长江中下游干流悬沙级配变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游干流是整个长江流域水沙入海的重要通道,其输移的泥沙九成以上是悬沙,研究这些悬沙的级配特性,对于探讨沙源、反映流域物质组成等特性、反射水动力条件、揭示泥沙的冲、输、淤行为以及预测入海悬沙通量都具有十分重要的意义。本文即确定长江中下游干流为研究区域,着重研究该区域悬沙级配的分布及变化特性。
     本研究所依托的数据库:六个水文站(宜昌、新厂、洪山、螺山、汉口、大通)同步的月(年)均悬沙级配资料、流量资料和含沙量资料(1956~1983年不等);三个典型河段(荆江、汉口、大通—江阴)72个断面的历史级配资料(1957~1979年不等);还有重庆—江阴段86个表层等距悬沙样品的级配数据(2002年5-6月)。对历史悬沙级配资料首先进行校正,然后用线性插值程序求出小于0.025mm、0.025mm-0.05mm之间、大于0.05mm三组分的百分含量及中值粒径(D50)作为级配特性的表征;对野外样品用激光粒度仪(LQ-100Q)进行粒度分析,同样提取出上述四个级配参数,并以它们为抓手进行中下游干流悬沙级配特性研究。
     利用水文学、泥沙运动力学和数理统计学的方法,详细分析了中下游干流悬沙级配的分布特征及其随流量、含沙量年内变化关系,并在Microsoft Excel、CorelDRAW9.0、AdobeIllustrator8.0等软件的技术支持下,得到了大量反映研究区域悬沙级配分布及变化特性的图表;同时借助SPSS统计软件,采用多元回归分析方法计算了上、中游来沙级配及分组沙来量对入海悬沙通量的影响关系,建立了一系列可信的经验模型。结果表明:
     长江中下游干流悬沙级配年内变化剧烈,主要体现在冲泻质和床沙质百分比此消彼长的剧烈运动上,受它们的牵制,中值粒径的年内起伏也很大,而过渡质百分比年内变化平平,月际差异甚微:春季悬沙最粗、夏季悬沙最细。
     由于河流沙量集中于汛期,各测站悬沙年均级配与汛期平均级配十分接近,而与枯季平均级配相差较大;荆江段枯季悬沙粗于洪季,与枯季河床冲刷有密切关系;汉口段在丹江口建坝前,洪、枯季悬沙级配十分接近,建坝后,枯季悬沙粗于洪季的年份增多;大通站洪季悬沙粗于枯季,表明水动力对悬沙级配控制作用明显;大通—马鞍山间的感潮河段枯季悬沙明显粗于洪季,而马鞍山—江阴间的感潮河段则是洪季悬沙粗于枯季。
     近中泓悬沙粗、近两岸悬沙细是长江中下游干流各断面悬沙级配横向分布的基本特征,反映出中泓流速大于两边,多数河段近北岸悬沙粗于近南岸,说明近北岸水动力比近南岸强;
    
    长门二中.下游干匀七洲氏常卜月氏.已交下匕庵开,七
    由于受泥沙颗粒自身重力作用,悬沙由表及底由细变粗成为中下游干流各断面悬沙级配竖向
    分布较为显著的特点。
     研究区悬沙级配沿程分布洪、枯季有别:洪季,各测站悬沙粒径相差很小(宜昌站最大),
    反映出洪季整个中下游悬沙主要来自上游;宜昌一新厂一洪山一螺山段悬沙逐步细化,反映
    出洪季该段悬沙除了分流,还以淤积为主;螺山一汉口一大通段悬沙渐渐变粗,汉口较螺山
    粗与汉江来沙粗关系密切,而大通粗于汉口则说明湖口一大通间河床极可能冲刷。枯季,各
    测站悬沙级配相差很大(新厂最粗、洪山其次,二者均比宜昌粗得多),说明枯季上荆江河
    段河床冲刷强烈,因而成为重要沙源区;新厂一洪山一螺山一汉口一大通段悬沙逐级明显细
    化,反映此区段悬沙沿程逐渐淤积。重庆一江阴段表层悬沙(2002年5月底6月初)从上
    至下呈现“三级阶梯”逐级粗化的分布特点揭示:在一定意义上,悬沙粒径分布是雨区及降
    雨强度移动、变化的函数:上游主要产沙区作为中下游“沙源”的意义是季节性的,即只有
    在其发大水时,大量流域面上及淤积在河道内的泥沙才会被冲入中下游河道。
     在没有支流入口的河道内部,悬沙级配与流量及含沙量的关系密切;而在支流汇入的当
    口,因影响因素复杂而相关性差;中下游干流悬沙级配随流量、含水量的年内变化存在明显
    的区域差异:宜昌、新厂、螺山三站悬沙级配主要随流量、含沙量增加而变细;大通站则是
    随之增加而变粗;汉口站各年悬沙级配随流量、含水量变化较复杂,就多年平均而言,在丹
    江口建坝前,悬沙级配随流量、含沙量年内变化趋势不明显;建坝后,则随之增加而明显细
    化。
     上、中游来沙级配对入海悬沙通量的影响虽不及径流来量及来沙量所造成的影响大,但
    也是十分明显的,入海悬沙通量随上、中游来沙粗化而减少;冲泻质是上游可入海悬沙的主
    体,由于受水流长途搬运条件的限制,上游过渡质和床沙质都消耗于分流和河道淤积而不能
    直接入海;中游可入海悬沙以冲泻质占绝对优势,其入海比例比上游的大得多,床沙质在中
    游入海悬沙中占第二位,唯有过渡质对入海悬沙通量造成负面影响,其来源及输移机制有待
    于深入研究。
The main stream of the middle and lower Yangtze reaches has served as a link between the huge Yangtze drainage basin and the East China Sea. More than 90% of sediment transported by it is suspended sediment. The grain-size distribution of suspended sediment is one of the important properties of fluvial sediment It can reveal sediment source, reflect the composition of land surface materials in the drainage basin,vand 'tell" sedimentary processes of erosion, transportation and deposition in both drainage basin and river channel. The changes of suspended sediment grain-size distribution in the area are studied in this paper.
