谱域光学相干层析成像方法与系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学相干层析成像(Optical Coherence tomography, OCT)技术是一种非侵入、非接触微米级分辨率的成像技术,利用光学相干门来获得组织内部的层析结构。谱域OCT(Spectral domain OCT, SD-OCT)是第二代OCT技术,相比第一代时域OCT技术,在成像速度、信噪比和灵敏度等方面具有明显优势,在眼科成像、功能成像等领域发挥了重要作用。本课题对SD-OCT成像系统及技术进行了研究,具体的研究内容及取得的创新性研究成果有:
     1.研制了由光纤型迈克尔逊干涉仪和基于线阵CCD的快速光谱仪组成的835nm波段的SD-OCT成像系统。其中快速光谱仪的光谱分辨率为0.0674nm,系统轴向扫描(A-scan)速度为29KHz,轴向分辨率为7.5μm,最大成像深度为2.56mm,最大信噪比为115dB,能够对生物组织和散射样品进行高分辨率的实时在体成像。
     2.提出了不借助校正光源,直接基于SD-OCT系统本身对光谱仪进行波长标定的方法。通过获取反射镜样品两个不同位置处的干涉光谱,分别对两个干涉光谱作希尔伯特变换和相位去包裹运算提取光谱相位分布,依据光谱相位分布差和反射镜样品不同位置间的光程差标定波长相对分布。最后由特定像素对应的波长值,确定波长的绝对分布。此标定方法对系统色散不敏感。
     3.分析了光谱仪中典型光谱的聚焦光斑尺寸和系统灵敏度下降之间的关系。通过Zemax模拟了光谱仪中各个光学元件,确定了线阵CCD上的光谱点列图。通过点列图,定性分析了在一定的线阵CCD像素尺寸情况下,典型光谱的聚焦光斑尺寸不同时的系统灵敏度下降曲线。当聚焦光斑尺寸与CCD像素尺寸相比拟时,系统的灵敏度随深度增加的下降趋势缓慢,在2mm的成像深度范围内下降16.1dB。
     4.首次将非均匀傅里叶变换应用在SD-OCT系统进行图像重建。将光谱仪中线阵CCD采集到的光谱信号看做是在波数空间的非均匀采样,直接通过非均匀傅里叶变换重建图像,而不需要进行传统重建算法中的差值处理。人体手指的实时OCT成像结果表明相比传统图像重建方法,基于非均匀傅里叶变换的重建方法能有效抑制系统灵敏度随深度增加而下降的趋势,使样品深层的结构更加清晰。
     5.首次提出了基于正弦空间相位调制的消除共轭镜像的方法,其中参考臂正弦相位调制和样品臂的横向扫描同步进行,即正弦B-M方法。对正弦相位调制后的干涉光谱进行谐波分析构造复干涉频谱,并有效抑制自相关项和直流项,实现全量程的SD-OCT成像。相比已有的线性B-M方法,正弦B-M方法不仅降低了对参考臂移相器件的要求,同时也避免了横向方向的灵敏度下降问题。对活虾的成像结果表明,正弦B-M的方法不仅实现了成像深度范围加倍,同时复共轭抑制率高达45dB。
     6.提出了适用于SD-OCT系统的解卷积方法。在SD-OCT系统中,CCD采集到的干涉光谱信号是原始干涉光谱信号和光谱仪传递函数的卷积,导致了轴向点扩散函数随着成像深度的增加而下降。因此SD-OCT系统不具备空不变特性,无法直接应用于解卷积运算。我们首先通过标定轴向点扩散函数的调制函数,再经过数值补偿后在空间域采用Lucy-Richardson迭代算法解卷积。活虾的OCT图像在解卷积前和解卷积后的对比表明:解卷积算法不仅可以去除OCT图像的模糊,同时可以使样品深层的结构更加清晰。
Optical coherence tomography (OCT) is a non-invasive, non-contact imaging modality with micrometer resolution, which uses coherent gating to obtain cross-sectional images of tissue microstructure. As the second generation of OCT technology, spectral domain OCT (SD-OCT) offers significant advantages in imaging speed, detection sensitivity and signal noise ratio (SNR) in contrast to time domain OCT. Therefore, it plays an important role in the field of ophthalmology and functional imaging. This dissertation is mainly focused on SD-OCT technology, the main work and innovations are summarized as following:
     1. The SD-OCT system at 835nm wavelength is developed, which is consisted of a fiber based Michelson interferometer and a line-scan CCD based high speed spectrometer. The spectral resolution of the spectrometer is about 0.0674nm, corresponding to an axial imaging range of 2.56mm. With the A-scan rate of 29 KHz, the axial resolution and maximum SNR of the system are 7.5μm and 115dB, respectively, which is capable for real time in vivo imaging of biomedical samples.
