非均相Fenton技术深度处理维生素C制药废水生化尾水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业的全面发展,水资源短缺和水污染的环境问题已经严重阻碍了我国经济社会的可持续发展,工业废水的深度处理和回用势在必行。维生素C生产过程生产的废水COD浓度高、成分复杂、水质水量变化大、色度高且为真色,废水中所含的大量的有毒有害的微生物难降解有机污染物,通过厌氧和好氧两级生化处理之后,废水的污染物大部分为微生物难降解的有机物,BOD/COD很低,可生化降解性极差。本课题阐述了维生素C制药废水的特点,并对维生素C制药废水的处理和非均相Fenton技术的国内外研究进展进行了综述,采用非均相Fenton技术对维生素C制药废水二级生化出水进行了深度处理试验研究,其废水来源于河南某维生素C生产企业污水处理站的二级生化尾水。
     试验首先进行了非均相Fenton的固态催化剂有效成分的研究。探究了针铁矿、磁铁矿和硫铁矿烧渣等含铁矿物质的吸附性能和非均相Fenton技术的催化氧化性能,根据三种矿物质的非均相催化氧化性能试验结果和矿物质的来源、成本等确定了硫铁矿烧渣作为本非均相Fenton的负载催化剂。试验还探究了部分金属或金属氧化物的吸附性能和非均相Fenton技术的催化氧化性能,选择CuO、A1203、Zi02、NiO、Cr2O3、Ag20等金属氧化物作为非均相催化剂的原料,最后把硫铁矿烧渣和这些金属氧化物利用高温微孔技术制备成粒径为3cm左右的填料,试验制备的填料即为本试验选取的非均相催化剂。
     然后,试验以制备的固体填料作为催化剂,探究了对维生素C制药废水非均相催化氧化反应的最佳试验条件,得出如下最佳条件:H2O2投加量4.9mmo1/LFeSO4投加量3.9mmol/L,搅拌反应时间为20min,曝气时间为20min,PAM投加量为4mg/L,在此最佳条件下非均相Fenton技术对维生素C生产废水二级生化出水的COD的去除效率达到62.42%;本非均相Fenton技术若运用于工程中,吨水的药剂运行费用最高为0.98元/m3;
     本试验对维生素C生产废水深度处理的实际工程应用提供了一定的理论基础,同时为非均相Fenton技术的催化剂的稳定性和催化性能的研究具有一定的指导意义。
As the industrial development, water shortages and pollution has been a serious obstacle to the sustainable economic and social development in China. Deep treatment and reuse of industrial wastewater is a must. The wastewater that produced in the production process of Vitamin C is with high COD concentration, complex, large changes in water quality&quantity, high chroma as well as true color. There are large amounts of hard-biodegraded and toxicant substances in the water. Through anaerobic and aerobic two-stage biological treatment, most of pollutants from wastewater is hard-biodegraded organics with the low BOD/COD. The text expounds the characteristics of the wastewater in the production process of vitamin C and summaries the treatment of the vitamin C wasterwater and the research progress of the heterogeneous Fenton technology at home and board. In this subject, we made the related experiment research on the vitamin C pharmaceutical wastewater passed biochemical treatment, which is from one production enterprise of vitamin C in Henan.
     In the experiment, we fistly study active ingredient of the solid catalyst for the heterogeneous Fenton technology, separately studying the adsorption of the Goethite, Magnetite and Pyrite cinder and the catalytic oxidation performance in heterogeneous Fenton technolog. Compared with the heterogeneous catalytic oxidation performance, source, cost and so on, we determine pyrite cinder as supported catalyst in the the heterogeneous Fenton technology at last. At the same time, we also study the adsorption and the catalytic oxidation performance of some metals and metal oxides in heterogeneous Fenton technolog. We choose CuO、AL2o3、TiO2、Nio、Cr2O3and Ag2O as the raw material of heterogeneous catalysts separately. At last, we made pyrite cinder and these metal oxide using high temperature micro-hole technology into the filler particle size3cm. The filler is the heterogeneous catalyst in the experiment.