    The historical hydrological records and the recently observed data were collected to examine the properties of suspended sediment grain-size distribution in the study area.
    Methods of hydrology, sediment transportation and statistics are used to analyze the temporal and spatial variability of suspended sediment grain-size distribution and the relations among suspended sediment grain-size, discharge and suspended sediment concentration(SSC). Multiple regression analysis is applied to calculate quantitative relationships between grain-size distribution of suspended sediment and suspended sediment flux to the Sea. The results show:
    suspended sediment grain-size distribution in the middle and lower Yangtze stream fluctuates dramatically in different months, because %<0.025 and %>.05 in suspended sediment change strongly but reversely. The maximum of suspended sediment grain-size appears in spring, while the minimum occurs in summer.
    Mean yearly grain-size distribution of suspended sediment is close to the average of wet season, but far from that of dry season, primarily due to the main transportation of discharge and sediment occurring in flood-period. The relatively clear flow may scour the coarse bed materials in dry season, so the suspended sediment is much coarser than in wet season in Jingjiang section, which is the reverse of mat at Datong hydrological station. Before the construction of Danjiangkou dam, the suspended sediment grain-size distribution in wet season nearly equals to that in dry season in Hankou, while coarse sediment sufficiently increases in most dry seasons after finishing the dam.
    suspended sediment is coarser in the middle river than near bank, which indicates a more strong flow in the middle of river. With water depth increasing, suspended sediment grain-size
    
    
    increases, whichis the general law for all the transects in the study area.
    The spatial variations in suspended sediment grain-size from Yichang downstream in wet season markedly differs from that of dry season: in the wet season, The suspended sediment grain-size fluctuates slightly along the trunk channel, with the maximum occurring at Yichang and the minimum appearing at Luoshan, which shows the same sand source from the upper Yangtze, siltation between Yichang and Luoshan, and probably scouring bed materials between Hukou and Datong in the very season. In the dry season, The suspended sediment grain-size changes strongly, increasing from Yichang to Xinchang, while decreasing from Xinchang to Datong, which indicates the strong suspending bed sand in Jingjiang section, and the siltation from Luoshan to Datong. The fact that the surficial suspended sediment in middle and lower Yangtze is far coarser than that in the upper Yangtze (2002.5-6.) indicates that only in the flood-period that the upper Yangtze becomes the main sand source for the middle and lower Yangtze.