     2. A spectral calibration method for spectrometer is proposed, which is directly based on the SD-OCT system itself without the utilization of additional calibration source. With two measurements of interference spectra from two reference mirror position, the corresponding phase differences can be calculated after Hilbert transform and phase unwrapping. Then, with the wavelength value of specific CCD pixel, the wavelength distribution on CCD plane can be determined. Furthermore, this method is not sensitive to system unmatched dispersion.
     3. The relationship between system sensitivity fall-off and diffraction spot size is studied. According to the spot diagrams on CCD plane obtained by Zemax, system sensitivity fall-off with different spot size of typical spectral components is calculated. When the spot size of typical spectral components are comparable to the size of CCD pixel, improved depth dependent sensitivity fall-off can be achieved, and sensitivity drops by 16.1dB over 2mm imaging depth range.
     4. Non-uniform discrete Fourier transform (NDFT) is introduced into SD-OCT system for image reconstruction. The spectral data is considered as irregular sampling in wavenumber space, then the depth information can be reconstructed by NDFT directly without interpolation. Real time in vivo imaging of human finger confirms that compared with conventional DFT and interpolation method, reconstruction method based on NDFT indeed improves sensitivity fall-off especially at larger depth.
     5. A spatial sinusoidal phase modulation for the elimination of complex-conjugate artifact is proposed, where sinusoidal phase modulation of reference arm (M scan) and transverse scanning of sample arm (B scan) are performed simultaneously (sinusoidal B-M method). The complex interference spectra are reconstructed by harmonic analysis, its Fourier transform is free of mirror image and coherent noises. Compared with the linear B-M method, the proposed sinusoidal B-M method relaxes the requirements on the phase-shifting mechanical system and avoids sensitivity fall-off along the transverse direction. Double imaging depth range on shrimp with complex conjugate rejection ratio up to 45dB is achieved.
     6. Deconvolution method in SD-OCT system is proposed. In SD-OCT system, the spectral data acquired by CCD is the convolution of the original interference spectral signal and the transfer function of spectrometer, which results in the degradation of axial point spread function (PSF) along the depth direction. Herein, the axial modulation function of the PSF is retrieved firstly. Then after compensating the A-scan signal with the modulation function, devolution method is performed in spatial domain by Lucy-Richardson algorithm. In vivo OCT imaging of a fresh shrimp demonstrates that compared with original image, image enhancement is achieved by the proposed deconvolution method.
引文
1. P. N. Prasad. Introduction to Biophtonics. New York:John Wiley&Sons,2003,6-20.
    2. F. Zernike. "Phase contrast, a new method for the microscopic observation of transparent objects," Physica,1942,9:686-698.
    3. A. T. Brice and P. H. Keck, "The Most Favorable Absorption of the Phase Plate in Phase Contrast Microscopy," J. Opt. Soc. Am.,1947,37:647-647.
    4. R. D. Allen, G. B. David, and G. Nomarski. "The Zeiss-Nomarski differential interference equipment for transmitted light microscopy," Z. Wiss. Mikrosk.,1969,69:193-221.
    5. Rost, F. and Oldfield, R. Differential interference-contrast (DIC) microscopy. Cambridge: Cambridge University Press,2000,136-140.
    6. T. Wilson. Confocal Microscopy. New York:Academic Press,1990,20-32.
    7. G. E. Pierard. "In vivo confocal microscopy:a new paradigm in dermatology," Dermatology, 1993,186:4-5
    8. F. W. D. Rost. Fluorescence microscopy, vol.1. Cambridge:Cambridge University Press, 1992,100-120.
    9. M. Bates, B. Huang, G. T. Dempsey, et al. "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science,2007,317:1749-1753.