     Then, we explore the optimum conditions of the heterogeneous Fenton technology of vitamin C pharmaceutical wastewater with the fillers as catalyst. The concludes as follows:H2O24.9mmol/L, FeSO43.9mmol/L, Mixing reaction time20min, aeration time20min, PAM4mg/L as the optimum condition. In this condition, the removal efficiency of COD in vitamin C pharmaceutical wastewater reached62.42%using the heterogeneous Fenton technology; the highest cost of pharmaceutical operating is only0.98Yuan/m3, if the heterogeneous Fenton technology is applied to engineering
     This experiment provides a certain theoretical basis for practical engineering of Vitamin C production wastewater deep treatment. Meanwhile, it has a certain guiding significance for the stability and catalytic performance of the catalyst in heterogeneous Fenton technology.
引文
[1]中国工程院“21世纪中国可持续发展水资源战略研究”项目组.中国可持续发展水资源战略研究综合报告[J].中国工程科学,2000,2(8):1-17
    [2]栾兆坤,范彬,贾建军等.水回用技术发展及其趋势[J].化工技术经济,2003,21(11):31-39
    [3]戴伟国.中国维生素C生产现状、动态及对策[J].上海医药,2003,24(10):460-461
    [4]郑晓琼.世界维生素C的生产及消费[J].中国化工,1994,7:40-41
    [5]张伦.维生素C的应用、生产和市场以及我国产销对策[J].化工时刊,1997,11(3):33-37
    [6]耿海义.维生素C发酵工艺的研究[D].[硕士论文].天津:天津大学,2003
    [7]张华峰,冯惠勇.维生素C产业现状与发展[J].中国食品添加剂,2004,2:45-48
    [8]胡芳.维生素C行业亟待产业调整[N].中国医药报,2010-10-21(B05)
    [9]李晓娜.维生素C工业废水处理综述[J].云南环境科学,2006,25:140-142
    [10]刘凤燕.维生素c生产工艺废水生化处理难点分析及解决方法[J].乡镇企业科技,2003,9:46-47
    [11]李伟民,孙润超,买文宁等.内循环厌氧反应器在维生素生产废水中的应用[J].水处理技术,2010,36(1):98-100
    [12]王路光,王强,王靖飞等.EGSB工艺在VC生产废水处理中的应用[J].中国给水排水,2009,27(17):81-84
    [13]王晓辉,刘冬芹,王艳茹.维生素C生产废水处理技术研究进展[J].河北工业科技,20011,28(6):403-407
    [14]刘凤丽,王祥飞,刘会荣.EMO高效复合菌种技术与ABR工艺处理VC废水中的高氯废水的研究[J].河北化工,2010,33(11):12-16
    [15]汪善全,李晓娜,竺建荣.UASB工艺处理高浓度生产废水的实验研究[J].中国沼气,2007,25(1):9-13
    [16]高廷耀,顾国维,周琪主编.水污染控制工程:下册.第三版[M].北京:高等教育出版社,2007.84-85
    [17]傅源.大蒜加工废水的SBR工艺研究[D].南京:南京理工大学,2009
    [18]竺建荣,李晓娜,汪善全.SBR工艺处理VC废水试验研究[J].环境科学导刊,2007,26(1):73-75
    [19]顾国维,何义亮.膜生物反应器:在污水处理中的研究和应用[M].北京:化学工业出版社,2002
    [20]胡雪利,买文宁,牛娜.一体式平板膜生物反应器处理维生素制药废水中试研究[J].水处理技术,2010,36(3):85-88
    [21]梁家伟,买文宁,李伟民等.水解酸化/IC/曝气池工艺处理维生素生产废水[J].中国给水排水,2011,27(8):80-82
    [22]刘新亭,杨秀强.酸化-生物接触氧化法处理生产维生素C废水[J].上海环境科学,1990,9(6):12-14
    [23]VC废水处理课题组.上流式厌氧污泥床过滤器处理VC废水生产装置运行技术[J].环境科学,1993,14(B09):84-88
    [24]邹庆军.厌氧—好氧工艺处理VC废水[J].工业用水与废水,2006,37(1):86-87
    [25]侯爱东,王飞,徐畅.过滤中和-UASB-氧化沟工艺处理VC废水[J].环境导报,2003,(9):30-31.
    [26]柳丹,王相勤,季程晨等.磁聚复配物絮凝预处理维生素C废水的研究[J].工业水处理,2007,27(9):27-29.
