三维水沙运动及河床变形数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维数学模型是解决复杂条件下水沙运动及河床变形问题的重要途径,对它的研究具有重要的理论意义和应用价值。本文建立了三维水沙运动及河床变形数学模型,并对天然河流中三维水沙问题的典型代表——坝区水流、泥沙运动和河床冲淤进行了模拟,其主要工作与成果如下。
     在前人工作的基础上,提出了C-D无结构、z坐标网格上的非静水模型的构造方法,详细论述了其求解过程及特点,并对模型进行了测试。模型基于新兴的压力分裂模式建立,并较传统的C无结构网格上的非静水模型增加了对切向动量方程的求解。为此,对C-D网格与传统C网格上的非静水模型的计算效果、稳定性进行了检测和对比分析。前者的计算具有无噪音性,但当水流中存在较强的非线性动水压力分布时它容易产生非物理解并失稳。基于分析提出了一种联合使用的方法,克服了C-D网格的不稳定问题,使模型兼有C网格的稳定性和C-D网格的计算精度。使用改进方法,成功地模拟了开闸式盐水异重流。
     采用数值实验和数学分析的方法,对本文模型所用到的欧拉-拉格朗日方法(ELM)的时间阻力现象进行了研究,基于分析解释了其本质并提出了改进方法。验证计算表明,改进方法虽不能彻底消除ELM中插值误差的影响,但在小时间步长模拟时能较显著地提高它的计算精度。另外,在无结构、σ坐标网格上建立了三维静水模型,通过计算证实了ELM时间阻力现象的普遍性。
     建立了三维悬移质泥沙数学模型,验证表明计算结果与实验资料符合较好。在垂向使用亚网格技术,提高了模型计算精度,同时提出垂向网格融合技术消除了亚网格技术在河床发生冲淤时带来的不稳定影响。另外,提出了一种追踪不规则河岸动边界的方法,定性的检验计算表明它是合理的、有效的。
     基于对孔口出流物理图形的分析,提出了一种在孔口出流情况下给定孔口处流量、动水压强边界条件的经验方法。另外,在模型中构建了水下坍塌模块。在此基础上,模拟了趋孔水流、急流异重流、概化水库异重流和在不同的坝前地形、水位条件下冲刷漏斗的形成过程,计算结果与实验资料符合较好。
Three-dimensional numerical model is an important approach to cope with the free-surface flow, sediment transport and the river bed deformation, especially in the complex situations, on which the study is valuable from the academic and practical views. A 3-D numerical model for free-surface flow and suspended-sediment transport is developed in this paper, and the typical 3-D flow and sediment transport in a reservoir are simulated. The main work and results are as follows.
     On the basis of the former work, a 3-D non-hydrostatic pressure model for free surface flows on the C-D unstructured, z-level grid is built. The details and properties of model formulation are described, and the model is validated by benchmarks. The model is based on the newly developed pressure-split mode, and it augments the solution of the tangential momentum equation comparing to models on the C grid. Hence, the comparison and discussion about the non-hydrostatic pressure models on the C-D and C grid is done. Based on practice, simulations by using the former are free of noisy, but the model produce unphysical solutions and becomes unstable when a strong nonlinear distribution of non-hydrostatic pressure exists. Based on analysis, a combination of the two is proposed to avoid the instability of the C-D grid, which gives the model the stability of the C grid and the exactness of the C-D grid. By using the improved method, the lock-exchange salty density flow is simulated successfully.
     By combining numerical experiments and formal analysis we investigate the artificial resistance of the Eulerian-Lagrangian Method (ELM) which is used in our model. The phenomena are explained and an improved method is proposed based on the illustrations and analysis. The validation indicates that though the new method does not eliminate the ELM interpolation error absolutely, it does improve the exactness for simulations at small time steps. More over, a 3-D hydrostatic pressure model for free surface flows on the C-D unstructured,σgrid is built. The artificial resistance is revealed to be ubiquitous for the ELM, though theσgrid is found to be able to reduce its influence.
     A suspended-load transport model is built on the basis of the hydrodynamic model, and validations indicate that the simulations agree well with the experiment data. Then a method for tracking moveable, irregular river bank is proposed, the qualitative check indicate that it is applicable and effective. More over, the sub-grid technique is used in the model to make simulations more exact, and it is found that this technique may introduce instability due to the bed degradation and aggradation. And a grid-union method is proposed to make the sub-grid technique robust.
     Based on the analysis of the physical process of the flow around an orifice, new experiential methods are proposed to determine the boundary conditions of discharge and hydrodynamic pressure at the orifice. More over, a module for simulating the block sliding under water is built. After that, the following projects are simulated: the orifice associated flow, the density flow after a hydraulic jump, the simplified reservoir density flow, the development of the filler just before the bottom orifice at different topography and water levels. The simulation results agree well with the experiment data.
引文
[1]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社, 1998.
    [2] Lin P, Li C W. Aσ-coordinate three-dimensional numerical model for surface wave propagation. Int. J. Numer. Methods Fluids, 2002, 38(11): 1045–1068.
    [3] Kocyigit M B, Falconer R A, Lin B. Three-dimensional numerical modelling of free surface flows with non-hydrostatic pressure. International Journal for Numerical Methods in Fluids, 2002, 40(9):1145–1162.
    [4] Thompson J F, Thames F C, Mastin C W. Automatic numerical generation of body-fitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 1974, 15:299.
    [5] Changsheng Chen, Hedong Liu, Robert C, et al. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries, Journal of Atmospheric and Oceanic Technology, 2003, 20:159-186.