    10. E. Betzig, G. H. Patterson, R. Sougrat, et al.. "Imaging intracellular fluorescent proteins at nanometer resolution," Science,2006,313:1642-1645.
    11. G. W. Gordon, G. Berry, X. H. Liang, et al.. "Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy," Biophysical Journal,1998,74: 2702-2713.
    12. P. I. H. Bastiaens, and A. Squire, "Fluorescence lifetime imaging microscopy:Spatial resolution of biochemical processes in the cell," Trends in Cell Biology,1999,9:48-52.
    13. L. Moreaux, O. Sandre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B,2000,17:1685-1694.
    14. J. X. Cheng, and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," Journal of Physical Chemistry B,2004,108: 827-840.
    15. P. A. Franken, A. E. Hill, C. W. Peters, et al.. "Generation of Optical Harmonics," Phys. Rev. Lett.,1961,7:118-119.
    16. W. Denk, J. H. Strickler, W. W. Webb. "Two-photon laser scanning fluorescence microscopy,' Science,1990,248:73-76.
    17. M. DI Duncan, J. Reijntjes, T. J. Manuccia. "Scanning coherent anti-Stokes Raman microscope," Opt. Lett.,1982,7(8):350-352.
    18. Y. R. Shen. The Principles of Nonlinear Optics. New York:Wiley,1984,141-184.
    19. E. Betzig, M. Isaacson, and A. Lewis, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett.,1987,51:2088-2090.
    20. R. C. Dunn, "Near-field scanning optical microscopy," Chemical Reviews,1999,99: 2891-2827.
    21. R. Jones and C. Wykes. Holographic and Speckle Interferometry. Cambridge:Cambridge University Press,1989,25-62.
    22. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, et al.. "Optical biopsy and imaging using optical coherence tomography," Nature Med.,1995,1:970-972.
    23. D. J. Pine, D. A. Weitz, P. M. Chaikin, et al.. "Diffusing-wave spectroscopy," Phys. Rev. Lett.,1988,60:1134-1137.
    24. J. D. Briers. "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiological measurement,2001,22:35-66.
    25. M. A. O'Leary, D. A. Boas, B. Chance, and et al. "Refraction of diffuse photon density waves," Phys. Rev. Lett.,1992,69:2658-2661.
    26. R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry:a new optical evaluation technique," Opt. Lett.,1987,12:158-160.
    27. A. F. Fercher, W. Drexler, C. K. Hitzenberger, et al. "Optical coherence tomography principles and applications," Rep. Prog. Phys.,2003,66:239-303.
    28. P. H. Tomlins and R. K. Wang. "Theory, developments and applications of optical coherence tomography," J. Phys. D:Appl. Phys.,2005,38:2519-2535.
    29. C. Dunsby and P. M. W. French. "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D:Appl. Phys.,2003,36:207-217.
    30.赵全友,范世福,曹文新.“生物组织光学特性参数及其描述”国外医学生物医学工程手册,”2000,23(2):76-79.
    31. S. A. Tereshchenko, V. M. Podgaetskii, N. S. Vorob'ev, et al. "Separate observation of ballistic and scattered photons in the propagation of short laser pulses through a strongly scattering medium," Quantum electron,1998,28(9):831-834.
    32. K. Takada, I. Yokohama, K. Chida, et al. "New measurement system for fault location in optical waveguide devices based on an interferometric technique," Appl. Opt.,1987,26: 1603-1606.
    33. K. Takada, N. Takato, J. Noda, et al.. "Interferometric optical-time-domain reflectometer to determine backscattering characterization of silica-based glass waveguides," J. Opt. Soc. Am. A,1990,7:857-867.
    34. D. Huang, E. A. Swanson, C. P. Lin, et al.."Optical coherence tomography," Science,1991, 254:1178-1181.
    35. Z. Chen, T. E. Milner, D. Dave, et al. "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett.,1997,22:64-66.
    36. Z. Chen, T. E. Milner, S. Srinivas, et al. "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett.,1997,22:1119-1121.
