基于应变梯度塑性理论的微纳米尺度材料力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米尺度下,材料力学行为是尺度相关的。材料中各种内界面对变形的约束是导致微尺度效应的主要来源之一。当内界面约束导致的非均匀变形场的“特征波长”和材料的“内禀长度”在同一量级时,微尺度效应不可忽略。内界面约束行为及其尺度效应机理是当前微塑性力学领域关注的重点之一,具有重要的理论价值。
     一方面,应变梯度理论可以很好地捕捉变形场非均匀性对材料力学行为的“附加强化”效应,但对材料中各种内界面约束的处理一直不理想,将它们用于研究由材料内界面约束导致的微尺度效应时存在局限。因此,有必要针对材料不同的内界面,在高阶应变梯度框架下发展相应的界面模型,以合理地刻画与内界面有关的材料变形行为及其微尺度机理。
     另一方面,现有的应变塑性梯度理论多是唯象的,缺乏对材料塑性变形时微结构演化和微观变形机制的深入考虑,理论模型中非常重要的内禀材料长度和微观应力平衡条件往往缺乏明确的物理意义。基于塑性变形的位错机制,发展新的高阶应变梯度理论一直是学术界的热点,也是难点。
     针对上述两个方面的问题,本文开展了一些积极的探索,主要研究内容和取得的创新性成果如下:
     1、针对微纳米材料的变形特点,在高阶应变梯度塑性框架下,提出了三种内界面模型。单晶微柱压缩变形时,塑性滑移层先后屈服,内界面是处于不同变形状态的薄层之间的过渡面。双晶微柱中晶界作为阻碍位错运动的内界面,在应变梯度框架中赋予其界面能,从而有自己独立的屈服准则。纳米多晶材料,晶界体积分数占较大比例,因此作为单独的材料相进行处理,有自己独立的平衡方程和本构关系。
     2、基于应变梯度微柱薄层模型,分析了单晶微柱压缩中出现的“应变陡增”现象。研究表明:高阶应力在相邻塑性薄层界面处是连续的,但在弹性薄层与塑性薄层问的界面处是不连续的;因此,在先后屈服的相邻薄层界面处高阶应力存在跳跃,由此导致了微柱压缩应力-应变曲线上“应变陡增”台阶的出现。另一方面,单品微柱压缩实验应力-应变曲线有较大的分散性,本文的应变梯度微柱薄层模型合理地预测了应力-应变曲线的上下界。
     3、在高阶应变梯度框架下,将晶界作为材料内部的不连续面并被赋予晶界能,提出了具有界面能特性的内界面梯度理论模型。通过对双晶微柱压缩力学行为的分析,结果表明:该界面模型不仅能给出与实验符合良好的微柱压缩应力-应变曲线,而且还发现应力-应变曲线中“两个拐点”分别对应于晶粒和晶界屈服,从而从内在物理机理上对应力-应变曲线三阶段特征进行了解释。
     4、针对纳米多晶材料,将晶界作为与晶粒内部同等地位的“材料相”,提出了考虑有限厚度内界面的梯度理论模型。在该模型中,品界相不仅可以是多晶材料塑性变形的障碍,也可以是塑性变形的通道。通过对多晶材料行为的分析,结果表明:有限厚度的内界面梯度模型不仅较好地描述了纳米多晶材料Hall-Petch和反Hall-Petch效应,而且还给出了从Hall-Petch效应过渡到反Hall-Petch效应时的临界品粒尺寸。
     5、基于位错自能和相互作用能,在热力学框架下建立了功共轭的高阶应变梯度晶体塑性模型。通过简单的位错环构型,建立了镜像力、自力与位错自能演化,以及背应力与位错相互作用能演化之间的内在关系。基于虚功原理,建立了滑移系微观应力平衡方程,较好地捕捉晶体滑移时的流动准则。与现有高阶梯度本构理论相比,本文模型中的“内禀材料长度”被赋予了更加明确的物理意义;同时,它还能与三维离散位错动力学(3D-DDD)以及Evers-Bayley非功共轭的应变梯度晶体塑性框架建立起内在联系。
The mechanic behavior of micro/nano-sized material is size-dependent; one dominant source is the interface constraint which results in the non-uniform deformation filed, the size-dependent phenomena displays when the characteristic wavelength of the non-uniform deformation field is the same order as the intrinsic material length. The interface constraint and its corresponding size-dependent mechanism are the important research concerns in the field of micro/nano-plasticity mechanics, and have theoretical importance.
     One side, the strain gradient theories succeeded in describing the effect of non-uniform deformation fields on the mechanical response of the micro/nano sized materials, however, the reasonable considerations of interface constraint within the strain gradient framework are still not satisfying, thus there are still some limitations in explaining the size-dependent mechanical behavior resulting from the interface constraint. It's necessary to develop a strain gradient model within the strain gradient plasticity framework by treating the interface in different ways with the detailed interface deformation characteristics and mechanisms.
     On the other side, the strain gradient theories are mostly phenomenological, and didn't give a careful and deep consideration for the microstructure evolution and underlying deformation mechanism related with the plastic deformation; meanwhile, there are no clear physical meanings to be endowed to intrinsic material length scales and microscopic stress balance equation. It's an open issue to establish a new strain gradient plasticity theory which should be physically reasonable and enriched with underlying consideration of microstructure related deformation mechanisms.