    [27]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003:274-284
    [28]谭溯睿,徐宏凯,裘碧瑛.MBR与Fenton试剂工艺处理维生素C生产废水的可行性研究[J].工业用水与废水,2010,41(1):58-60
    [29]Bossmann S H;OLIVER E. New evidence against hydroxyl radicals as reactive intermediates in the thermal and Photochemically enhanced UV-Fenton Recreation. [J]. Physics and Chemistry Analysis 1998.102(28):5542-5550
    [30]王娟.Fenton和UV-Fenton法预处理生物制药废水的试验研究[D].[硕士论文].郑州:郑州大学,2011
    [31]张鹏娟,买文宁,赵敏等.三维电极法深度处理维生素生产废水[J].环境工程学报,2013,30(8):897-902.
    [32]唐兆吉,单玉华,李明时等.催化臭氧氧化法处理维生素C生产废水[J]环工环保,2012,32(5):432-435
    [33]蒋展鹏,杨宏伟,谭亚军等。催化湿式氧化技术处理VC制药废水的实验研究[J].给水排水,2004,30(3):41-44.
    [34]黄江丽,徐农,施汉昌等.膜分离技术应用于草浆造纸清洁生产[J].化工学报,2006,57(2):33
    [35]雷乐成,汪大晕.水处理高级氧化技术[M].北京:化学工业出版社,2001:239-251.
    [36]ZeppRG, FaustBC, HolgneJ. Hydroxyl Radieal Formationin Aqueus Reactions(pH3-8) Of Iron(II) with Hydrogen Peroxide:The Photo-Fenton Reaetion[J]Environ Sci Technol,1996, 26:313-317.
    [37]马承愚,姜安玺,彭英利等.超临界水氧化法处理除草剂生产废水及热能的研究[J].环境污染与防治,2004,12(5).
    [38]Krmer M L, Complex Virsus"Free Radieal"Mechanism for the catalytic Decomposition of H2O2 by Fe3+. [J]. Chem. Kinet.,1985,17:1299-1314.
    [39]Song W J, MaWH, Zhao J C etal. Photochemical Oscillation Of Fe(Ⅱ)/Fe(IV) Ratio Induced by Periodic Flux Of Dissolved Organic Matter. Environ. Sci. Technol.,2005, 39:3121-3127.
    [40]Meunier B, Sorokin A, Oxidation Of Pollutants Catalyzed by etallophthalocyanines. [J]Acc Chem Res 1997,30(11):470-476.
    [41]张国卿,王罗春,徐高田,等.Fenton试剂在处理难降解有机废水中的应用[J].工 业安全与环保,2004,30(3):17-20.
    [42]Sheng H Lin, Cho C Lo. Fenton process for treatment of desizing wastewater[J]. Water Research,1997,31 (8):2050-2056.
    [43]Bossmann S H;OLIVER E. New evidence against hydroxyl radicals as reactive intermediates in the thermal and Photochemically enhanced UV-Fenton Recreation. [J]. Physics and Chemistry Analysis 1998,102(28):5542-5550
    [44]J Y Feng, X J Hu, P L Yue, et al. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction[J]. Water Research,2003,37:3776-3784
    [45]I W C E Arends, R A Sheldon. Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations:recent developments[J]. Applied Catalysis A:General, 2001,212:175-187.
    [46]A C Garade, M Bharadwaj, S V Bhagwat, et al. An efficient y-Fe2O3 catalyst for liquid phase air oxidation of phydroxybenzyl alcohol under mild conditions[J]. Catalysis Communications,2009,10:485-489.
    [47]J He, WHMa, JJHe, et al. Photooxidation of azo dye in aqueous. Dispersions of H2O2/a-FeOOH[J]. Applied Catalysis B:Environmental,2002,39:211-220.
    [48]J He, X Tao, MHMa, et al. Heterogeneous photo-Fenton degradation of an azo dye in aqueous H2O2/iron oxide dispersions at neutral pH[J]. Chemistry Letters,2002, (1):86-87.
    [49]M C Chang, H Y Shu, H H Yu, et al. An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C. I. Acid Black 24 wastewater[J]. Journal of Hazardous Materials,2006, B138:574-581.
    [50]R C C Costa, F C C Moura, J D Ardisson, et al. Highly active heterogeneous Fenton-like systems based on Fe/Fe3O4composites prepared by controlled reduction of iron oxides[J]. Applied Catalysis B:Environmental,2008,83:131-139.
