弯道水流结构及其紊流特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在与人们生活息息相关的很多领域,流体力学都取得了巨大的成功,但是,人们对天然河流尤其是河流弯道中的水流结构、紊动特性、泥沙及污染物的输移扩散特性的认识却极其有限,这使得人们在预测河床演变、洪水、突发污染事故等与流体力学(水力学)相关的问题时遇到很大的困难。因此,对天然河流弯道中水流结构特性进行研究就显得尤为必要。但是,由于获取实测资料困难、昂贵、精度差,人们对天然河流的基础性研究都是从室内明渠弯道水槽入手的。本文即在此方面进行了探索。
     本试验设计了一个由4个等尺度90o弯段组合连接而成的连续弯道概化模型,采用三维电磁流速仪对该模型中的水流进行了精细测量,得到了每个测点三个方向的瞬时速度时间序列,并对其进行了时均值分析和紊动特性分析。
     本文分析了水面线、纵向水深平均速度、水动力轴线,三个方向流速的垂线分布特点沿流程和横向的不同之处,以及环流沿流程的形成、发展、变化过程,得到了单一弯道水流中的典型结果,如水面线的扭曲、时均流速沿横向、垂向的分布在不同断面上变化、环流在弯道中的沿程演变过程等。同时,也得到了与简单弯道水流不同的结果,如某些断面上表面水流的流向、垂线上纵向流速的最大位置、环流形式的多样性等,这些不同点对研究天然河流连续弯道中的流动有参考价值。
     本文还对试验数据进行了紊动特性分析,包括紊动能谱、紊动强度、紊动切应力、紊动能、紊动剪切效率、紊动时间比尺等,对弯道水流的紊动特性有了大致的认识,如紊动主要集中在10Hz以下,紊动的欧拉积分时间比尺为0,弯道紊动的随机性大等。分析了不同环流形式与各种紊动量的互相影响的关系,得出了环流区域以外的水流紊动强,而其内部的紊动弱;紊动引起的剪切效率在两岸附近和底部附近几乎为0,在水面附近最大,并且其最大位置的分布区域与环流形式有关,在固体边界和水面附近以外的区域,有局部极值出现,这些极值位于环流的边界附近;边壁附近紊动的自相关时间增长,紊动结构的时间尺度增大等一系列结论。
Despite the many achievements fluid mechanics has made in many areas closely related to people's lives, our understanding of the flow structure, characteristics of turbulent flow, contaminant dispersion and sediment transport in river bends are still very limited, which results in difficulties in predicting the dispersion of contaminants and the fluvial processes in the bends of meandering river channels. Therefore research works on the dynamic characteristics of turbulent flow in river bends are urgently needed. Because of the difficulties, high cost and poor accuracy of field measurements, laboratory flume experiment of flow in a bend is a first option for researchers to learn more about this subject. This thesis presents such a flume experiment to study turbulence structures in consecutive bends.
     In this study, a conceptual river bend model with four 90°consecutive bends was built, and a three-dimensional (3D) electromagnetic current meter was used for detailed measurements of the flow turbulence in the channel bends. The point-measurements collected instantaneous time series of the three velocity components across various cross-sections, and both the time-averaged flow and turbulence characteristics were analyzed.
     Results of the experiment include the longitudinal and lateral water surface profiles, depth-averaged longitudinal velocities at various verticals, location of verti-cals where maximal depth-averaged longitudinal velocities were found, variations of velocity profiles over depth in the longitudinal direction and transverse direction for the three velocity components, respectively, and processes of the formation and development of secondary currents along the longitudinal direction. Some results are different from those of flow in a single bend, especially the surface flow from con-cave bank to convex bank at some sections, the vertical position of the maximal longitudinal velocities, and the diversity of the pattern of secondary currents. These results are very helpful to the study of the flow and transport phenomena in the bends of natural meandering rivers.
     This thesis also presents detailed analysis of turbulent flow characteristics in the bend, including turbulence spectrum, turbulence intensity, turbulent shear stress, turbulent kinetic energy, the efficiency of turbulent eddies in producing shear, the time scale of the turbulent flow, etc. It is found out that turbulence energy mainly concentrated in fluctuations below 10Hz and the Euler integral turbulent time scale is 0. The highly random nature of turbulence structure in a bend flow was observed. The mutual influence between the different forms of secondary currents and turbulence variables was analyzed, and the following conclusions are reached: 1) the turbulence energy inside the region of secondary currents is weaker than those outside it; 2) the efficiency for turbulent eddies to produce shear stresses is nearly negligible near the bottom and the two side walls of the flume, with the largest efficiency found near the surface of flow, with its exact location related to the pattern of secondary currents; 3) away from the solid boundaries and water surface, local extreme values of the efficiency can also be found near the edge of the secondary currents; 4)near the bottom and side walls of the flume, the time-scale of turbulence structure increase.