     In the present dissertation, we address the above two sides of strain gradient plasticity research. The main research contents and results are summarized as follows:
     1、Three different interface models are proposed within the strain gradient theory framework depending on the deformation characteristics of the micro/nano-szied materials. In the compressed single crystalline micropillar, the interfaces lie between the slip layers which are in different deformation status due to asynchronous plastic yielding in the micropillar and play a role as the transition interfaces. In the compressed bi-crystalline micropillar, the grain boundary play a role as barrier to the movement of dislocations, and the interface energy is endowed to the grain boundary within the strain gradient plasticity framework, then the interfacial yielding rules are developed. In nanocrystalline solids, grain boundaries occupy significant volume fraction of the material, thus are treated as a separate phase endowed with balance equations and constitutive equations.
     2、Based on the strain gradient multilayer model, the "strain bursts" phenomena observed in single crystalline micropillar compression experiments are investigated. The higher-order stress, which is discontinuous at the interface between a plastic layer and its neighboring elastic layer but continuous when two neighboring layers begin deforming plastically, is the underlying mechanism responsible for the strain burst. The transition from discontinuity to continuity of the higher-order stress across the internal boundary between two neighboring layers results in the strain burst. Furthermore, the stress-strain response of the single crystal micropillar is dispersed; the strain gradient multilayer model could also capture the upper and lower bounds of the stress-strain curves.
     3、The compression behavior of the bi-crystalline micropillar is interpreted by considering the interface energy term in the grain plasticity framework. Grain boundary is the interface where higher order stress experiences a jump, thus it is modeled using interface energy, an "interfacial" yield criterion is deduced to describe the yielding behavior of grain boundary as a result. The tri-linear stress-strain curves obtained from the theory fit in well with experimental data of bi-crystal micropillars, and display two distinct "knee" at whichthe grain and grain boundary begin to yield.
     4、The mechanical behavior of the nanocrystalline is analyzed using the strain gradient model treating grain boundaries as a separate phase with a finite thickness. Grain boundary phase and grain phase interchange their role to accommodate deformation as the grain size varies from microsclae to nanoscale. Grain boundary phases could be either the obstacles or passage of the plastic deformation depending on the ratio of grain boundary thickness to the grain size. The "normal" to "abnormal" Hall-Petch transition is successfully captured by the present model; the critical grain size at which this transition occurs is also predicted with good agreement with the experiments.
     5、Based on the dislocation self-energy and interaction energy, a thermodynamics consistent work-conjugated higher-order strain gradient crystal plasticity theory is developed. The evolution of self energy based on rectangular dislocation loop is related with the image stress and self stress, and the interaction energy enables the back stress to be deduced. The final microscopic stress balance equation derived from virtual power principle describes the plastic flow of the crystalline material in separate slip system. It should be noted that the multiple intrinsic length scales introduced in present model are related with the characteristic sizes of micro structures in the material, so have specific physical meanings. Furthermore, the present dislocation energy based work-conjugated strain gradient theory is compared with Zbib's three-dimensional discrete dislocation dynamics (3D-DDD) framework and Evers-Bayley models of non-work-conjugated type, and correspondence between them are revealed.
引文
[1]Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews,1994,39(1):1-23
    [2]Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity:Theory and experiment. Acta Metallurgica et Materialia,1994,42(2):475-487
    [3]Haque MA, Saif MTA. Strain gradient effect in nanoscale thin films. Acta Materialia,2003,51(11):3053-3061
    [4]Stolken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Materialia,1998,46(14):5109-5115
    [5]Ma Q, Clarke DR. Size dependent hardness of silver single crystals. Journal of Materials Research,1995,10(4):853-863
    [6]Poole WJ, Ashby MF, Fleck NA. Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Materialia,1996,34(4):559-564
    [7]McElhaney KW, Vlassak JJ, Nix WD. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research,1998,13(5):1300-1306
    [8]Stelmashenko NA, Walls MG, Brown LM, et al. Microindentations on W and Mo oriented single crystals:An STM study. Acta Metallurgica et Materialia, 1993,41(10):2855-2865
    [9]Swadener JG, George EP, Pharr GM. The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids,2002,50(4):681-694
    [10]Elmustafa AA, Stone DS. Indentation size effect in polycrystalline F.C.C. metals. Acta Materialia,2002,50(14):3641-3650
    [11]Nix WD, Gao H. Indentation size effects in crystalline materials:A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1998,46(3): 411-425
    [12]Wei Y, Hutchinson JW. Hardness trends in micron scale indentation. Journal of the Mechanics and Physics of Solids,2003,51(11-12):2037-2056
    [13]Petch NJ. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute,1953,174(1):25-28
    [14]Hall EO. The deformation and ageing of mild steel:Ⅲ Discussion of results. Proceedings of the Physical Society Section B,1951,64(9):747-753