    [6]陶文铨.计算传热学的近代进展.北京:科学出版社, 2000.
    [7]陶文铨.数值传热学(第二版).西安:西安交通大学出版社, 2001.
    [8]谭维炎.计算浅水动力学.北京:清华大学出版社, 1998.
    [9]王志刚.实际地形溃坝水流的数值模拟[硕士学位论文].南京:河海大学, 2003.
    [10]赖锡军.温盐分层流的非结构网格数值模拟[博士学位论文].南京:河海大学, 2003.
    [11] Casulli V, Walters R A. An unstructured grid,three-dimensional model based on the shallow water equations. Int J Numer Meth Fluids, 2000, 32(3):331–348.
    [12] Zhang Y L, Baptista A M, Myers E P. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems: I. Formulation and skill assessment. CONTINENTAL SHELF RESEARCH, 2004, 24(18):2187-2214.
    [13] Fringer O B, Gerritsen M, Street R L. An unstructured-grid, finite-volume, non-hydrostatic, parallel coastal ocean simulator. Ocean Modeling, 2006(14):139–173.
    [14] Phillips N A. A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 1957, 14:184 - 185.
    [15] Blumberg A F, Mellor G L. A Description of a Three-Dimensional Coastal Ocean Circulation Model. In: Three-Dimensional Coastal Ocean Models, N.Heaps, Ed., American Geophys. Union, 1987, 1-16.
    [16] HydroQual. A primer for ECOMSED, version 1.3 Users Manual. HydroQual, Inc., Mahwah, New Jersey, 2002.
    [17] Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modeling, 2005, 9:347–404.
    [18] Haney R L. On the pressure gradient force over steep topography in sigma-coordinate ocean models.Journal of Physics Oceanography, 1991, 21:610 - 619.
    [19] Mellor, G L. T. Ezer and L. Y. Oey, The pressure gradient conundrum of sigma coordinate ocean models.J. Atmos. Oceanic. Technol., 1994,11(4):1126-1134.
    [20] Beckmann A, Haidvogel D B. Numerical simulation of flow around a tall isolated seamount. Part I : Problem formulation and model accuracy. Journal of Physics Oceanography, 1993, 23: 1736-1753.
    [21] Stelling G, van Kester J A. On the approximation of horizontal gradients in sigma coordinates for bathymetry with steep bottom slopes. International Journal for Numerical Methods in Fluids, 1994, 18(10):915–935.
    [22] Huang W, Spaulding M. Reducing horizontal diffusion errors in sigma-coordinate coastal ocean models with a second order Lagrangian-interpolation finite-difference scheme. OCEAN ENGINEERING, 2002, 29(5):495-512.
    [23] McCalpin, J D. A comparison of second-order and fourth-order pressure gradient algorithms in aσ-coordinate ocean model. International Journal for Numerical Methods in Fluids, 1994, 18(4):361–383.
    [24]陶建峰,张长宽.河口海岸三维水流数值模型中几种垂向坐标模式研究述评.海洋工程, 2007, 25(1):133-142.
    [25] Halliwell G R. Evaluation of vertical coordinate and verticalmixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modelling, 2004, 7:285–322.
    [26] Barron C N, Kara A B, Martin P J, et al. Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Modelling, 2006, 11:347–375.
    [27] Harlow F H , Welch J E. Numerical calculation of time-dependent viscous incompressible fluid with free surface. Phys. Fluid, 1965, 8:2182 - 2189.
    [28] Cox M D. A primitive equation, 3-dimensional model of the ocean: GFDL Ocean Group Technical Rept No. 1, Geophysical Fluid Dynamics Laboratory/NOAA, Princeton Univ., Princeton, NJ, variously paged, 1984.
    [29] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39: 201-225.
    [30] Richtmyer R D, Morton K W. Difference methods for initial problems. (2nd ed.) New York: Interscience Publisherd, 1967.
    [31]汪德爟.计算水力学理论与应用.南京:河海大学出版社, 1989.
    [32] Baker A J. Finite element computational fluid mechanics. New York: McGraw-Hill, 1983.
    [33]孔祥谦.有限单元法在传热学中的应用(第三版).北京:科学出版社, 1998.
    [34] Chen C J, Neshart-Naseri H, Ho K S. Finite analytic numerical simulation of heat transfer in two-dimensional cavity flow. Numer Heat Transfer, 1981, 4:179-197.
    [35]李炜.黏性流体的混合有限分析解法.北京:科学出版社, 2000.
    [36] Simons T J. Verification of numerical models of Lake Ontario: Part 1, Circulation in spring and early summer. J Phys Oceanogr, 1974, 4:507-523.
    [37] Madala R V, Piacsek S A. A semi-implicit numerical model for baroclinic oceans. J Comput Phys, 1977, 23:167-168.
    [38] Casulli V, Chen R T. Semi-implicit finite difference methods for three-dimensional shollow water flow. International Journal for Numerical Methods in Fluids, 1992, 15:629-648.
    [39] Leendertse J J, Alexander R C, Liu S K. A three-dimensional model for estuaries and coastal seas, volume 1, Principle of computation. The Rand Corporation, Santa Monica, Calif, R1417-OWRR, 1970.
    [40] Weare T J. Errors arising from irregular boundaries in ADI solutions of the shallow water equations. Int J Numer Meth. Eng, 1979, 14 : 921 - 931.
    [41] Casulli V. Semi-implicit finite difference methods for two dimensional shallow water equations. Journal of Computational Physics, 1990, 86:56-74.
