基于FLUENT的建筑物风沙两相流场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是沙尘天气频发地区,据粗略统计,我国每年因风沙危害造成的直接经济损失高达540亿元人民币。近年来,人们越来越意识到风沙研究的重要性。20世纪80年代,有研究者开始对风沙运动过程进行数值模拟,目前已提出了形式各异的模型。对于超高,大跨和轻质建筑物,结构对风作用的敏感性大大增强,致使风荷载成为此类建筑控制设计的主要荷载之一。目前,土木工程领域利用CFD方法研究风沙共同作用下建筑物表面的风荷载还非常少见。本文正是基于商业CFD软件FLUENT,对风沙共同作用下建筑物周围风场作了数值模拟。
     在建筑物静风荷载的模拟研究中,首先确定了湍流模拟方法——剪切应力模型(SST)。然后分别对两种典型模型:AIJ模型和CAARC模型的数值模拟结果与风洞试验结果进行了对比分析,得出数值模拟结果与风洞试验结果有很好的一致性,证明了利用CFD方法模拟建筑物表面风压的准确性。
     在建筑物风沙荷载的模拟研究中,首先,根据我国建国四十多年来的风沙天气统计报告,选用北京地区和甘肃地区发生的最大沙尘暴统计结果,确定了大气气溶胶的质量浓度极大值,沙粒的折算粒径,沙粒密度等。其次,在静风荷载结果的基础上加入第二相(颗粒相),假设沙粒浓度均匀分布,沙粒相与气体相没有相对滑移,且沙粒相与气体相单向耦合,即沙粒相对气体相无作用。最后,根据模拟结果进行对比分析:根据沙粒浓度不同,风速不同,对AIJ模型和CAARC模型的表面风压以及沙粒沉积进行了研究,验证了CFD在模拟两相流方面的可行性。
China is a region of frequent sandstorm weather, according to the roughly statistics, the annual damage caused by sandstorms against direct economic losses is up to 5.4 billion yuan. More and more people are aware of the importance of sandstorm research. In the 1980s, some researchers have started to researche the sandstorm movement numerical simulation. In the current , many model forms have been proposed. For high, long-span building, the wind effect on the the structures has been greatly enhanced, resulting in wind load control design of buildings as one major load. At present, in the civil engineering field, the use of CFD methods to study the effects of Wind-Blown-Sand load on the surface of buildings is very rare. This article is based on commercial CFD software FLUENT, researching of the numerical simulation of wind loads on the surface of building and Wind-Blown-Sand Two Phase Flow field around the building.
     In the case of the numerical simulation of wind loads on the surface of building, first of all, determining the simulation of turbulence model - shear stress model (SST). Secondly, AIJ model CAARC model and numerical simulation results of wind tunnel tests and the results were compared and analyzed the results of numerical simulation and wind tunnel test results have a good consistency to prove that the use of CFD simulation of the surface of buildings the accuracy of the wind .
     In the case of the numerical simulation of the load of wind-blown-sand two phase flow of building, first of all, according to the records of our country for more than four decades of the sandstorm weather reports, selecting of the biggest sandstorm statistical results in Beijing and Gansu , the quality of the atmospheric aerosol maxima concentration conversion of particle size. Secondly, in the case of the load on the basis of the second phase (the particle phase), sand particles have equivalent size, on the basis of the results of wind load ,adding the second phase (the particle phase), assuming that the concentration of uniform sand, sand with gas phase and there is no slippage, and the gas phase sand coupler with a one-way coupling, that is, the sand has no relative of the gas phase.The last analysis: same wind sand; different concentrations, Wind sand, different concentrations.The last, according to the simulation results: the same volume fraction of sand, different wind speeds; the same volume fraction of sand, different wind speeds, AIJ and CAARC models have been respectively studied. AIJ on CAARC model and the model of wind and sand deposited on the surface have been studied to verify the CFD simulation in two-phase feasibility.