    [15]Dimiduk DM, Uchic MD, Parthasarathy TA. Size-affected single-slip behavior of pure nickel microcrystals. Acta Materialia,2005,53(15):4065-4077
    [16]Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science,2004,305(5686):986-989
    [17]Hutchinson JW. Plasticity at the micron scale. International Journal of Solids and Structures,2000,37(1-2):225-238
    [18]Yip S. Nanocrystals:The strongest size. Nature,1998,391 (6667):532-533
    [19]Jayaram V, Viswanathan NN, Abinandanan TA. A dislocation pile-up model for the yield stress of a composite. Acta Materialia,1999,47(5):1635-1643
    [20]Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science,2009,324(5925):349-352
    [21]Xiang Y, Vlassak JJ. Bauschinger and size effects in thin-film plasticity. Acta Materialia,2006,54(20):5449-5460
    [22]Evans AG, Hutchinson JW, Wei Y. Interface adhesion:Effects of plasticity and segregation. Acta Materialia,1999,47(15):4093-4113
    [23]Arzt E. Overview no.130-Size effects in materials due to microstructural and dimensional constraints:A comparative review. Acta Materialia,1998,46(16): 5611-5626
    [24]Nye JF. Some geometrical relations in dislocated crystals. Acta Metallurgica, 1953,1(2):153-162
    [25]Ashby MF. The deformation of plastically non-homogeneous materials. Philosophical Magazine,1970,21(170):399-424
    [26]Norfleet DM, Dimiduk DM, Polasik SJ, et al. Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Materialia, 2008,56(13):2988-3001
    [27]Uchic MD, Dimiduk DM. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Materials Science and Engineering A,2005,400-401:268-278
    [28]Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Physical Review B,2006,73(24):
    [29]Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia,2005,53(6): 1821-1830
    [30]Volkert CA, Lilleodden ET. Size effects in the deformation of sub-micron Au columns. Philosophical Magazine,2006,86(33-35):5567-5579
    [31]Greer JR, Weinberger CR, Cai W. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars:Compression experiments and dislocation dynamics simulations. Materials Science and Engineering A,2008,493(1-2):21-25
    [32]Kiener D, Motz C, Rester M, et al. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Materials Science and Engineering A, 2007,459(1-2):262-272
    [33]Budiman AS, Han SM, Greer JR, et al. A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray micro diffraction. Acta Materialia,2008,56(3):602-608
    [34]Shan ZW, Mishra RK, Syed Asif SA, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Materials,2008,7(2):115-119
    [35]Greer JR. Bridging the gap between computational and experimental length scales: A review on nanoscale plasticity. Reviews on Advanced Materials Science, 2006,13(1):59-70
    [36]Frick C, Clark B, Orso S, et al. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Materials Science and Engineering A, 2008,489(1-2):319-329
    [37]Schuh CA, Nieh TG, Yamasaki T. Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scripta Materialia,2002,46(10):735-740
    [38]El-Sherik AM, Erb U, Palumbo G, et al. Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel. Scripta Metallurgica et Materialia,1992,27(9): 1185-1188
    [39]Deshpande VS, Needleman A, Van Der Giessen E. Plasticity size effects in tension and compression of single crystals. Journal of the Mechanics and Physics of Solids, 2005,53(12):2661-2691
    [40]Parthasarathy TA, Rao SI, Dimiduk DM, et al. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Materialia,2007,56(4):313-316
    [41]Kiener D, Grosinger W, Dehm G, et al. A further step towards an understanding of size-dependent crystal plasticity:In situ tension experiments of miniaturized single-crystal copper samples. Acta Materialia,2008,56(3):580-592
    [42]Zhang H, Schuster BE, Wei Q, et al. The design of accurate micro-compression experiments. Scripta Materialia,2006,54(2):181-186
    [43]Ouyang C, Li Z, Huang M, et al. Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar:Two-dimensional discrete dislocation dynamics modeling. Materials Science and Engineering A,2009,526(1-2):235-243
    [44]Bei H, Shim S, Miller MK, et al. Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Applied Physics Letters,2007,91(11):111915
    [45]Maaβ R, Van Petegem S, Van Swygenhoven H, et al. Time-resolved laue diffraction of deforming micropillars. Physical Review Letters,2007,99(14): 145505
    [46]MaaB R, Grolimund D, Van Petegem S, et al. Defect structure in micropillars using x-ray microdiffraction. Applied Physics Letters,2006,89(15):151905
    [47]Chen CQ, Pei YT, De Hosson JTM. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Materialia,2010,58(1):189-200
    [48]Ng KS, Ngan AHW. Deformation of micron-sized aluminium bi-crystal pillars. Philosophical Magazine,2009,89(33):3013-3026
    [49]Ng KS, Ngan AHW. Effects of trapping dislocations within small crystals on their deformation behavior. Acta Materialia,2009,57(16):4902-4910
    [50]Greer JR. Effective use of focused ion beam (FIB) in investigating fundamental mechanical properties of metals at the sub-micron scale. Materials Research Society Bulletin,2006,983:LL08
    [51]Aifantis KE, Willis JR. The role of interfaces in enhancing the yield strength of composites and polycrystals. Journal of the Mechanics and Physics of Solids, 2005,53(5):1047-1070
    [52]Armstrong R, Codd I, Douthwaite RM, et al. The plastic deformation of polycrystalline aggregates. Philosophical Magazine,1962,7(73):45-58
    [53]Li JCM. Petch relation and grain boundary sources. Transactions of The Metallurgical Society of AIME,1963,227:239-247
    [54]Li JCM, Chou YT. The role of dislocations in the flow stress grain size relationships. Metallurgical and Materials Transactions B,1970,1(5):1145-1159
    [55]Hansen N. Flow stress and grain size dependence of non-ferrous metals and alloys. Baker, TN (Ed.), Yield, ow and fracture of polycrystals, Vol. Ⅺ. Applied Science Publishers, London,1982.