    [42] Stansby P K, Lloyd P M. A semi-implicit lagrangian scheme for 3D shallow flow with a two layer turbulence model. Int J Numer M ethods in Fluids, 1995, 20:115-133.
    [43] Casulli V, Stelling G S. Numerical simulation of 3D quasi-hydrostatic, free-surface flows, ASCE J. Hydraul. Eng.,1998:124(7):678–686.
    [44] Casulli V. A semi-implicit finite difference method for nonhydrostatic, free-surface flows[J].International Journal for Numerical Methods in Fluids 1999,30(4):425–440.
    [45] Casulli V, Zanolli P. Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. MATHEMATICAL AND COMPUTER MODELLING, 2002, 36(9-10):1131-1149.
    [46]王志力.基于Godunov和Semi_Lagrangian法的二三维浅水方程的非结构化网格离散研究[博士学位论文].大连:大连理工大学, 2005.
    [47] Cheng R T, Casulli V, et al. Eulerian-Lagrangian solution of the convection-dispersion equation in natural coordinates. Water Resources Research, 1984, 20:944-952.
    [48] Casulli V. Eulerian-Lagrangian methods for the naver-stocks equations at high Reynolds number.International Journal for Numerical Methods in Fluids,1988,8:1349-1360.
    [49] Baptista A M. Solution of advection-dominated transport by Eulerian-Lagrangian methods using the backwards method of characteristics. PhD dissertation, MIT, Cambridge, 1987.
    [50] Dimou K. 3-D hybrid Eulerian-Lagrangian / particle tracking model for simulating mass transport in coastal water bodies. Cambridge: Massachusetts Institute of Technology, 1992.
    [51] Oliveira A, Baptista A M. On the role of tracking on Eulerian-Lagrangian solutions of the transport equation. Adv Water Resour, 1998, 21:539-554.
    [52] Jankowski J A. A non-hydrostatic model for free surface flows. Hannover: Hannover University, 1999.
    [53] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer, 1972, 17:1787-1806.
    [54] Mahadevan A, Oliger J, Street R. A nonhydrostatic mesoscale ocean model. Part II: numerical implementation. Journal of Physical Oceanography 1996; 26(9):1881–1900.
    [55] Marshall J, Hill C, Perelman L, Adcroft A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 1997a, 102:5733–5752.
    [56] Marshall J, Adcroft A, Hill C, et al. A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 1997b, 102 (C3):5753–5766.
    [57] Fang H W, Wang G Q. Three-dimensional mathematical model of suspended sediment transport. Journal of Hydraulic Engineering-ASCE, 2000, 126 (8): 578-592.
    [58] Fang H W, Rodi W. Three-dimensional mathematical model and its application in the neighborhood of the Three Gorges Reservoir dam in the Yangtze River. ACTA MECHANICA SINICA, 2002, 18(3):235~242.
    [59]陆永军,窦国仁,韩龙喜,邵学军,杨向华.三维紊流悬沙数学模型及应用.中国科学E辑技术科学, 2003, 34(3):311-328.
    [60]黄国鲜.弯曲和分汊河道水沙输运及其演变的三维数值模拟研究[博士学位论文].北京:清华大学水利水电工程系, 2006.
    [61] Chorin A J. Numerical solution of the Navier-Stokes equations. Math. of Computation, 1968, 22: 745–762.
    [62] Temam R. Projection methods for solving sparse linear systems. The Comp. J, 1969, 12(1), 77–80.
    [63] Li B, Fleming C A. Three-dimensional model of Navier–Stokes equations for water waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 2001, 127 (1):16–25.
    [64] Namin M M, Lin B, Falconer R A. An implicit numerical algorithm for solving non-hydrostatic free-surface flow problems. International Journal for Numerical Methods in Fluids, 2001 35:341–356.
    [65] Yuan H L, Wu C H. Fully non-hydrostatic modeling of surface waves. Journal of Engineering Mechanics-ASCE, 2006, 132 (4): 447–456.
    [66] Young C C, Wu C H, Kuo J T, et al. A higher-orderσ-coordinate non-hydrostatic model for nonlinear surface waves. Ocean Engineering, 2007, 34:1357–1370.
    [67]窦国仁.潮汐水流中悬沙运动及冲淤计算.水利学报, 1963 (4):13-24.
    [68]韩其为.悬移质不平衡输沙的研究.第一届河流泥沙国际学术讨论会论文集,北京:光华出版社, 1980.
    [69]谢鉴衡,魏良琰.河流泥沙模型的回顾与展望.泥沙研究, 1987 (3).
    [70]林秉南.关于一维动床数学模型的讨论.三峡工程泥沙问题研究成果汇编(160-180m蓄水位方案),水利电力部科学技术司, 1988.
    [71] Feldman A. D. Hec Models for Water Resources System Simulation Theory and Experience. The Hydraulic Engineering Center, Davis, California, 1981.
    [72]芦田和男.水库淤积预报.第一届河流泥沙国际学术讨论会论文集,北京:光华出版社, 1980.
    [73]窦国仁.河流泥沙全沙物理模型研究.科学通报, 1979, 24(14).
    [74]韩其为,何明民.水库淤积与河床演变的(一维)数学模型.泥沙研究, 1987(3):14-29.
    [75]杨美卿,陈亦平.卵石夹沙河床长期清水冲刷的数学模型.泥沙研究, 1988 (1):45-54.
    [76]杨国录.河流数学模型.北京:海洋出版社, 1993.
    [77]李义天,高凯春.三峡枢纽下游宜昌至沙市河段河床冲刷的数值模拟研究.泥沙研究, 1996(2):3-8.