    37. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, et al.. "Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography," Opt. Lett.,1998,23: 1057-1059.
    38. U. Morgner, W. Drexler, F. X. Kartner, et al. "Spectroscopic optical coherence tomography," Opt. Lett.,2000,25:111-113.
    39. D. J. Faber, E. G. Mik, M. C. G. Aalders, et al. "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett.,2003,28:1436-1438.
    40. Chih-Wei Lu, Cheng-Kuang Lee, Meng-Tsan Tsai, et al. "Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography," Opt. Lett.,2008,33:416-418.
    41. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, et al. "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett.,1997,22,934-936.
    42. J. F. de Boer, S. M. Srinivas, B. H. Park, et al. "Polarization effects in optical coherence tomography of various biological tissues," IEEE Journal of Selected Topics in Quantum Electronics,1999,5:1200-1204.
    43. H. Wang, M. K. Al-Qaisi, and T. Akkin, "Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain," Opt. Lett.,2010,35: 154-156.
    44. D. L. Dickensheets and G. S. Kino. "Silicon-micromachined scanning confocal optical microscope," J. Microelectromech. Syst.1998,7:38-47
    45. Y. Pan, E. Lankenau, J. Welzel. "Optical coherence-gated imaging of biological tissues," IEEE J Select Topics Quantum Election.,1996,2:1029-1034.
    46. J. Ballif, R. Gianotti, Ph. Chavanne, et al. "Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry," Opt. Lett.,1997,22:757-759.
    47. J. Szydlo, N. Delachenal, R. Gianotti, et al.. "Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate," Opt. Commun.,1998,154:1-4.
    48. D. J. Campbell, P. A. Krug, I. S. Falconer et al. "Rapid scan phase modulator for interferometric applications," Appl. Opt.,1981,20:335-342.
    49. A. M. Rollins, M. D. Kulkarni, S. Yazdanafar, et al.. "In vivo video rate optical coherence tomography," Opt. Express,1998,3:219-229.
    50. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, "Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry," J. Opt. Soc. Am. A,2003, 20:333-341.
    51. A. F. Fercher, C. K. Hitzenberger, G. Kamp et al.. "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun.,1995,117:43-48.
    52. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto. "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett.,1997,22:340-342
    53. B. Park, M. C. Pierce, B. Cense, et al.. "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3μm," Opt. Express,2005,13: 3931-3944.
    54. G Hausler and M. W Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt.,1998,3:21-31.
    55. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, et al.. "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt.,2002,7:7457-7463.
    56. M. A. Choma, M. V. Sarunic, C. H. Yang, et al.. "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express,2003,11(18):2183-2189.
    57. J. F. de Boer, B. Cense, B. H. Park, et al.. "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett.,2003,28,2067-2069.
    58. R. Leitgeb, C. K. Hitzenberger and A. F. Fercher.. "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express,2003,11(8):889-894.
    59. M. Wojtkowski, T. Bajraszewski, P. Targowski, et al.. "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett.,2003,28:1745-1747.
    60. R. Leitgeb, W. Drexler, A. Unterhuber, et al.. "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express,2004,12:2156-2165.
    61. N. Nassif, B. Cense, B. Hyle Park, et al.. "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett.,2004,29:480-482.
    62. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin et al.. "High-Definition and 3-dimensional Imaging of Macular Pathologies with High-speed Ultrahigh-Resolution Optical Coherence Tomography," Ophthalmology,2006,113(11):2054.e 1-2054.14.
    63. W. Drexler and J. G. Fujimoto. "State of the art retinal optical coherence tomography," Prog. Retin. Eye. Res.,2008,27(1):45-88.
    64. N. Nassif, B. Cense, B. Park, et al. "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express,2004,12: 367-376.
    65. B. Potsaid, I. Gorczynska, V. J. Srinivasan, et al. "Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express,2008, 16:15149-15169.
    66. I. Grulkowski, M. Gora, M. Szkulmowski, et al. "Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express,2009,17:4842-4858.