    [56]Narutani T, Takamura J. Grain-size strengthening in terms of dislocation density measured by resistivity. Acta Metallurgica et Materialia,1991,39(8):2037-2049
    [57]Ovid'ko IA. Deformation and Diffusion Modes in Nanocrystalline Materials. International Materials Reviews,2005,50(2):65-82
    [58]Cosserat E, Cosserat F, Brocato M, et al. Theorie des corps deformables:A. Hermann,1909.
    [59]Toupin RA. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis,1962,11(1):385-414
    [60]Mindlin R. Influence of couple-stresses on stress concentrations. Experimental Mechanics,1963,3(1):1-7
    [61]Mindlin RD. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis,1964,16(1):51-78
    [62]Mindlin RD. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures,1965,1(4):417-438
    [63]Bammann DJ. An internal variable model of viscoplasticity. International Journal of Engineering Science,1984,22(8-10):1041-1053
    [64]Bammann DJ, Aifantis EC. On the perfect lattice-dislocated state interaction. International Symposium on Mechanical Behavior of Structured Media,1981:
    [65]Zbib HM, Aifantis EC. A gradient-dependent flow theory of plasticity:Application to metal and soil instabilities. Applied Mechanics Reviews,1989,42(11):295-304
    [66]Aifantis EC. On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology-Transactions of the ASME,1984,106(4): 326-330
    [67]Aifantis EC. The physics of plastic deformation. International Journal of Plasticity, 1987,3(3):211-247
    [68]Aifantis EC. Update on a class of gradient theories. Mechanics of Materials, 2003,35(3-6):259-280
    [69]Acharya A, Bassani JL. Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids,2000,48(8):1565-1595
    [70]Han CS, Gao H, Huang Y, et al. Mechanism-based strain gradient crystal plasticity Ⅱ. Analysis. Journal of the Mechanics and Physics of Solids,2005,53(5): 1204-1222
    [71]Han CS, Gao H, Huang Y, et al. Mechanism-based strain gradient crystal plasticity-Ⅰ. Theory. Journal of the Mechanics and Physics of Solids,2005,53(5):1188-1203
    [72]Chen SH, Wang TC. A new hardening law for strain gradient plasticity. Acta Materialia,2000,48(16):3997-4005
    [73]Evers LP, Parks DM, Brekelmans WAM, et al. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. Journal of the Mechanics and Physics of Solids,2002,50(11):2403-2424
    [74]Huang Y, Qu S, Hwang KC, et al. A conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity,2004,20(4-5):753-782
    [75]Cheong KS, Busso EP, Arsenlis A. A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts. International Journal of Plasticity,2005,21(9):1797-1814
    [76]Arsenlis A, Parks DM. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Materialia,1999,47(5):1597-1611
    [77]Busso EP, Meissonnier FT, O'Dowd NP. Gradient-dependent deformation of two-phase single crystals. Journal of the Mechanics and Physics of Solids, 2000,48(11):2333-2361
    [78]Fleck NA, Hutchinson JW. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids,1993,41(12): 1825-1857
    [79]Fleck NA, Hutchinson JW. A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids,2001,49(10):2245-2271
    [80]Fleck NA, Hutchinson JW. Strain gradient plasticity. Advances in applied mechanics,1997,33:295-361
    [81]Gao H, Huang Y, Nix WD, et al. Mechanism-based strain gradient plasticity-Ⅰ. Theory. Journal of the Mechanics and Physics of Solids,1999,47(6):1239-1263
    [82]Huang Y, Gao H, Nix WD, et al. Mechanism-based strain gradient plasticity-Ⅱ. Analysis. Journal of the Mechanics and Physics of Solids,2000,48(1):99-128
    [83]Gurtin ME. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids,2002,50(1):5-32
    [84]Mariano PM. A note on Ceradini-Capurso-Maier's theorem in plasticity. International Journal of Plasticity,2002,18(12):1749-1773
    [85]Gurtin ME. A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. International Journal of Plasticity,2008,24(4):702-725
    [86]Gurtin ME. The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity. Journal of the Mechanics and Physics of Solids,2006,54(9):1882-1898
    [87]Fleck NA, Willis JR. A mathematical basis for strain-gradient plasticity theory. Part II:Tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids, 2009,57(7):1045-1057
    [88]Fleck NA, Willis JR. A mathematical basis for strain-gradient plasticity theory Part I:Scalar plastic multiplier. Journal of the Mechanics and Physics of Solids, 2009,57(1):161-177
    [89]Evers LP, Brekelmans WAM, Geers MGD. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids, 2004,52(10):2379-2401
    [90]Bayley CJ, Brekelmans WAM, Geers MGD. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structures,2006,43(24):7268-7286
    [91]Erturk I, van Dommelen JAW, Geers MGD. Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories. Journal of the Mechanics and Physics of Solids,2009,57(11):1801-1814
    [92]Xia ZC, Hutchinson JW. Crack tip fields in strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1996,44(10):1621-1648