    A strong correlation exists among grain-size, discharge, and SSC in the interior channel such as Xinchang station, a poor correlation occurs at the very place where a main tributary debouches, like Hankou Station. The trend of suspended sediment grain-size with discharge and SSC increasing is different spatially: the grain-size decreases with discharge and SSC increasing at Yichang, Xinchang, and Luoshan hydrological stations, which is a trend opposite to that displayed at Datong station. At Hankou station, generally speaking, there is not perceptible
引文
1.刘峰,李义天,1996.泥沙粒配对水流挟沙力影响的试验研究.长江科学院院报,13(1):30-33.
    2.刘峰,1995.河流泥沙模型输沙计算中对泥沙级配的考虑.广东水电科技,3:14-17.
    3.张永泽,李嘉,赵文谦,1997.紊流中悬沙颗粒跟随性对粒径和密度的依赖性分析.四川水力发电,16(2):83-88.
    4.许全喜,1999.非均匀沙起动问题研究.水动力学研究与进展,A辑14(2):135-141.
    5.曹祖德,焦桂英,2002.粉沙质海岸泥沙运动推悬比的确定.水道港口,23(1):12-41.
    6.许炯心,2002.不同来源水沙对黄河入海泥沙通量的影响.海洋与湖沼,33(5):536-544.
    7.许炯心,1997.黄河下游泥沙淤积的经验统计关系.地理研究,16(1):23-30.
    8. Stone, P.M., Walling, D.E., 1996. Particle size selectivity of sediment mobilization from Devon hillslopes. In: M.G. Anderson, S.M. Brooks(Eds.), Advances in hillslope hydrology. Wiley, Chichester, pp. 507-527.
    9. Gibbs, R.J., Matthews, M.D., Link, D.A., 1971. The relationship between sphere size and settling velocity. J. Sediment. Petrol., 41:7-18.
    10. Stone, P.M., Walling, D.E., 1997. Particle size selectivity considerations in suspended sediment budget investigations. Water Air Soil Pollut., 99:63-70.
    11. Gibbs, R.J., 1977. Transport phases of transition metals in the Amazon and Yukon rivers. Geol. Soc. Am. Bull., 88: 829-843.
    12. Horowitz, A.J, Elrick, K., 1987. The relationship of stream sediment surface area, grain size, and compositon to trace element chemistry. Appl. Geochem., 2:437-451.
    13. Horowitz, A.J., 1991. A primer on sediment-trace element chemistry. Lewis, Michigan.
    14. Malcolm, R.L, Kennedy, V.C., 1970. Variation of cation exchange capacity and rate with particle size in stream sediment. J. Water Pollut. Cont. Fed., 2: 153-160.
    15.赵一阳,鄢明才,1994.中国浅海沉积物地球化学.北京:科学出版社.
    16.师长兴,章典,2000.中国洪水灾害与泥沙关系.地理学报,55(5):627-636.
    17. Holligan P M, de Boois H eds, 1993. Land-Ocean Interactions in the Coastal Zone(LOICZ), Science Plan. Global Change Report, 25: 1-150.
    18. Pemetta J C, Milliman J D eds, 1995. Land-Ocean Interactions in the Coastal Zone(LOICZ),
    
    Implementation Plan. Global..Change Report, 33: 1-125.
    19. Mebeck M, 1976. Total mineral dissolved transport by major world rivers. Hydrological Science Bulletin, 20: 265-284.
    20.李成荣,候晓岚,1996.泥沙颗粒分析工作的发展.人民长江,3:77-79.
    21.刘明月,刘木林,1999.GDY-1型光电颗粒分析仪测定粗颗粒泥沙级配的方法试验.人民黄河,3:35-37.
    22.杨炳桂,邹利华,1991.光电测沙仪在泥沙颗分中的应用,云南水电技术,3:50-53.
    23.和瑞莉等,2001.激光粒度仪分析黄河泥沙粒度初步试验.人民黄河,23:35-36.
    24. Loizeau J L, Arbouile D, Santiago S, et al, 1994. Evaluation of a wide range laser diffraction grain size analyzer for use with sediments.[J]Marine geology, 141: 353-361.
    25.向治安,李克勤,孙敦文.泥沙筛析与沉降粒径关系及其应用.泥砂研究,1997,3:75-81.
    26.程鹏,高抒,李徐生.激光粒度仪测试结果及其与沉降法、筛析法的比较.沉积学报,19(3):449-455.
    27. Martin Konert, Jef Vandenberghe. Comparison of laszer grain size analysis with piette and sieve analysis: a solution for the underestimation of the clay fraction.[J]Sedimentology, 1997, 44: 523-535.