    67. Y.Zhang, B. Cense, J. Rha, et al. "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express,2006,14: 4380-4394.
    68. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, et al. "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A,2007,24:1327-1336.
    69. B. Cense, E. Koperda, J. M. Brown, et al.. "Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources," Opt. Express,2009,17:4095-4111
    70. Y. Zhang, J. Rha, R. Jonnal, et al.. "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express,2005,13:4792-4811.
    71. B. R. White, M. C. Pierce, N. Nassif, et al.. "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express, 2003,11:3490-3497.
    72. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, et al.. "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett.,2004,29: 171-173.
    73. Y. Ahn, W. Jung, and Z. Chen, "Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography," Opt. Lett.,2007,32:1587-1589.
    74. Jie Meng, Zhihua Ding, Jiawen Li, et al.. "Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography," Opt. Express,2010,18:1261-1270.
    75. Y. Zhao, Z. Chen, C. Saxer, et al.. "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett.,2000,25:114-116.
    76. Y. Zhao, Z. Chen, Z. Ding, et al.. "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation," Opt. Lett.,2002,27:98-100.
    77. E. Rechtman, A. Harris, R. Kumar, et al.. "An update on retinal circulation assessment technologies," Current Eye Research,2003,27(3):329-343.
    78. S. Muscat, S. Parks, E. Kemp, et al.. "Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system," Investigative Ophthalmology & Visual Science,2002,43(2):490-495.
    79. C. Bowd, L.M. Zangwill, E.Z. Blumenthal, et al.. "Imaging of the optic disc and retinal nerve fiber layer:the effects of age, optic disc area, refractive error, and gender," Journal of the Optical Society of America A-Optics Image Science and Vision.2001,19(1):197-207.
    80. L. Alexander and W. Choate. "Optical coherence tomography:rewriting the standard of care in diagnosis, management and interventional assessment," Review of Optometry,2004, 141(9):1-8.
    81. C. A. Sanchez-Galeana, C. Bowd, L. M. Zangwill, et al.. "Short-wavelength automated perimetry results are correlated with optical coherence tomography retinal nerve fiber layer thickness measurements in glaucomatous eyes," Ophthalmology,2004,111(10): 1866-1872.
    82. R. J. Antcliff, M. R. Stanford, D. S. Chauhan, et al.. "Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis," Ophthalmology,2000,107(3):593-599.
    83. S. Yazdanfar, A.M. Rollins, and J.A Izatt. "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Archives of Opthalmology,2003,121(2): 235-239.
    84. S. Makita, Y. Hong, M. Yamanari, et al.. "Optical coherence angiography," Optics Express, 2006,14(17):7821-7840.
    85. R. K. Wang, S. L. Jacques, Zhenhe Ma, et al.. "Three dimensional optical angiography," Opt. Express,2007,15:4083-4097.
    86. S. Jiao, R. Knighton, X. Huang, et al.. "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express,2005, 13,444-452.
    87. N. V. Iftimia, D. X. Hammer, Chad E. Bigelow, et al.. "Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography," Opt. Express,2006,14,12902-12908.
    88. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, et al.. "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett.,2000,25: 820-822.
    89. S. Makita, Y. Yasuno, T. Endo, et al.. "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt.,2006,45: 1142-1147.
    90. E. Gotzinger, M. Pircher, W. Geitzenauer, et al.. "Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography," Opt. Express,2008,16: 16410-16422.
    91. E. Gotzinger, B. Baumann, M.I Pircher, et al.. "Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,' Opt. Express,2009,17:22704-22717.
    92. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express,2005,13: 10217-10229.
    93. B. Baumann, E. Gotzinger, M. Pircher, et al.. "Single camera based spectral domain polarization sensitive optical coherence tomography," Opt. Express,2007,15,1054-1063.
    94. C. Fan, Y. Wang, and R. K. Wang, "Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection," Opt. Express,2007,15,7950-7961.
    1. G Hausler and M. W Lindner. ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt.,1998,3:21-31.
    2. Teresa C. Chen, Barry Cense, Mark C. Pierce et al.. "Spectral Domain Optical Coherence Tomography:Ultra-high Speed, Ultra-high Resolution Ophthalmic Imaging," Arch Ophthalmol.,2005,123(12):1715-1720.