    [93]Begley MR, Hutchinson JW. The mechanics of size-dependent indentation. Journal of the Mechanics and Physics of Solids,1998,46(10):2049-2068
    [94]Wei Y, Hutchinson JW. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1997,45(8):1253-1273
    [95]Wei Y, Wang X, Wu X, et al. Theoretical and experimental researches of size effect in micro-indentation test. Science in China, Series A,2001,44(1):74-82
    [96]Wei Y, Wang X, Zhao M, et al. Size effect and geometrical effect of solids in micro-indentation test. Acta Mechanica Sinica,2003,19(1):59-70
    [97]Wei YG. Particulate size effects in the particle-reinforced metal-matrix composites. Acta Mechanica Sinica,2001,17(1):45-58
    [98]Qiu X, Huang Y, Nix WD, et al. Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Materialia,2001,49(19):3949-3958
    [99]Huang Y, Xue Z, Gao H, et al. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research, 2000,15(8):1786-1796
    [100]Gao H, Huang Y, Nix WD. Modeling plasticity at the micrometer scale. Naturwissenschaften,1999,86(11):507-515
    [101]Alder B, Wainwright TE. Phase transition for a hard sphere system. The Journal of Chemical Physics,1957,27:1208
    [102]Schiφtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science,2003,301:1357-1359
    [103]Schiotz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature,1998,391(6667):561-563
    [104]Schiφtz J, Vegge T, Di Tolla FD, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Physical Review B,1999,60:11971
    [105]Van Swygenhoven H. Polycrystalline materials-grain boundaries and dislocations. Science,2002,296(5565):66-67
    [106]Van Swygenhoven H, Caro A, Farkas D. A molecular dynamics study of polycrystalline fcc metals at the nanoscale:grain boundary structure and its influence on plastic deformation. Materials Science and Engineering A, 2001,309-310:440-444
    [107]Capolungo L, Spearot DE, Cherkaoui M, et al. Dislocation nucleation from bicrystal interfaces and grain boundary ledges:Relationship to nanocrystalline deformation. Journal of the Mechanics and Physics of Solids,2007,55(11): 2300-2327
    [108]Capolungo L, Cherkaoui M, Qu J. On the elastic-viscoplastic behavior of nanocrystalline materials. International Journal of Plasticity,2007,23(4):561-591
    [109]Van der Giessen E, Needleman A. Discrete dislocation plasticity:a simple planar model. Modelling and Simulation in Materials Science and Engineering,1995,3(5): 689-735
    [110]Deshpande VS, Needleman A, Van der Giessen E. Discrete dislocation plasticity analysis of single slip tension. Materials Science and Engineering A, 2005,400-401(1-2):154-157
    [111]Cleveringa HHM, Van Der Giessen E, Needleman A. Discrete dislocation analysis of bending. International Journal of Plasticity,1999,15(8):837-868
    [112]Nicola L, Van Der Giessen E, Needleman A. Size effects in polycrystalline thin films analyzed by discrete dislocation plasticity. Thin Solid Films,2005,479(1-2): 329-338
    [113]Balint DS, Deshpande VS, Needleman A, et al. A discrete dislocation plasticity analysis of grain-size strengthening. Materials Science and Engineering A, 2005,400-401(1-2):186-190
    [114]Balint DS, Deshpande VS, Needleman A, et al. Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals. International Journal of Plasticity,2008,24(12):2149-2172
    [115]Nicola L, Van Der Giessen E, Needleman A.2D dislocation dynamics in thin metal layers. Materials Science and Engineering A,2001,309-310:274-277
    [116]Espinosa HD, Panico M, Berbenni S, et al. Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding FCC thin films. International Journal of Plasticity,2006,22(11):2091-2117
    [117]Kubin LP, Canova G. The modelling of dislocation patterns. Scripta Metallurgica et Materialia,1992,27(8):957-962
    [118]Kubin LP, Canova G, Condat M, et al. Dislocation microstructures and plastic flow: A 3D simulation. Solid State Phenomena,1992,23-24:455-472
    [119]Brechet Y, Canova G, Kubin LP. Strain softening, slip localization and propagation: From simulations to continuum modelling. Acta Materialia,1996,44(11): 4261-4271
    [120]Brechet YJM, Canova GR, Kubin LP. Static versus propagative plastic strain localisations. Scripta Metallurgica et Materialia,1993,29(9):1165-1170
    [121]Tang M, Kubin LP, Canova GR. Dislocation mobility and the mechanical response of b.c.c. single crystals:A mesoscopic approach. Acta Materialia,1998,46(9): 3221-3235
    [122]Zbib HM, Rhee M, Hirth JP. On plastic deformation and the dynamics of 3D dislocations. International Journal of Mechanical Sciences,1998,40(2-3):113-127
    [123]Zbib HM, Diaz de la Rubia T. A multiscale model of plasticity. International Journal of Plasticity,2002,18(9):1133-1163
    [124]Benzerga AA, Shaver NF. Scale dependence of mechanical properties of single crystals under uniform deformation. Scripta Materialia,2006,54(11):1937-1941
    [125]Guruprasad PJ, Benzerga AA. Size effects under homogeneous deformation of single crystals:A discrete dislocation analysis. Journal of the Mechanics and Physics of Solids,2008,56(1):132-156