    [78]韦直林,赵良奎,付小平.黄河泥沙数学模型研究.武汉水利电力大学学报, 1997, 30(5):21-25.
    [79]张小峰,谢葆玲,许全喜.三峡水库蓄水初期泥沙淤积预测模型研究,中国水力发电工程学会水文泥沙专业委员会第六届学术讨论会论文集, 2005, 10.
    [80]陆永军,张华庆.清水冲刷宽级配河床粗化机理试验研究.全国泥沙基本理论研究学术讨论会论文集, 1992:201-209.
    [81]张红武,黄远东,赵连军,江恩惠.黄河下游非恒定输沙数学模型Ⅰ模型方程与数值方法.水科学进展, 2002, 13(3):265-270.
    [82]张红武,黄远东,赵连军,江恩惠.黄河下游非恒定输沙数学模型Ⅱ模型验证.水科学进展, 2002, 13(3):271-277.
    [83]李义天,谢鉴衡.冲积河流平面二维数学模型研究.水利学报, 1986(11):8-18.
    [84]李义天.河道平面二维泥沙数学模型研究.水利学报, 1989(2):9-14.
    [85]周建军,林秉南,王连祥.平面二维泥沙输移数学模型研究.水利学报, 1991(5):8-18.
    [86]陆永军.松花江三姓浅滩航道整治的二维数值模拟研究.泥沙研究, 1998(6):26-35.
    [87] Zhang X F, Yu M H. Numerical simulation of bed deformation in dike burst, Journal of Hydrodynamics, Ser. B, 2001, 13(4): 60-64.
    [88]钟德钰,张红武.考虑环流横向输沙及河岸变形的平面二维扩展数学模型.水利学报, 2004, 7:14-20.
    [89] van Rijn L C. Mathematical modeling of morphological processes in the case of suspended sediment transport. Journal of Hydraulics Division, ASCE, 1987, 113 (3): 981-994.
    [90] Spasojevic M, Holly F M. 2D bed evolution in natural water courses new simulation approach. Journal of Waterway, Port, Coastal and Ocean Engineering-ASCE, 1990, 116 (4): 425-443.
    [91] MIKE 21. Handbook of Mike 21-A modeling system for rivers and channels, Version 2. 7. Danish: Danish Hydraulic Institute, 1999.
    [92]赵士清.浑水异重流的数值模拟.科学通报, 1986, 22.
    [93]郁伟族.用k-ε紊流模型及有限元法解二维异重流方程.河海大学学报, 1987, 02.
    [94]曹志先.水沙两相流立面二维数学模型及数值方法研究[博士学位论文].武汉:武汉水利电力学院, 1991.
    [95]彭杨,李义天,槐文信.异重流潜入运动的剖面二维数值模拟.泥沙研究, 2000, 06.
    [96]方春明,韩其为.异重流潜入条件分析及立面二维数值模拟.泥沙研究, 1997,04.
    [97]冯小香.水库坝前冲刷漏斗形态数值模拟研究[博士学位论文].武汉:武汉大学, 2006.
    [98]张耀新,吴卫民.剖面二维非恒定悬移质泥沙扩散方程的数值方法.泥沙研究, 1999(2):40-45.
    [99]夏军强,王光谦.剖面二维悬移质泥沙输移方程的分步解法.长江科学院院报, 17(2), 2000:14-17.
    [100] McAnally W H, Leter J W, Tomas W A. Two and 3-D modeling systems for sedimentation. Proceedings of the 3rd International Symposium on River Sedimentation. The University of Mississippi, 1986.
    [101] Wang S Y, Adeff S E. Three-dimensional modeling of river sedimentation processes. Proceedings of the 3rd International Symposium on River Sedimentation. The University of Mississippi, 1986.
    [102] van Rijn L C. Mathematical modeling of morphological Processes in the case of suspended sediment transport. Delft Hydraulic Communication No. 382, Delft. The Netherlands, 1987
    [103] van Rijn L C. Field verification of 2-D and 3-D suspended sediment models. Journal of Hydraulic Engineering-ASCE, 1990, 116(10): 1270-1288.
    [104] Demuren A O, Rodi W. Calculation of flow and pollutant dispersion in meandering channels. Journal of Fluid Mechanics, 1986, 17(2): 63-92.
    [105] Demuren A O. Calculation of sediment transport in meandering channels. Tech Session A, Proceedings of the 23rd IAHR Congress, International Association for Hydraulic Research, Delft, The Netherlands, 1989.
    [106] Demuren A O. Development of a mathematical model for sediment transport in meandering rivers. Rep. No. 693, Institute for Hydromechanics, The University of Karlsruhe, Karlsruhe, Germany, 1991.
    [107] Shimizu Y, Yamaguchi H, Itakura T. Three-dimensional computation of flow and bed deformation. Journal of Hydraulic Engineering-ASCE, 1990, 116(9): 1090-1108.
    [108] Fernette R, Dhatt G, Tanguy J M. A three-dimensional finite element sediment transport model. Proceedings of the 5th International Symposium on River Sedimentation. The University of Karlsruhe, l992: 365-374.
    [109] Prinos P. Compound open flow with suspended sediments. Advance in Hydro-Science and Engineering. Part B, USA, The University of Mississippi, 1993, 1:1206-1214.
    [110] Wang S Y, Jia Y. Computational modeling and hydroscience research. Advances in Hydro-Science and Engineering, Proceedings of the 2nd International Conference on Hydro-Science and Engineering. Tsinghua University Press, 1995:2147-2157.
    [111] Lin B L, Falconer A R. Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters. Journal of Hydraulic Research, 1996, 34(4): 435-456.