    3. L. W. Couch. Digital and Analog Communications Systems (sixth ed.). New Jersey:Prentice Hall,2001,406-409.
    4. 王凯,丁志华,吴彤,何梓昂.谱域光学相干层析去复共轭成像.光学学报,2009,29:32-36.
    5. J. Ai and L. V. Wang. "Spectral-domain optical coherence tomography:removal of autocorrelation using an optical switch," Appl. Phys. Lett.,2006,88(11):111115-111117.
    6. R. K. Wang and Z. H. Ma. "A practical approach to eliminate autocorrelation artifacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol.,2006,51: 3231-3239
    7. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, et al.. "Coherent noise free ophthalmic imaging by Spectral Optical Coherence Tomography," J. Phys. D:Appl. Phys.,2005,38: 2006-2011.
    8. J. M. Schmitt, L. S. lee, K. M. Yung. "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Comum.,1997,142:203-207.
    9. F. Lexer, C. K. Hitzenberger, W. Drexler, et al.. "Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt.,1999,46:541-553.
    10. I. Haitl, X. D. Li, C. Chudoba, et al.. "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett.,2001,26: 608-610.
    11. A. P. Himmer, L. M. Gordon, X. D. Victor Yang, et al.. "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Comurn., 2004,203:123-128.
    12. Z. Ding, H. Ren, Y. Zhao, et al.., "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt. Lett.,2002,27:243-245.
    13. J. G. Fujimoto, B. Bouma, G. J. Tearney et al. "New technology for high speed and high resolution optical coherence tomography," Ann. NY Acad. Sci.,1998,838:95-107.
    14. U. Morgner, F. X. Kartner, S. H. Cho, et al.. "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett.,1999,24:411-413.
    15. U. Morgner, W. Drexler, F. X. Kartner, et al.. "Spectroscopic optical coherence tomography,' Opt. Lett.,2000,25:111-113
    16. W. Drexler, U. Morgner, et al. "In vivo ultrahigh-resolution optical coherence tomography,' Opt. Lett.,1999,24:1221-1223.
    17. T. H. Ko, D. C. Adler, J. G. Fujimoto, et al. "Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source," Opt. Express, 2004,12:2112-2119.
    18. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, et al. "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express,2008,16:4163-4176.
    19. J. F. de Boer, B. Cense, B. H. Park, et al.. "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett.,2003,28:2067-2069.
    20. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher.. "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express,2003,11(8):889-894
    1. M. Wojtkowski, T. Bajraszewski, P. Targowski, and et al.. "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett.,2003,28:1745-1747.
    2. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, and et al.. "Ophthalmic imaging by spectral optical coherence tomography," Am. J. Ophthalmol.,2004,138:412-419.
    3. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, and et al. "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology annual, 2005,112:1734-1746.
    4. N. Nassif, B. Cense, B. H. Park, et al.. "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett.,2004,29:480-482
    5. N. Nassif, B. Cense, B. Park, et al.. "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express,2004,12: 367-376.
    6. B. Cense, N. A. Nassif, T. C. Chen, et al.. "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express,2004,12:2435-2447.
    7. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, et al.. "Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation," Opt. Express,2004,12:2404-2422.
    8. B. Potsaid, I. Gorczynska, V. J. Srinivasan, et al.. "Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express,2008, 16:15149-15169.
    9. I. Grulkowski, M. Gora, M. Szkulmowski, et al.. "Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express,2009,17:4842-4858.
    10. M. Wojtkowski, "High-speed optical coherence tomography:basics and applications," Appl. Opt.,2010,49:D30-D61.
    11.郁道银,谈恒英.工程光学(第二版).北京:机械工业出版社,2006,356-365.
    12. C. Dorrer, N. Belabas, J. P. Likforman, et al.. "Spectral resolution and sampling issues in Fourier-transform spectral interferometry, " J. Opt. Soc. Am. B,2000,17:1795-1802.
    13. R. Leitgeb, W. Drexler, A. Unterhuber, et al.. "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 2004,12:2156-2165.
    14. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, et al.. "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt.,2002,7:7457-7463.