    [126]Akarapu S, Zbib HM, Bahr DF. Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. International Journal of Plasticity,2010,26(2):239-257
    [127]Balint DS, Deshpande VS, Needleman A, et al. Size effects in uniaxial deformation of single and polycrystals:a discrete dislocation plasticity analysis. Modelling and Simulation in Materials Science and Engineering,2006,14(3):409-422
    [128]Nicola L, Xiang Y, Vlassak JJ, et al. Plastic deformation of freestanding thin films: Experiments and modeling. Journal of the Mechanics and Physics of Solids, 2006,54(10):2089-2110
    [129]Li Z, Hou C, Huang M, et al. Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect. Computational Materials Science,2009,46(4):1124-1134
    [130]Fan H, Li Z, Huang M, et al. Thickness effects in polycrystalline thin films: Surface constraint versus interior constraint. International Journal of Solids and Structures,2011,48(11-12):1754-1766
    [131]Depres C, Robertson CF, Fivel MC. Low-strain fatigue in AISI 316L steel surface grains:a three-dimensional discrete dislocation dynamics modelling of the early cycles-Ⅰ. Dislocation microstructures and mechanical behaviour. Philosophical Magazine,2004,84(22):2257-2275
    [132]Curtin WA, Miller RE. Atomistic/continuum coupling in computational materials science. Modelling and Simulation in Materials Science and Engineering, 2003,11(3):R33-R68
    [133]Miller RE, Shilkrot LE, Curtin WA. A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. Acta Materialia,2004,52(2):271-284
    [134]Yang W, Tan H, Guo T. Evolution of crack tip process zones. Modelling and Simulation in Materials Science and Engineering,1994,2(3A):767-782
    [135]Shilkrot LE, Miller RE, Curtin WA. Multiscale plasticity modeling:Coupled atomistics and discrete dislocation mechanics. Journal of the Mechanics and Physics of Solids,2004,52(4):755-787
    [136]Shilkrot LE, Miller RE, Curtin WA. Coupled atomistic and discrete dislocation plasticity. Physical Review Letters,2002,89(2):255011-255014
    [137]Shilkrot LE, Curtin WA, Miller RE. A coupled atomistic/continuum model of defects in solids. Journal of the Mechanics and Physics of Solids,2002,50(10): 2085-2106
    [138]Dewald MP, Curtin WA. Multiscale modelling of dislocation/grain-boundary interactions:I. Edge dislocations impinging on ∑11 (113) tilt boundary in Al. Modelling and Simulation in Materials Science and Engineering,2007,15(1): S193-S215
    [139]Lee TC, Robertson IM, Birnbaum HK. Prediction of slip transfer mechanisms across grain boundaries. Scripta Metallurgica et Materialia,1989,23(5):799-803
    [140]Lee TC, Robertson IM, Birnbaum HK. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philosophical Magazine A,1990,62(1):131-153
    [141]Gudmundson P. Modelling of length scale effects in viscoelastic materials. European Journal of Mechanics A/Solids,2006,25(3):379-388
    [142]Fredriksson P, Gudmundson P. Size-dependent yield strength of thin films. International Journal of Plasticity,2005,21(9):1834-1854
    [143]Gudmundson P. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids,2004,52(6):1379-1406
    [144]Fleck NA, Willis JR. Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite. Journal of the Mechanics and Physics of Solids,2004,52(8):1855-1888
    [145]Aifantis KE, Ngan AHW. Modeling dislocation-grain boundary interactions through gradient plasticity and nanoindentation. Materials Science and Engineering A,2007,459(1-2):251-261
    [146]Aifantis KE, Konstantinidis AA. Hall-Petch revisited at the nanoscale. Materials Science and Engineering B,2009,163(3):139-144
    [147]Aifantis KE, Konstantinidis AA. Yielding and tensile behavior of nanocrystalline copper. Materials Science and Engineering A,2009,503(1-2):198-201
    [148]Aifantis EC. Strain gradient interpretation of size effects. International Journal of Fracture,1999,95(1-4):299-314
    [149]Konstantinidis AA, Aifantis EC. Recent developments in gradient plastioity-Part Ⅱ:Plastic heterogeneity and wavelets. Journal of Engineering Materials and Technology, Transactions of the ASME,2002,124(3):358-364
    [150]Jennings AT, Burek MJ, Greer JR. Microstructure versus Size:Mechanical properties of electroplated single crystalline Cu nanopillars. Physical Review Letters,2010,104(13):135503
    [151]Aifantis KE, Soer WA, De Hosson JTM, et al. Interfaces within strain gradient plasticity:Theory and experiments. Acta Materialia,2006,54(19):5077-5085
    [152]Ng KS, Ngan AHW. A Monte Carlo model for the intermittent plasticity of micro-pillars. Modelling and Simulation in Materials Science and Engineering, 2008,16(5):055004
    [153]Dimiduk DM, Woodward C, LeSar R, et al. Scale-free intermittent flow in crystal plasticity. Science,2006,312(5777):1188-1190
    [154]Dimiduk DM, Uchic MD, Rao SI, et al. Overview of experiments on microcrystal plasticity in FCC-derivative materials:selected challenges for modelling and simulation of plasticity. Modelling and Simulation in Materials Science and Engineering,2007,15(2):135-146