    [112] Olsen N R B, Skoglund M. Three-dimensional numerical modeling of water and sediment flow in sand strap. Journal of Hydraulic Research, 1994, 32(6): 833-844.
    [113] Olsen N R B, Kjelesvig H M. Three-dimensional numerical flow modeling for maximum local scour-depth. Journal of Hydraulic Research, 1998, 36(4): 579-597.
    [114] Gessler D, Hall B, Spasojevic M, et al. Application of 3D mobile bed, Hydrodynamic model. J of Hydraulic Eng-ASCE, 1999, 125 (7):737~749.
    [115] Wu W M, Rodi W, Wenka T. 3D numerical model for suspended sediment transport in channels. Journal of Hydraulic Engineering-ASCE, 2000, 126(1): 4-15.
    [116] Olsen N R B. 3D CFD Modeling of a Self-Forming Meandering Channel. ASCE, Journal of Hydraulic Engineering, 2003, 129(5): 366~372.
    [117]周华君.长江口最大浑浊带特性研究和三维水流泥沙数值模拟[博士学位论文].南京:河海大学, 1992.
    [118]夏云峰.感潮河道三维水流泥沙数值模型研究与应用[博士学位论文].南京:河海大学, 2002.
    [119]窦国仁.河床紊流的随机理论及各流区的统一规律.第一次河流泥沙国际学术讨论会论文集.北京:光华出版社, 1980, 151-161.
    [120]中国水利水电科学研究院.异重流的研究与应用.水利电力出版社, 1959, 12.
    [121]范家骅等.异重流运动的实验研究.水利学报, 1959, 5:30-48.
    [122]钱宁,范家骅等.异重流.水利出版社, 1958.2.
    [123]张瑞瑾等.河流泥沙动力学(第二版).北京:中国水利水电出版社, 1998.
    [124] Ashida K(芦田和男). How to Predict Reservoir Sedimentation. Proceedings of the International Symposium on River Sedimentation, Beijing, China,1980, 821-850.
    [125] Savage S B, Brimberg J. Analysis of Plunging Phenomena in Water Reservoir. J of Hydraulic Research-IAHR, 13(2), 1975.
    [126] Ford D E, Johnson M C, et al. Density inflows to DeGray Lake, Arkansas. Second international symposium on stratified flows, IAHR, Trondheim, Norway, June, 1980.
    [127] Akiyama J, Stefan H G. Plunging Flow into a reservoir: Theory, AS CE. J.of Hydraulic Engineering, 1984, Vo1.110, HY4.
    [128]姚鹏.异重流运动的试验研究.清华大学硕士学位论文, 1994.
    [129]曹如轩,任晓枫等.高含沙异重流的形成与持续条件分析.泥沙研究,1984.6.
    [130]钱宁,万兆惠.泥沙运动力学.北京:科学出版社, 1983.
    [131]颜燕.抛泥及急流异重流的实验研究.水利水电科学研究院泥沙所, 1986.3.
    [132] Keulegan G H. The motion of sline fronts in still water, NBS report 5831, April 1, 1958.
    [133] Bitter R E, Linden P E. The motion of front of a gravity current traveling down an incline. J Fluid Mech, 99, 3, 1980.
    [134] Keulegen G H. Laminar Flow at the interface of two liquids. Journal of Research, National Bureau of Standards, 1944, 32(303), RP 1591.
    [135] Bata G, Knezevich B. Some observations on density currents in laboratory and in the field. Proceedings, Minnesota International Hydraulics Convention, 1953.
    [136] Abraham G, Eysink W K. Magnitude of interfacial shear in exchange flow. Journal of Hydraulic Research-IAHR, 1971, 9(2)
    [137]姚鹏,王兴奎.异重流潜入规律研究.水利学报,1996.8.
    [138]曹如轩,任晓枫等.高含沙异重流阻力规律研究,第二次河流泥沙国际学术讨论会论文集,南京,中国,1983.10.
    [139]王艳平,刘沛清,张俊华.紊流浑水异重流交混区的阻力系数的研究.水利学报, 2007, 38(12):1489-1494.
    [140] Raynaud J P. Study of Currents of Muddy Water through Reservoirs. Fourth Congress on Large Dams, New Delhi, India, 1951, 1(4).
    [141] Ippen A T, Harleman D R F. Steady-State Characteristics of Sub-surface F1ow, Circular No.521,Gravity Waves Symposium, National Bureau of Standards, Washington, D C,1952
    [142] Geza B, Bogich K. Some observations on desity currents in laboratory and in the field, Proceedings, Minnesota International Hydraulics Convention, 1953.
    [143]韩其为,向熙珑.异重流的输沙规律.人民长江, 1981 (4).
    [144]刘家峡水力发电厂.刘家峡水库异重流排沙问题.黄河泥沙研究报告选编(第一集,下册), 1975年.
    [145]朱鹏程.异重流的形成与衰减.水利学报,1981.5.
    [146]吴德一.关于水库异重流的计算方法.泥沙研究, 1983, 2.
    [147]张俊华,张红武,李远发等.水库泥沙模型异重流运动相似条件的研究.应用基础与工程科学学报1997,5(03):309-316.
    [148]李书霞,张俊华,陈书奎等.小浪底水库塑造异重流技术及调度方案.水利学报, 2006, 37(05):567-572.
    [149]张俊华,陈书奎,李书霞等.小浪底水库拦沙初期泥沙输移及河床变形研究.水利学报, 2007, 38(09):1085-1089.
    [150]廖咸祖.巴家咀水库高含沙异重流资料的初步分析.人民黄河1985, 06.
