence and reduced intergration in the finite elementmethod[J], Math. Comp.32(1978)663–685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700