    [155]Ng KS, Ngan AHW. Stochastic nature of plasticity of aluminum micro-pillars. Acta Materialia,2008,56(8):1712-1720
    [156]Ng KS, Ngan AHW. Breakdown of Schmid's law in micropillars. Scripta Materialia,2008,59(7):796-799
    [157]Rao SI, Dimiduk DM, Tang M, et al. Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philosophical Magazine, 2007,87:4777-4794
    [158]Oh SH, Legros M, Kiener D, et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Materials,2009,8(2): 95-100
    [159]El-Awady JA, Wen M, Ghoniem NM. The role of the weakest-link mechanism in controlling the plasticity of micropillars. Journal of the Mechanics and Physics of Solids,2009,57(1):32-50
    [160]Uchic MD, Shade PA, Dimiduk DM. Plasticity of micrometer-scale single crystals in compression. Annual Review of Materials Research 2009,39:361-386
    [161]Liu XD, Hu ZQ, Ding BZ. Hall-Petch relation in nanocrystalline Fe-Mo-Si-B alloys. Nanostructured Materials,1993,2(5):545-552
    [162]Volpp T, Goring E, Kuschke WM, et al. Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostructured Materials, 1997,8(7):855-865
    [163]Narayan J, Venkatesan RK, Kvit A. Structure and properties of nanocrystalline zinc films. Journal of Nanoparticle Research,2002,4(3):265-269
    [164]Venkatesan R, Kvit A, Wei Q, et al. Novel tungsten carbide nanocrystalline composites by pulsed laser deposition. Materials Research Society Symposium Proceedings,2001,634:B6.1.1-B6.1.6
    [165]Chokshi AH, Rosen A, Karch J, et al. On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Metallurgica,1989,23(10):1679-1683
    [166]Palumbo G, Erb U, Aust KT. Triple line disclination effects on the mechanical behaviour of materials. Scripta Metallurgica et Materialia,1990,24(12):2347-2350
    [167]Zhao M, Li JC, Jiang Q. Hall-Petch relationship in nanometer size range. Journal of Alloys and Compounds,2003,361(1-2):160-164
    [168]Sanders PG, Eastman JA, Weertman JR. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Materialia,1997,45(10):4019-4025
    [169]Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science,2009,323(5914):607-610
    [170]Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Progress in Materials Science,2006,51(4):427-556
    [171]Pande CS, Cooper KP. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Progress in Materials Science,2009,54(6):689-706
    [172]Saada G, Dirras G. Chapter 90 Mechanical properties of nanograined metallic polycrystals. In:Hirth JP, Kubin L (eds). Dislocations in Solids:Elsevier, 2009:199-248.
    [173]Carsley JE, Ning J, Milligan WW, et al. A simple, mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostructured Materials, 1995,5(4):441-448
    [174]Konstantinidis DA, Aifantis EC. On the "anomalous" hardness of nanocrystalline materials. Nanostructured Materials,1998,10(7):1111-1118
    [175]Isozaki S, Takaki S, Abiko K. High temperature deformation mechanism of a high-purity Fe-50 mass% Cr alloy. Physica Status Solidi A,1998,167(2):471-480
    [176]Wen W, Morris JG. An investigation of serrated yielding in 5000 series aluminum alloys. Materials Science and Engineering A,2003,354(1-2):279-285
    [177]Huang CX, Wu SD, Li SX, et al. Strain hardening behavior of ultrafine-grained Cu by analyzing the tensile stress-strain curve. Advanced Engineering Materials, 2008,10(5):434-438
    [178]Jiang B, Weng GJ. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. Journal of the Mechanics and Physics of Solids,2004,52(5):1125-1149
    [179]Ovid'ko IA. Review on the fracture processes in nanocrystalline materials. Journal of Materials Science,2007,42(5):1694-1708
    [180]Ovid'ko IA, Sheinerman AG. Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Materialia, 2009,57(7):2217-2228
    [181]Ovid'ko IA, Sheinerman AG, Aifantis EC. Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Materialia,2008,56(12):2718-2727
    [182]Ke M, Hackney SA, Milligan WW, et al. Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostructured Materials,1995,5(6):689-697
    [183]Kim HS, Estrin Y, Bush MB. Constitutive modelling of strength and plasticity of nanocrystalline metallic materials. Materials Science and Engineering A, 2001,316(1-2):195-199
    [184]Kim HS, Estrin Y, Bush MB. Plastic deformation behaviour of fine-grained materials. Acta Materialia,2000,48(2):493-504
    [185]Armstrong RW. Plasticity:Grain size effects Ⅱ. In:Buschow KHJ, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, et al. (eds). Encyclopedia of Materials:Science and Technology Oxford, England:Elsevier,2005:1-8.
    [186]Fu HH, Benson DJ, Meyers MA. Analytical and computational description of effect of grain size on yield stress of metals. Acta Materialia,2001,49(13): 2567-2582
    [187]Meyers MA, Ashworth E. A model for the effect of grain size on the yield stress of metals. Philosophical Magazine A,1982,46(5):737-759
    [188]Tabor D. The hardness of metals:Oxford University Press, USA,2000.