    [151]焦恩泽.巴家咀水库底孔排高含沙异重流特殊现象.人民黄河1986, 06.
    [152]曹如轩.粗沙高含沙异重流的运动特性.泥沙研究, 1995, 02.
    [153]范家骅.伴有局部掺混的异重流水跃.水利学,2005, 36(02): 135-140.
    [154]范家骅.浑水异重流槽宽突变时的局部掺混.水利学,2005, 36(01): 1-8.
    [155] Choi S U, Garcia M H. k-εturbulence modeling of density currents developing two dimensionally on a slope. J of hydraulic engineering-ASCE, 2002, 128 (1): 55-63.
    [156] Stacey M W, Bowen A J. The vertical structure of density and turbidity currents: theory and observations. J Geophys Res, 1988, 93(C3):3528–3542.
    [157] Stacey M W, Bowen A J. The vertical structure of turbidity currents and a necessary condition for self-maintenance. J Geophys Res, 1988, 93(C3):3543–3553.
    [158] Eidsvik K J, Br?rs B. Self-accelerated turbidity current prediction based upon (k-ε) turbulence. Cont. Shelf Res., 1989, 9(7):617–627.
    [159] Farrell G J, Stefan H G. Mathematical modeling of plunging reservoir flows. J Hydraul Res, 1988, 26(5): 525–537.
    [160] Bournet P E, Dartus D, Tassin B, et al. Numerical investigation of plunging density current. J Hydraul Eng, 1999, 125(6):584–594.
    [161] Ellison T H, Turner J S. Turbulent entrainments in stratified flows. J Fluid Mech, 1959, 6: 423–448.
    [162] Parker G, Fukushima Y, Pantin H M. Self accelerating turbidity currents. J Fluid Mech, 1986, 171: 145–181.
    [163] Choi S U. Layer-averaged modeling of turbidity currents with a dissipative-Galerkin finite element method, Part I: Formulation and application example. J. Hydraul. Res, 1998, 36(3):339–362.
    [164] Bradford S F, Katopodes N D. Hydrodynamics of turbid underflows. I: Formulation and numerical analysis. J Hydraul Eng, 1999, 125(10):1006–1015.
    [165]邱晨霞.异重流二维两层模型数值计算.泥沙研究, 1995, 03.
    [166]王光谦,方红卫.异重流运动基本方程.科学通报, 1996, 41 (18) : 1715-1720.
    [167]王光谦,周建军,杨本均.二维泥沙异重流运动的数学模型.应用基础与工程科学学报, 2000, (03) .
    [168]吕秀贞.非恒定异重流孔口排沙的近似计算.泥沙研究1988, 04.
    [169]包为民,张叔铭,瞿思敏等.异重流总流运动微分方程:Ⅰ-理论推导.水动力学研究与进展A辑, 2005, (04).
    [170]包为民,张叔铭,黄贤庆等.异重流总流运动微分方程:Ⅱ-差分模型求解与验证.水动力学研究与进展A辑, 2005, (04).
    [171] Imran J, Kassem A, Three-dimensional modeling of density current. I. Flow in straight confined and unconfined channels. Journal of Hydraulic research, 2004, 42 (6): 578-590.
    [172] Kassem A, Imran J. Three-dimensional modeling of density current. II. Flow in sinuous confined and unconfined channels. Journal of Hydraulic research, 2004, 42 (6): 591-602.
    [173] Cesare G D, Schleiss A, Hermann F. Impact of turbidity currents on reservoir sedimentation. Journal of Hydraulic Engineering, 2001, 127 (1): 6-16.
    [174] Cesare G D, Boillat J L, Schleiss A J. Circulation in stratified lakes due to flood-induced turbidity currents. Journal of environmental Engineering, 2006, 132 (11): 1508-1517.
    [175] Cao Z. Discussion of "Impact of turbidity currents on reservoir sedimentation" by Giovanni De Cesare, Anton Schleiss, and Felix Hermann. Journal of Hydraulic Engineering, 2002, 128 (6): 644-645.
    [176]丁联臻.引水式水电站进水建筑物中有关排沙道的几个问题.泥沙研究, 1957(3):35-38.
    [177]水利水电科学研究院,刘家峡水电站减少泥沙进人水轮机设施的试脸研究.1966.
    [178]水利电力部第十一工程局勘设队.关于深水孔口前局部冲刷漏斗的询查分析.1972.
    [179]彭润泽,吕秀贞.底孔排悬沙间题的初步研究.水利水电科学研究院, 1974.
    [180]严镜海,许国光.水利枢纽电站的防沙问题布置的综合分析.第一届河流泥沙国际学术讨论会,北京:光华出版社,1980.
    [181]熊绍隆.深水孔口前冲刷漏斗形态研究.西北水电, 1983,04: 10-21.
    [182]熊绍隆.底孔前散粒体泥沙冲刷漏斗形态研究.泥沙研究, 1989(2):76-83.
    [183]苏凤玉,任宏斌.坝前冲刷漏斗的试验研究.西北水电技术, 1986(1):31-35.
    [184]金腊华.有压进水口前冲刷漏斗形态与水流运动特性的研究[博士学位论文].武汉:武汉水利电力学院, 1990.
    [185]金腊华.水库引排水底孔前冲刷漏斗形态的探讨.武汉水利电力学院学报, 1991, 24(1):93-101.
    [186]金腊华.试论水库排沙底孔进水口前冲刷漏斗形态的主要影响因素.江西水利科技, 1991, 17(1):29-35.
    [187]金腊华.趋孔水流运动与冲刷漏斗的成因研究.江西水利科技, 1992, 18(1):53-59.