    15. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am.,1982,72:156-160.
    16. K. Wang and Z. Ding, "Spectral calibration in spectral domain optical coherence tomography," Chin. Opt. Lett.,2008,6:902-904.
    17. K. Wang, Z. Ding, T. Wu et al.. "Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system," Opt. Express,2009, 17(14):12121-12131.
    1. G Hausler and M. W Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt.,1998,3:21-31.
    2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, et al. "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt.,2002,7:7457-7463.
    3. M. A. Choma, M. V. Sarunic, C. H. Yang, et al. "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express,2003,11(18):2183-2189.
    4. J. F. de Boer, B. Cense, B. H. Park, et al.. "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett.,2003,28,2067-2069.
    5. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher.. "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express,2003,11(8):889-894.
    6. B. Potsaid, I. Gorczynska, V. J. Srinivasan, et al. "Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express,2008, !6:15149-15169.
    7. I. Grulkowski, M. Gora, M. Szkulmowski, et al. "Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express,2009,17:4842-4858.
    8. Z. Wang, Z. Yuan, H. Wang, et al. "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express,2006,14:7014-7023.
    9. T. Bajraszewski, M. Wojtkowski, M.Szkulmowski, et al. "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express,2008,16:4163-4176.
    10. Z. Hu, Y. Pan, and A. M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt.,2007,46:8499-8505.
    11. N. Nassif, B. Cense, B. Park, et al. "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express,2004,12: 367-376.
    12. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, et al. "Ultrahigh-resolution high-speed Fourier-domain optical coherence tomography and methods for dispersion compensation," Opt. Express,2004,12:2404-2422.
    13. B. Hofer, B. Povazay, B. Hermann, et al. "Signal post processing in frequency domain OCT and OCM using a filter bank approach," Proc. SPIE,2007,6443:6443001-6.
    14. Z. Hu and A. M. Rollins, "Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer," Opt. Lett.,2007,32:3525-3527.
    15. K. Wang, Z. Ding, T. Wu et al.. "Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system," Opt. Express,2009, 17(14):12121-12131
    16. A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time signal processing. Upper Saddle River, N.J.:Prentice Hall,1999.
    17. S. Bagchi and S. K. Mitra. "The nonuniform discrete Fourier transform and its applications infilter design. I.1-D," IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,1996,43:422-433.
    18. A. J. W. Duijndam and M. A. Schonewille. "Nonuniform fast Fourier transform," Geophysics, 1999,64:539-551.
    19. I. Gohberg and V. Olshevsky. "Complexity of multiplication with vectors for structured matrices," Linear Algebra Appl.,1994,202:163-192.
    20. S. Yun, G. Tearney, B. Bouma, et al. "High-speed spectral-domain optical coherence tomography at 1.3μm wavelength," Opt. Express,2003,11:3598-3604.
    21. B. Park, M. C. Pierce, B. Cense, et al. "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3μm," Opt. Express,2005,13: 3931-3944.
    22. P. M. Zwartjes and M. D. Sacchi. "Fourier reconstruction of nonuniformly sampled aliased seismic data," Geophysics,2007,72:V21-V32.
    1. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain versus time domain optical coherence tomography," Opt. Express,2003,11:889-894.
    2. M. Wojtkowski, T. Bajraszewski, P. Targowski, and et al.. "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett.,2003,28:1745-1747.
    3. P. Carre. "Installation at utilization du comparateur photoelectrique et interferential du Bureau Intentional des Poids et Measures," Metrologia,1966,2:13-23.
    4. J. H. Bruning, J. E. Gallagher, D. P. Rosenfeld, et al.. "Digital wavefront measuring interferometer for testing optical surfaces and lenses," Appl. Opt.,1974,13:2693-2703.
    5. K.Creath. "Phase-shifting speckle interferometry", Appl.Opt.,1985,24:3053-3058.
    6. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, et al.. "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett.2002,27:1415-1417.
    7. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, et al.. "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett.,2003,28:2201-2203.
    8. P. Targowski, I. Gorczynska, M. Szkulmowski, et al.. "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun.,2005,249:357-362.