引文
[1] Liu Yue-qin, Zhang Shao-wen, Wu Qiang. Experimental study of 3-D turbulent bend flows in open channel. Journal of Hydrodynamics(Ser. B), 2005, 17(6):704~712
    [2]刁明军,杨海波,李斌华,罗永钦.弯道水力学研究现状与进展.西南民族大学学报(自然科学版),2007,33(3):596~601
    [3]董耀华.弯道水流的基本特性及数值模拟.长江科学院院报,1996,13(1):25~29
    [4]张玉萍.弯道水力学研究现状分析.武汉水利电力大学学报,2000,33(5):35~40
    [5]文华,朱玉琛,付广.流速仪在国内外的研究现状.舰船防化,2007,(3):43~45
    [6]唐小南,窦国仁.明渠紊流的紊动结构特性.水利水运科学研究,1992,(1):1~10
    [7]董曾南,陈长植,李新宇.明槽均匀紊流的水力特性.水动力学研究与进展(A辑),1994,9(1):8~22
    [8] G. Voulgaris, J. H. Trowbridge. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. Journal of Atmospheric and Oceanic Technology, 1998, 15(2):272~289
    [9]刘月琴,万艳春.弯道水流紊动强度.华南理工大学学报(自然科学版),2003,31(12):89~93
    [10]许光祥,史凯.弯道水流的紊动特性.山西建筑,2007,33(12):354~355
    [11]郭维东,周阳,梁岳,冯亚辉.丁坝对弯道水流紊动强度影响的试验研究.水电能源科学,2005,23(5):70~73
    [12]华祖林,褚克坚,邢领航.强弯条件下分层流运动特性试验研究.水科学进展,2005,16(2):203~209
    [13] K. Babaeyan-Koopaei, D. A. Ervine, P. A. Carling, Z. Cao. Velocity and turbulence measurements for two overbank flow events in River Severn. Journal of Hydraulic Engineering, 2002, 128(10):891~900
    [14] J. S. Bridge, J. Javis. The dynamics of a river bend: a study in flow and sedimentary processes. International Association of Sendimentologists,1982, 37(8):499~541
    [15] K. Blanckaert, H. J. De Vriend. Secondary circulation in sharp open-channel bends. Journal of Fluid Mechanics, 2004, 498:353~380
    [16] K. Blanckaert, H. J. De Vriend. Turbulence structure in sharp open-channel bends. Journal of Fluid Mechanics, 2005, 536:27~48
    [17]邓联木,叶闽,王道增.天然河流中大尺度紊动结构的观测分析与雷诺应力计算.水动力学研究与进展(A辑),2001,16(2):187~194
    [18] Nobuhide Kasagi, Akio Matsunaga. Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a back-ward-facing step flow. Journal of Heat and Fluid Flow, 1995, 16:477~485
    [19] S. Kumar, R. Gupta, S. Banerjee. An experimental investigation of the characteristics of free-surface turbulence in channel flow. Physics of Fluids, 1998, 10(2):437~456
    [20] Iehisa Nezu, Akihiro Kadota, Hiroji Nakagawa. Turbulent structure in unsteady depth-varying open-channel flows. Journal of Hydraulic Engineering, 1997, 123(9):752~763
    [21] K. Blanckaert, H. J. De Vriend. Turbulence characteristics in sharp open-channel bends. physics of fluids, 2005, 17(5):717~731
    [22] Koji Shiono, Tong Feng. Turbulence measurements of dye concentration and effects of secondary circulation on distribution in open channel flows. Journal of Hydraulic Engineering, 2003, 129(5):373~385
    [23] S.N. Lane, K.F. Bradbrook, K.S. Richards, P.A. Biron. The application of computational fluid dynamics to natural river channels: three-dimensional versus two-dimensional approaches. Geomorphology, 1999, 29:1~20
    [24] Hitoshi Sugiyama, Daisuke Hitomi, Takuya Saito. Numerical analysis of turbulent structure in compound meandering open channel by algebraic Reynolds stress model. International Journal For Numerical Methods In Fluids, 2006, 51:791~818