    [188]焦恩泽.坝前漏斗形态简析.人民黄河, 1991(2):24-26.
    [189]王广月.坝前冲刷漏斗形态的研究.山东工业大学学报, 1996, 26(2):131-134.
    [190]屈孟浩.小浪底枢纽泄水建筑物几种布置方案的门前流态与淤积形态试验研究.人民黄河, 1989, (05): 38-43.
    [191]窦国仁,王国兵等.小浪底枢纽进水塔上游形成高滩深槽的过程.人民黄河, 1994, (10) :1-5.
    [192]曾庆华,周文浩等.黄河小浪底枢纽泥沙问题的试验研究.水利学报, 1995(8):53-59.
    [193]崔承章,谢鉴衡.小浪底水库坝区冲刷漏斗形态概化模型研究.武汉水利电力大学学报, 1995, 28(15):547-551.
    [194]潘庆郯等.三峡工程泥沙问题研究.北京:中国水利水电出版社, 1999.
    [195]徐国宾,白世录.坝前粘性淤积物局部冲刷漏斗模拟相似性研究.水利学报, 1997(11):28-33.
    [196]董年虎.边界条件对多沙河流电站前漏斗形态的影响.水动力学研究与进展, Ser. A, 2000, 15(2):240-246.
    [197]王英伟.坝前冲刷漏斗形态的试验研究.水利水电工程设计, 2001, 20(3):42-43.
    [198]郭志学,刘兴年,曹叔尤.水库冲刷漏斗试验研究.四川大学学报(工程科学版), 2004, 36(5):1-5.
    [199]龚嘴电站底孔排沙试验总结报告.水利电力部成都勘测设计院科学试验所, 1977. 9
    [200]朱晓章.水库泥沙淤积概述.四川水力发电, 1989(1):20-26.
    [201]余厚政.白龙江碧口水电站泥沙设计及排沙运用总结.水电站泥沙问题总结汇编, 1988.
    [202]武汉水利电力学院河流泥沙工程学教研室.河流泥沙工程学(下册).北京:水利出版社, 1982, 28-29.
    [203]万兆惠.峡谷水电站排沙底孔的作用及其计算.泥沙研究, 1986(4).
    [204]吕秀贞.壅水条件下底孔冲沙漏斗形态分析.中国水利水电科学研究院论文集(第26集),北京:水利电力出版社, 1987.
    [205]曹志先,谢鉴衡,魏良琰.水库坝前冲刷漏斗平衡形态的数学模拟.水动力学研究与进展, Ser. A, 1994, l9(5):617-625.
    [206]陆俊卿,张小峰,董炳江等.水库冲刷漏斗三维数学模型及其应用研究.四川大学学报(工程科学版), 2008, 40(6):43-50.
    [207]崔占峰,张小峰.三维紊流模型在丁坝中的应用.武汉大学学报工学版, 2006, 39(1): 15-20.
    [208]夏军强,王光谦,吴保生.游荡型河流演变及其数值模拟.中国水利水电出版社,2004.
    [209]夏军强,王光谦,张红武等.河道横向展宽机理与模拟方法的研究综述.泥沙研究, 2006, 6: 71-78.
    [210] ASCE task committee. River width adjustment, I processes and mechanisms. Journal of Hydraulic Engineering, 1998, 124(9): 881-902.
    [211] ASCE task committee. River width adjustment, II modeling. Journal of Hydraulic Engineering, 1998, 124(9): 903-918.
    [212] Osman A M, Thorne C R. Riverbank stability analysisⅠ: Theory. Journal of Hydraulic Engineering, ASCE, 1988, 114 (2): 134-150.
    [213] Thorne C R, Osman AM. Riverbank stability analysis II: Application. Journal of Hydraulic Engineering, ASCE, 1988, 114(2): 151-172.
    [214] Duan J G, Wang S Y. The applications of the enhanced CCHE2D model to study the alluvial channel migration processes. Journal of Hydraulic Research, 2001, 39(4): 469-780.
    [215]夏军强,王光谦,吴保生.游荡型河流演变及其数值模拟[M].北京:中国水利水电出版社, 2005, 121-135.
    [216] JIA Dong-dong, SHAO Xue-jun, WANG Hong, ZHOU Gang. Locally-adaptive grid system for 3D numerical simulation of meander migration[A].16th IAHR–APD Congress and 3rd IAHR-ISHS[C]. Beijing: Tsinghua University Pres, 2008:877-882.
    [217]王光谦,钟德钰,张红武等.汶川地震唐家山堰塞湖泄流过程的数值模拟.科学通报, 2008, 53(1):1-7.
    [218]张红武,钟德钰,张俊华等.黄河游荡型河段河势变化数学模型.人民黄河, 2009, 31(1):20-22.
    [219] Adcroft A, Hill C, Marshall J. A new treatment of the Coriolis terms in C-grid models at both high and low resolution. Monthly Weather Review, 1999, 127:1928–1936.
    [220] Arakawa A, Lamb V. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 1977, 17:174–267.
    [221]冯士筰,李凤歧,李少菁.海洋科学导论[T].北京:高等教育出版社, 1999.
    [222]蔡大用,白峰杉.现代科学计算[T].北京:科学出版社, 2000.
    [223] Smagorinsky J. General circulation experiments with the primitive equations I : The basic experiment. Monthly Weather Rev, 1963, 91:99-164.
    [224] Vaz R A, Simpson J H. Turbulence closure modeling of estuarine stratification. Journal of Geophysical Research, 1994, 99(C8):16143–16160.