引文
1王式功,杨德保,金炯,徐启运,杨瑜峰.我国西北地区黑风暴的成因和对策.中国沙漠. 1995, 15(1):19~30
    2 A. D. Gosman. Developments in CFD for Industrial and Environmental Application in Wind Engineering. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 81:21~39
    3 T. Stathopolous. Computational Wind Engineering: Past Achievements and Future Challenges. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67-68:509~532
    4 Y. Cheng, F. S. Lien. A Comparison of Large Eddy Simulations with a Standard k ?εReynolds-Averaged Navier–Stokes Model for the Prediction of a Fully Developed Turbulent Flow over a Matrix of Cubes. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91:1301~1328
    5杨伟,顾明.高层建筑三维定常风场数值模拟.同济大学学报. 2003, 31(6):647~651
    6马剑.群体建筑风环境的数值研究.浙江大学硕士学位论文. 2006
    7周晅毅,顾明,李雪峰.大跨屋盖表面风致雪压分布规律研究.建筑结构学报. 2008, 29(2):7~12
    8董飞,刘大有,贺大良.风沙运动的研究进展和发展趋势.力学进展. 1995, 25(3):369~382
    9 R. A. Bagnold. The Physics of Blown Sand and Desert Dunes.Methuen. 1941:101~105
    10 R. S. Anderson, P. K. Haff. Wind Modification and Bed Response during Saltation of Sand in Air. Acta Mechanica. 1991, suppl.1:21~51
    11 T. Nikimi, H. Kamiya, M. Horio. Numerical Simulation of Cohesive Powder Behavior in a Fluid Dynamic. Chemical Engineering Science. 1998, 53(10): 1927~1940
    12周芳,祁海鹰,由长福,徐旭常.有限空间风沙流动数值模拟及边界条件问题.清华大学学报. 2004, 44(8):20~37
    13亢力强,郭烈锦.风沙跃移中颗粒冲击起动的数值模拟.自然科学进展. 2005, 15(2):252~256 - 42 -
    14于涛,李萌堂,郭毅,李军.悬移层风沙运动数值模拟.干旱区地理. 2004, 27(3):347~351
    15 R. S. A. Anderson. Theoretical Model of Eolian Impact Ripples. Sedimentology. 1987, 34:943-956
    16买买提明.艾尼,阿布都克力木.阿布都热合曼,苏白.阿那尔别克.风沙流动与沙纹生成数值模拟分析.第十八届全国水动力学研讨会文集. 2004
    17 A. D. Howard. Sand Transport Model of Barchan Dune Equilibrium. Sedimentoligy. 1985, 25:307~338
    18 W. S. Weng. Air Flow and Sand Transport over Sand Dunes. Acta.Mech. suppl. 1991, 2:1~24
    19 L. Berkofsky. The Prediction of Dust Erosion by Wind: an Interactive Model. 1994, 67:385~406
    20 D. L. Westphal. Acase Study of Mobilization and Transport of Sahara Dust. Jounal of the Atmospheric Science. 1988, 45:2145~2175
    21倪晋仁,李振山.风沙两相流理论及其应用.北京:科学出版社. 1985:8~10
    22吴世亮.风沙流中沙粒跃移规律研究.北京大学硕士研究生论文. 2001
    23刘振兴,董治宝,陈广庭.风沙运动数值模拟研究的进展.干旱区研究. 1997, 14(1):63~68
    24朱久江.风沙两相跃移层中沙粒相的速度分布.力学学报. 2001, 33(1)
    25董治宝,慕青松,王洪涛.风沙流中风速廓线的数值模拟与实验验证.气象学报. 2008, 66(2):158~166
    26刘东生.黄土与环境.北京:科学出版社. 1985:61~62
    27黄滢.基于FLUENT软件的建筑物风场数值模拟.华中科技大学硕士学位论文. 2005
    28傅德薰.流体力学数值模拟.北京:国防工业出版社. 1993
    29 S. Joussaume. Three_Dimensional Simulation of the Atmosphere Cycle of Dust Particles Using a General Circulation Model. J.Geophy. 1990, 95(2):1909~1941
    30 S. Rubinow, J. Keller. The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid. Journal of Fluid Mechincs. 1961, 11:447~459
    31赵斌娟,袁寿其,刘厚林,黄忠富,谈明高.基于Mixture多相流模型计算双流道泵全流道内固液两相湍流.农业工程学报. 2008, 24(1):7~12
    32李健.河道采砂影响的数值模拟研究.长江科学院硕士学位论文. 2008
    33周力行,陈文芳译.湍流气粒两相流动和燃烧的理论与数值模拟.北京科学出版社. 1994
    34 T. Littmann. Dust Storm Frequence in Asia: Climatic Control and Variability. Inter Journal of Climatol. 1991, 11:393~412
    35 B. T. Werner. A Steady State Model of Wind-Blown Sand Transport. Journal of Geology. 1990, 98:1~17
    36王小玲,瞿盘茂.中国春季沙尘天气频数的时空变化及其与地面风压场的关系.气象学报. 2004, 62(1):96~102
    37徐启运,胡敬松.我国西北地区沙尘暴天气时空分布特征.应用气象学报. 1996, 7(4):439~482
    38杨东贞,颜鹏,徐祥德.北京风沙天气的气溶胶特征.应用气象学报. 2002, 13:185~194
    39唐国利,巢清尘.近48年中国沙尘暴的时空分布特征及其变化.应用气象学报. 2005, 16:128~132
    40兰州现代特大尘暴沉积物粒度特征及其意义.兰州大学学报. 1995, 31(4):168~174
    41 Architectural Institute of Japan. Numerical Prediction of Wind Loading on Buildings and Structures. 1998
    42郭毅,李萌堂,李军.非均匀沙风沙运动悬移层数值模拟.干旱区资源与环境. 2004, 18(4):34~38
    43 P. G. Staffman. The Lift on a Small Sphere in a Slow Shere Flow. Journal of Fluid Mechincs. 1965, 22:385~400
    44黄鹏,罗攀,顾明.高层建筑标准模型风洞测压和测力试验研究.第十二届全国风工程学术会议论文集.西安, 2005:240~244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700