    28.陈秀法,冯秀丽,刘冬雁等,2002.激光粒度分析与传统粒度分析方法相关对比.青岛海洋大学学报,32(4):608-614.
    29.徐还,泥沙颗分方法的比较和粒径计法颗分结果的改正.泥沙研究,1987,(4):87-92.
    30.李克勤,1985.粒径计分析粗沙样级配成果校正方法试验研究.泥沙研究,1:85-89.
    31.向治安,李克勤,1998.悬沙中D>0.06mm粗粒的粒析级配组成及其改正方法.泥沙研究,1: 12-19.
    32.苏杭丽,卢永生,1999.粒径计颗粒级配分析的泥沙群团沉降规律.河海大学学报,27(1):34-37.
    33.熊治平,1986.悬沙级配沿垂线分布问题[J].泥沙研究,2:23-29.
    34.熊治平,1999.悬移质泥沙级配沿垂线分布公式探求.武汉水利电力大学学报,32(3):51-54.
    35.任宏斌,1995.淤积情况下悬移质粒径级配的计算研究.泥沙研究,1:85-91.
    36. Gessler. J., 1971. Critical Shearstress of Sediment Mixture. 14th Congress of IAHR.
    37. Gessler. J., 1973. Behavior of Sediment Mixture in Rivers. International Symposium On River Mechanics, Bangkok, Tailand, 9-12 Ianuary.
    
    
    38.董永华,1985.非均匀推移质若干输沙规律的实验研究.武汉水利电力学院研究生论文.
    39.张启卫,1990.推移质级配的计算方法.泥沙研究,1990,4:41-47.
    39.张启卫.推移质级配的计算方法.泥沙研究,1990,(4):53-60.
    40. Einstein, H. A.,1950. The bed load function for Sediment Transportation In Open Channel Flows. U. S. Dept. Agri., Tech Bull: 1026.
    41.张绪进等,1990.非均匀推移质级配研究.泥沙研究,3:43-49.
    42. Gessler. J., 1970. Self-Stabilizing Tendencies of Alluvial Channel, J. Waterways And Habors Division, ASCE, Vol.96.No.WW2,May.pp.235-249.
    43.陆永军等,1991.非均匀沙推移质输沙率及其级配计算,水动力学研究与进展,A辑6(4): 96-106.
    44.崔侠,1988.非均匀推移质泥沙级配的计算.武汉水利电力学院学报,6:33-39.
    45.李义天,1987.冲淤平衡状态下床沙质级配初探.泥沙研究,1:82-87.
    46.乐培久,1997.冲淤过程中床沙级配调整的一种计算模式.水道港口,2:30-33.
    47.熊治平,1992.河流泥沙级配函数表达式及其检验.泥沙研究,2:76-83.
    48.谢葆玲,1983.实验曲线函数关系式的确定.泥沙研究,2:35-39.
    49.熊治平,1985.泥沙级配曲线函数关系式及床沙质与冲泻质分界粒径的确定.泥沙研究,1985,2:88-94.
    50.王协康,方铎,曹叔尤,1999.宽级配卵石泥沙颗粒特性的分维值及其应用.长江科学院院报,16(5):9-12.
    51.王肃英,1996.黄水河悬移质泥沙颗粒级配变化规律的探讨.青海科技,3(2):15-18.
    52.何晓英,1999.龚嘴水库入库输沙断面月年平均悬移质变化浅析.四川水力发电,18(4):64-65.
    53.周丽艳等,1998.年以来黄河下游河道床沙级配变化分析.人民黄河,22(8):42-43.
    54.蒋国俊,1993.浙江台州湾潮滩不同粒径级悬沙的动力沉积.海洋通报,12(5):51-55.
    55.李伯根,谢钦春等,1999.椒江河口最大浑浊带悬沙粒径分布及其对潮动力的响应.泥沙研究,1:18-25.
    56.陈建国,周文浩,袁玉萍,2002.三门峡水库典型运用时段黄河下游粗细泥沙的输移和调整规律.泥沙研究,2:15-22.
    57.史立人,魏特,1986.长江上游悬移质泥沙的来源与特性的初步分析.长江水利水电科学院院报,1:1-16.
    
    
    58.中国科学院地理研究所,长江水利水电科学研究院,长江航道局规划设计研究所著,1985.长江中下游河道特性及其演变.北京:科学出版社.