    [51]F Martinez, G Calleja, J A Melero, et al. Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst[J]. Applied Catalysis B: Environmental,2005,60:181-190.
    [52]M Tekbas, H C Yatmaz, N Bektas. Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst[J]. Microporous and Mesoporous Materials,2008,115:594-602.
    [53]S Sabhi, J Kiwi. Degradation of 2,4-dichlorophenol by immobilized iron catalysts[J]. Water Research,2001,35:1994-2002.
    [54]J Kiwi, N Denisov, Y Gak, et al. Catalytic Fe3+clusters and complexes in Nafion active in photo-Fenton processes:High-resolution electron microscopy and femtosecond studies[J]. Langmuir,2002,18:9054-9066.
    [55]S Parra, I Guasaquillo, O Enea, et al. Abatement of an azo dye on structured C-Nafion /Fe-ion surfaces by photo-Fenton reactions leading to carboxylate intermediates with a remarkable biodegradability increase of the treated solution[J]. The Journal of Physical Chemistry B,2003,107:7026-7035.
    [56]M M Cheng, W H Ma, J Li, et al. Visible-light-assisted degradation of dye pollutant sover Fe (III)-loaded resin in the presence of H2O2 at neutral pH values[J]. Environmental Science & Technology,2004,38:1569-1575.
    [57]Y P Zhao, J Y Hu. Photo -Fenton degradation of 17β-estradiol in presence of a-FeOOHR and H2O2[J]. Applied Catalysis B:Environmental,2008,78:250-258.
    [58]X J Lv, YMXu, KLLv, et al. Photo-assisted degradation of anionic and cationic dyes over iron (Ⅲ)-loaded resin in the presence of hydrogen peroxide [J]. Journal of Photochemistry and Photobiology A Chemistry,2005,173:121-127.
    [59]F L Y Lam, X J Hu. A high performance bimetallic catalyst for photo-Fenton oxidation of Orange II over a wide pH range[J]. Catalysis Communications,2007,8:2125-2129.
    [60]A C K Yip, FLY Lam, X J Hu. Novel bimetallic catalyst for the photo-assisted degradation of Acid Black 1 over a broad range of pH[J]. Chemical Engineering Science, 2007,62:5150-5153.
    [61]X J Hu, F L Y Lam, L M Cheung, et al. Copper/MCM-41 as catalyst for photochemically enhanced oxidation of phenol by hydrogen peroxide[J]. Catalysis Today, 2001,68:129-133.
    [62]何莼,奚红霞,张娇,等.沸石和活性炭为载体的Fe3+和Cu2+型催化剂催化氧化苯酚的比较[J].离子交换与吸附,2003,19(4):289-296.
    [63]吴德礼,段冬,马鲁铭.黄铁矿烧渣催化H202氧化废水中难降解污染物[J].化工学报,2010,61(4):1001-1008
    [64]杨明平,付勇坚,彭荣华.改性粉煤灰吸附处理焦化厂含酚废水的研究[J].煤化工,2005,10(2):49-52
    [65]史豪杰,买文宁,姚萌等.粉煤灰深度处理制药废水实验研究[J].环境工程,2013,30(8):1-4.
    [66]J Y Feng, X J Hu, P L Yue, et al. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction[J]. Water Research,2003,37:3776-3784.
    [67]R Molina, F Martinez, J A Melero, et al. Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process:Multivariate study by factorial design of experiments[J]. Applied Catalysis B:Environmental,2006,66:198-207.
    [68]J Y Feng, X J Hu, P L Yue. Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst[J]. Chemical Engineering Journal,2004,100:159-165.
    [69]M C Lu, J N Chen, H H Huang, et al. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide[J]. Chemosphere,2002,46:131-136.
    [70]朱申红,吴德礼,孟娟.黄铁矿烧渣的综合利用途径与问题分析[J].煤青岛建筑工程学院学报,2005,26(1):25-29
    [71]J K Kim, I S Metcalfe. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts[J]. Chemosphere,2007, 69(5):689-696.
    [72]陈莎,张颖,曹莹,等.催化湿式氧化法处理有机废水有催化剂研究[J].环境科学与管理,2007,32(3):119-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700