    [225] Pacanowski R C, Philander S G H. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 1981, 11:1443–1451.
    [226] Mellor G L, Yamada T. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 1974, 31:1791–1806.
    [227] Jones W P, Launder B E. The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transfer, 1972, 15:301–314.
    [228] Kolmogorov A N. Equations of turbulent motion of an incompressible fluid. Izvestia Acad. Sci., USSR, Phys, 1942, 6 (1–2):56–58.
    [229] Umlauf L, Burchard H. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research, 2003, 6 (12):235–265.
    [230] Warner J C, Sherwood C R, et al. Performance of four turbulence closure models implemented using a generic length scale method. Ocean modeling, 2005, 8:81-113.
    [231] Kantha L H, Clayson C A. An improved mixed layer model for geophysical applications. J Geophys Res, 1994, 99:25235–25266.
    [232] Galperin B, Kantha L H, Hassid S, et al. A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci, 1988, 45:55–62.
    [233] Canuto V M, Howard A, Cheng Y, et al. Ocean turbulence I: one-point closure model. Momentum and heat vertical diffusivities. J Phys Oceanogr, 2001, 31:1413–1426.
    [234] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys, 1982, 20:851–875.
    [235] Umlauf L, Burchard H, Bolding K. GOTM Source code and Test Case Documentation (Version 4.0). www.gotm.net, 2007.
    [236] Ham DA, Pietrzak J, Stelling GS. A scalable unstructured grid 3-dimensional finite volume model for the shallow water equations. Ocean Modelling 2005, 10:153-169.
    [237] Weijer W, Dijkstra HA, Oksuzoglu H, et al. A fully-implicit model of the global ocean circulation. Journal Of Computational Physics 2003, 192: 452-470.
    [238]吴宋仁.海岸动力学.北京:人民交通出版社, 2000.
    [239] Chang Y C. Lateral mixing in meandering channels [博士学位论文]. Department of mechanics and Hydraulics, University of Iowa,1971.
    [240]张红武,吕昕.弯道水力学.北京:水利电力出版社, 1993.
    [241]周宜林,道上正规.非淹没丁坝附近三维水流运动特性的研究.水利学报, 2004(8):1-10.
    [242] Budgell W P, Oliveira A, Skogen M D. Scalar advection schemes for ocean modeling on unstructured triangular grids. OCEAN DYNAMICS, 2007, 57, 339-361.
    [243] Celia M A, Russell T F, Herrera I, et al. An Eulerian–Lagrangian localized adjoint method for the advection diffusion equation. Advanced in Water Resources 1990, 13, 187–206.
    [244] Oliveira A, Fortunato A B. Towards an oscillation-free, mass conservative, Eulerian– Lagrangian transport model. J of Computational Physics, 2002, 183, 142–164.
    [245] Bensabat J, Zhou Q L, Bear J. An adaptive pathline-based particle tracking algorithm for the Eulerian-Lagrangian method. Advances in Water Resources, 2000, 23, 383-397.
    [246] Mellor G L, Blumberg A F. Modeling vertical and horizontal diffusivities with the sigma coordinate system. Monthly Weather Review, 1985, 113:1379–1383.
    [247] Huang W, Spaulding M. Modeling horizontal diffusion with sigma coordinate system. Journal of Hydraulic Engineering, 1996, 122 (6):349–352.
    [248]张景新,刘桦.σ坐标系下水平扩散项的有限差分计算.力学季刊, 2006, 27(3):377-386.
    [249]钱宁,张仁,周志德.河床演变学.北京:科学出版社, 1987.
    [250]韩其为,何明民.论非均匀悬移质二维不平衡输沙方程及其边界条件.水利学报, 1997, (1):1-10.
    [251]吴修广,沈永明等.非正交曲线坐标下三维弯曲河流湍流数学模型.水力发电学报, 2005, 24(4):36-42.
    [252]王晓松,陈璧宏.挑流冲坑三维紊流场的数值模拟.水力发电学报, 1999,3:53-61.
    [253]张红武,江恩惠等.黄河高含沙洪水模型的相似率[M].河南:河南科学技术出版社, 1993, 67~71.
    [254] van Rijn L C. Sediment transport, Part II: Suspended load transport. Jounal of Hydraulic Engineering -ASCE, 1984, 110(11), 1613–1641.
    [255] van Rijn L C. Entrainment of fine sediment particles; development of concentration profiles in a steady, uniform flow without initial sediment load. Rep. No. M1531, Part II, Delft Hydraulic Laboratory. Delft, the Netherlands, 1981.
    [256] van Rijn L C. Mathematical Modeling of suspended sediment in non-uniform flows. Journal of Hydraulic Engineering, ASCE, 1986, 112 (6): 433-455.
    [257] Celik I, Rodi W. Modeling suspended sediment transport in non-equilibrium situations. Journal of Hydraulic Engineering, ASCE, 1988, 114(8): 1157-1191.
    [258] Wang Z B, Ribberink J S. The validity of a depth-integrated model. Journal of Hydraulic Engineering-ASCE, 1990, 116(10): 1270-1288.
    [259]胡春宏,吉祖稳.复式断面非均匀沙滩槽交换规律研究.北京:中国水利水电科学研究院, 1997.
    [260]俞月阳,唐子文等.曹娥江船闸引航道冲淤研究.泥沙研究, 2007, 3,17-23.
    [261]李玉柱,苑明顺.流体力学.北京:高等教育出版社, 1997.
    [262]金腊华,石秀清.试论模型沙的水下休止角.泥沙研究, 1990, 3, 87-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700