    [189]Kuroda M, Tvergaard V. A finite deformation theory of higher-order gradient crystal plasticity. Journal of the Mechanics and Physics of Solids,2008,56(8): 2573-2584
    [190]Kuroda M, Tvergaard V. On the formulations of higher-order strain gradient crystal plasticity models. Journal of the Mechanics and Physics of Solids,2008,56(4): 1591-1608
    [191]Gurtin ME. A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations. International Journal of Plasticity,2010,26(8):1073-1096
    [192]Gurtin ME, Ohno N. A gradient theory of small-deformation, single-crystal plasticity that accounts for GND-induced interactions between slip systems. Journal of the Mechanics and Physics of Solids,2011,59(2):320-323
    [193]Bayley CJ, Brekelmans WAM, Geers MGD. A three-dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine,2007,87(8-9):1361-1378
    [194]Kuroda M, Tvergaard V. Studies of scale dependent crystal viscoplasticity models. Journal of the Mechanics and Physics of Solids,2006,54(9):1789-1810
    [195]Ohno N, Okumura D. Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids,2007,55(9):1879-1898
    [196]Gurtin ME. On the plasticity of single crystals:free energy, microforces, plastic-strain gradients. Journal of the Mechanics and Physics of Solids, 2000,48(5):989-1036
    [197]Menzel A, Steinmann P. On the continuum formulation of higher gradient plasticity for single and polycrystals. Journal of the Mechanics and Physics of Solids,2000,48(8):1777-1796
    [198]Hirth JP, Lothe J. Theory of Dislocations. New York:Wiley,1982.
    [199]Arsenlis A, Parks DM. Modeling the evolution of crystallographic dislocation density in crystal plasticity. Journal of the Mechanics and Physics of Solids, 2002,50(9):1979-2009
    [200]Groh S, Marin EB, Horstemeyer MF, et al. Dislocation motion in magnesium:a study by molecular statics and molecular dynamics. Modelling and Simulation in Materials Science and Engineering,2009,17(7):075009
    [201]Liu Z, Zhuang Z, Liu X, et al. Bauschinger and size effects in thin-film plasticity due to defect-energy of geometrical necessary dislocations. Acta Mechanica Sinica, 2011:1-11
    [202]Liu ZL, Zhuang Z, Liu XM, et al. A dislocation dynamics based higher-order crystal plasticity model and applications on confined thin-film plasticity. International Journal of Plasticity,2011,27(2):201-216
    [203]Yefimov S, Groma I, Van der Giessen E. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. Journal of the Mechanics and Physics of Solids,2004,52(2):279-300
    [204]Gurtin ME. A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. Journal of the Mechanics and Physics of Solids,2008,56(2):640-662
    [205]Gurtin ME, Anand L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I:Small deformations. Journal of the Mechanics and Physics of Solids,2005,53(7):1624-1649
    [206]Gurtin ME, Anand L. Thermodynamics applied to gradient theories involving the accumulated plastic strain:The theories of Aifantis and Fleck and Hutchinson and their generalization. Journal of the Mechanics and Physics of Solids,2009,57(3): 405-421
    [207]Gurtin ME, Anand L, Lele SP. Gradient single-crystal plasticity with free energy dependent on dislocation densities. Journal of the Mechanics and Physics of Solids, 2007,55(9):1853-1878
    [208]Gurtin ME, Fried E, Anand L. The Mechanics and Thermodynamics of Continua. New York:Cambridge University Press,2010.
    [209]Asaro RJ. Micromechanics of crystals and polycrystals. Advances in Applied Mechanics,1983,23(C):1-115
    [210]Hutchinson JW. Elastic-plastic behavior of polycrystalline metals and composites. Proceedings of the Royal Society of London Series A,1970,319(1537):247-272
    [211]Peirce D, Asaro RJ, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica,1982,30(6):1087-1119
    [212]Kalidindi SR, Bronkhorst CA, Anand L. Crystallographic texture evolution in bulk deformation processing of FCC metals. Journal of the Mechanics and Physics of Solids,1992,40(3):537-569
    [213]Brown SB, Kim KH, Anand L. An internal variable constitutive model for hot working of metals. International Journal of Plasticity,1989,5(2):95-130
    [214]Nemat-Nasser S, Ni L, Okinaka T. A constitutive model for fcc crystals with application to polycrystalline OFHC copper. Mechanics of Materials,1998,30(4): 325-341
    [215]Hutchinson JW. Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London Series A,1976,348(A): 101-127
    [216]Abu Al-Rub RK, Voyiadjis GZ. Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments. International Journal of Plasticity,2004,20(6): 1139-1182
    [217]Anand L, Gurtin ME, Lele SP, et al. A one-dimensional theory of strain-gradient plasticity:Formulation, analysis, numerical results. Journal of the Mechanics and Physics of Solids,2005,53(8):1789-1826
    [218]Voyiadjis GZ, Deliktas B. Modeling of strengthening and softening in inelastic nanocrystalline materials with reference to the triple junction and grain boundaries using strain gradient plasticity. Acta Mechanica,2010,213(1-2):3-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700