    [25]邵学军,王虹,陈智.螺旋状下降的复式断面明渠中紊动结构与次生流动的数值模拟.中国科学E辑技术科学,2004,34(1):64~78
    [26]张明亮,沈永明. RNG k-ε湍流模型在三维弯曲河流中的应用.水力发电学报,2007,26(5):86~91
    [27]吴修广,沈永明,黄世昌.非正交曲线坐标下三维弯曲河流湍流数学模型.水力发电学报,2005,24(4):36~42
    [28]吴修广,沈永明,潘存鸿.天然弯曲河流的三维数值模拟.力学学报,2005,37(6):689~696
    [29]李艳红,周华君.弯曲河流三维数值模型.水动力学研究与进展(A辑),2004,19(S):856~864
    [30] Jian Ye, J.A. Mccorquodale, R.M. Barron. A three-dimensional hydrodynamic model in curvilinear co-ordinates with collocated grid. International Journal For Numerical Methods In Fluids, 1998, 28:1109~1134
    [31] Jian Ye, J.A. Mccorquodale. Simulation of curved open channel flows by 3D hydrodynamic model. Journal of Hydraulic Engineering, 1998, 124(7):687~698
    [32] A. Khosronejad, C. D. Rennie, S. A. A. Salehi Neyshabouri, R. D. Townsend. 3D numerical modeling of flow and sediment transport in laboratory channel bends. Journal of Hydraulic Engineering, 2007, 133(10):1123~1134
    [33] C. Cornelius, W. Volgmann, H. Stoff. Calculation of three-dimensional turbulent flow with a finite volume multigrid method. International Journal For Numerical Methods In Fluids, 1999, 31:703~720
    [34]王博.连续弯道水流及床面变形的试验研究:[硕士学位论文].北京:清华大学水利水电工程系,2008
    [35]水利水电科学研究院,南京水利水电科学研究院.水工模型试验.北京:水利电力出版社,1985年. 111~112
    [36]唐桂兰,黄新,张大中.三种流速测量方法综述.林业建设,1997,(04):11-13
    [37]肖洋,唐洪武,毛野,王志良.新型声学多普勒流速仪及其应用.河海大学学报(自然科学版),2002,(03):15-18
    [38]凌宗胜,赵凤琴.智能电磁流速仪测量原理和抗干扰技术.黑龙江水利科技,2007,35(2):31~32
    [39]蔡守允,杨大明,朱其俊.模型试验流速测量仪器的分析研究.水资源与水工程学报,2007,18(3):36~38
    [40]张红武,吕昕.弯道水力学.北京:水利电力出版社,1993年. 47~132
    [41] Koen Blanckaert, Walter H. Graf. Experiments on flow in an open-channel bend: mean flow and turbulence. Journal of Hydraulic Engineering, 2001, 127(10):835~847
    [42]刘丽,杨成渝,何光春,魏清华.清水紊流流速脉动的谱分析.重庆交通大学学报,2008,27(3):460~462
    [43]夏震寰.现代水力学(三):紊动力学.北京:高等教育出版社,1992年. 193~298
    [44] B. J. MacVicar, E. Beaulieu, V. Champagne, A. G. Roy. Measuring water velocity in highly turbulent flows: field tests of an electromagnetic current meter (ECM) and an acoustic Doppler velocimeter (ADV). Earth Surface Processes and Landforms, 2007, 32:1412~1432
    [45]黄文梅,熊桂林,杨勇.信号分析与处理: MATLAB语言及应用.长沙:国防科技大学出版社,2000年. 222~232
    [46] Frisch U. Turbulence: the legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press. 1995.57~71
    [47] Andr6 G. Roy, Pascale M. Biron, Michel F. Lapointe. Implications of low-pass filtering on power spectra and autocorrelation functions of turbulent velocity signals. Mathematical Geology, 1997, 29(5):653~668
    [48] Anwar H O. Turbulent structure in a river bend. Journal of Hydraulic Engineering, 1986, 112 (8):657~669
    [49]牛军宜.非均匀沙起动、沙垄演化及其相应湍流动力特性实验研究:[硕士学位论文].天津:天津大学建筑工程学院,2007
    [50]王兴奎.明渠水流的紊动特性.水力发电学报,1993,(4):12~21
    [51]余常昭.水力学(上册).北京:高等教育出版社,1996年. 333~418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700