    59. Walling D E. Suspended sediment properties and their geomorphological significance, In: Burt T P and Walling E D(eds.)., 1984. Catchment Experiments in Fluvial Geomorphology. Norwich: Geobooks, 311-344.
    60. Walling D E, moorehead P W., 1987: Spatial and temporal wtriation of the particle-size characteristics of fluvial sediment. Geografisa Annaler, 69A(1): 47-59.
    61. Walling D E, Webb B W., 1992. Water quality I. Physical characteristics. In: P Calow and G. Petts(eds.). The River Handbook. Oxford: Blackwell Scientific Publications,48-72.
    62. Walling D E, moorehead P W., 1989. The particle size characteristics of fuvial sediment: an overview, Hydrobiologia, 176/177: 125-149.
    63. Desmond E. Walling, philip N.Owens, Ben D. Waterfall, Graham. J.L. Leeks, Paul D. Wass., 2000. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. The science of the Total Environment.,251/252: 205-222.
    64. Jiongxin Xu, 2002. Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration: the Yellow River basin, china, Catena, 49: 289-307.
    65.刘爱霞,卢金发,2002.黄河中游悬移质泥沙粒径与流域环境的关系.地理学报,57(2):232-237.
    66.李香萍,杨吉山,陈中原,2001.长江流域水沙输移特性.华东师范大学学报(自然科学版),4:88-95.
    67.李长安,殷鸿福,陈德兴,1999.长江中游的防洪问题及对策-1998长江特大洪灾的启示[J].地球科学-中国地质大学学报,24(4):329-334.
    68.蒋德隆,1991.长江中下游气候.北京:气象出版社.
    69.水利部长江水利委员会水文局编著,2000.1998年长江洪水及水文检测预报.北京:中国水利水电出版社.
    70.长江水利委员会,1978.长江流域水文资料,1953-1976(内部资料).
    71.何良彪,李宗霖,1999.台湾岛西南部近岸区沉积作用的特征.黄渤海海洋,4:30-35.
    72.刘阿成,2002.杭州湾口北部的表层沉积物粒度分布和动力沉积作用研究.海洋通报,2:50-56.
    
    
    73.郭志刚,杨作升,范德江,2002.东海陆架北部表层细粒级沉积物的级配及意义.青岛海洋大学学报,32(5):741-747.
    74.赵怡文,陈中原,2003.长江中下游河床沉积物分布特征.地理学报,58(2):223-230.
    75. ROBERT A. WHEATCROFT and CHERYL ANN BUTMAN.,1997. Spatical and temporal variability in aggregated grain-size distributions, with implications for sediment dynamics.Continental Shelf Research, Vol. 17,No.4,PE 367-390.
    76.茹荣忠,2002.杭州湾海域水体悬沙粒度统计分析.东海海洋,20(4):13-18.
    77.余文畴,1986.长江下游水流携沙力经验公式.长江水利水电科学院院报,1:30-36.
    78.吴文浩,1991.长江下游水流挟沙力公式[J].河海大学学报,19(5):118-122.
    79.钱宁,万兆惠,1983.泥沙运动力学,北京:科学出版社.
    80.吉余,沈焕庭,恽才兴等著,1988.长江河口沉积物粒度特征与水动力的关系.长江河口动力过程和地貌演变,上海科学技术出版社,314-322.
    81.韩其为,王玉成,向熙珑,1986.丹江口水库淤积及下游河道冲刷.长江水利水电科学院院报,9-17.
    82. Zhongyuan Chen et al.,2001. Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology, 41: 77-91.
    83.董松年,韩其为,1982.丹江口水库坝下河床演变及其对航道的影响.水电部长江流域规划办公室,23-26.
    84.沈焕庭,张超,毛志昌,2000.长江入河口区水沙通量变化规律.海洋与湖沼,31(3):288-295.
    85.曾庆华,胡春洪,1998.黄河口演变规律及政治.济南:黄河水利出版社,1-98.
    86.长江水资源保护局上海站,长江水资源保护科研所,1988.三峡工程不同蓄水位对河口生态环境影响.长江三峡工程生态与环境影响文集,方子云主编,北京:水利电力出版社,208-237.
    87.上海市海岛资源综合调查总结报告编写组,1996.上海市海岛资源综合调查报告.上海:上海科学技术出版社,20-21.
    88.陈西庆,陈吉余,1997.南水北调对长江口粗颗粒悬沙来量的影响.水科学进展,8(3):259-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700