    9. Jung-Taek Oh and Beop-Min Kim, "Artifact removal in complex frequency domain optical coherence tomography with an iterative least-squares phase-shifting algorithm," Appl. Opt., 2006,45:4157-4164.
    10. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett.,2007, 32:2918-2920.
    11. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers," Opt. Lett.,2003,28:2162-2164.
    12. M. Sarunic, M.A. Choma, C. Yang, et al.. "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express,2005,13: 957-967.
    13. B. J. Vakoc, S. H. Yun, G. J. Tearney, et al.. "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett., 2006,31,362-364.
    14. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express,2006,14: 1487-1496.
    15. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett.,2005,30:147-149.
    16. S. H. Yun, G. J. Tearney, J. F. de Boer, et al.. "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express,2004,12,4822—4828.
    17. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne sweptsource optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt.,2005,10: 064005-064012.
    18. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett.,2006,31:1271-1273.
    19. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, "Demonstration of complex-conjugate-resolved harmonic Fourier-domain optical coherence tomography imaging of biological samples," Appl. Opt.,2007,46:3870-3877.
    20. B. Hofer, B. Povazay, B. Hermann, et al.. "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express,2009,17:7-24.
    21. Y. Yasuno, S. Makita, T. Endo, et al.. "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt.,2006,45: 1861-1865.
    22. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett.,2007,90:054103-1-054103-3.
    23. S. Vergnole, G. Lamouche, and M. L. Dufour, "Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher," Opt. Lett.,2008,33:732-734.
    24. R. A. Leitgeb, R. Michaely, T. Lasser, et all.. "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett.,2007,32,3453-3455.
    25. L. An and R. K. Wang. "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett.,2007,32:3423-3425.
    26. K. Wang, Z. Ding, Y. Zeng, et al.. "Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact," Opt. Express,2009, 17(19):16820-16833.
    1. U. Morgner, W. Drexler, F. X. Kartner, et al. "Spectroscopic optical coherence tomography," Opt. Lett.,2000,25:111-113.
    2. I. Hartl, X. D. Li, C. Chudoba, et al.. "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett.,2001,26: 608-610.
    3. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Differential absorption imaging with optical coherence tomography," J. Opt. Soc. Am. A,1998,15:2288-2296.
    4. U. S. Sathyam, B. W. Colston, L. B. Da Silva, et al. "Evaluation of Optical Coherence Quantitation of Analytes in Turbid Media by Use of Two Wavelengths," Appl. Opt.,1999,38: 2097-2104.
    5. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, "Image enhancement in optical coherence tomography using deconvolution," Electron. Lett.,1997,33:1365-1367.
    6. Y. Liu, Y. Liang, G. Mu, and X. Zhu, "Deconvolution methods for image deblurring in optical coherence tomography," J. Opt. Soc. Am. A,2009,26:72-77.
    7. S. Paes, S. Y. Ryu, J. Na, et al. "Advantages of adaptive speckle filtering prior to alication of iterative deconvolution methods for optical coherent tomography imaging," Opt. Quantum Electron.,2005,37:1225-1238.
    8. T. Bajraszewski, M. Wojtkowski, M.Szkulmowski, et al. "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express,2008,16:4163-4176.
    9. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher.. "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express,2003,11(8):889-894.
    10. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, et al. "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun.,2004,246:569-578.
    11. S. Vergnole, D. Levesque, G. Lamouche, et al. "Characterization of thin layered structures using deconvolution techniques in time-domain and Fourier-domain optical coherence tomography," Proc. SPIE 2007,6796:67961H1-7.
    12. C. S. Seelamantula, M. L. Villiger, R.A. Leitgeb et al. "Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography," J. Opt. Soc. Am. A, 2008,25:1762-1771.
    13. T. S. Ralston, D. L. Marks, F. Kamalabadi et al. "Deconvolution methods for mitigation of transverse blurring in optical coherence tomography," IEEE Trans. Image Process,2005, 14(9):1254-64.
    14. Z. Hu, Y. Pan, and A. M. Rollins, "Analytical model of spectrometer-based two-beam spectral interferometry," Appl. Opt.,2007,46:8499-8505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700