混凝土大坝温度应力数值仿真分析关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土温控数值仿真的影响因素众多、机理复杂,目前,仍无法精确地模拟各种多变的因素对裂缝发生发展的影响。本文主要针对混凝土的温度场应力场仿真计算模型、热湿耦合、水管冷却问题的并行仿真、混凝土温度参数并行反演分析以及诱导缝应力强度因子计算等混凝土大坝温度应力数值仿真的关键技术进行了较为深入的研究,全文主要内容如下:
     (1) 在现有研究基础上,推导了考虑自身温度影响的混凝土非稳定温度场和徐变应力场的计算理论;基于水分质量守恒和能量守恒原理考虑混凝土温度场和湿度场的耦合作用,推导了混凝土的变系数热湿耦合方程,并建立了相应的计算模型;引用严密的水管冷却混凝土温度场的计算理论和计算模型,比较了两种简化计算方法用于水管冷却混凝土仿真计算的不足。
     (2) 为引入有限元的并行计算技术,架构了一个微机机群并行环境,并详细给出了计算环境配置和使用方法。分析了结构计算有限元求解过程的并行性;介绍了分布式环境下有限元计算的并行策略。
     (3) 针对大型水利工程混凝土施工仿真计算对计算规模和计算精度越来越高的要求,以及计算实时性的需要,在分布式环境下实现了水管冷却混凝土温度场和徐变应力场的并行仿真计算,并率先应用该技术对某实际拱坝工程实现了整体三维并行仿真计算。
     (4) 在温度仿真计算参数反分析的遗传算法的基础上,提出了改进遗传算法,函数测试结果表明,改进措施可以有效地解决算法局部搜索能力低及早熟收敛的问题;并针对分布式并行环境给出了一种粗粒度的并行化方法,函数测试结果表明该方法具有很高的并行效率和加速比,适合应用于大规模仿真计算的反问题求解。
     (5) 介绍了应力强度因子的三类求解方法,对有限元数值计算中的影响因素做了分析;论述了断裂现象的分形特性,分析了混凝土诱导缝应力强度因子和分形维数的关系;推导了平面状态下混凝土诱导缝裂缝尖端应力场和位移场的分形计算表达式,并在此基础上建立了Ⅰ型分形裂纹尖端处的应力强度因子的分形模型;给出了计算应力强度因子分形维数的方法;对二维平面分维问题,提出了并行化计算办法;针对通过正法不易求解的事实,提出了混凝土诱导缝应力强度因子分形维数的反演计算方法。
The influencing factors about temperature control in the hydraulic concrete are so numerous, and the mechanisms are so complicated, that the accurate influences of many factors which influenced the course of the crack's arisen and its development still can't be simulated currently. The simulative model of temperature field and stress field in concrete , Heat and moisture coupling、Parallel simulative calculation of concrete with water pipe cooling、 Parallel feedback analysis of thermal characteristic parameters, and stress intensity factor of induced joint, which are the sixty-four-dollar questions, are studied in this dissertation. The main contents of this dissertation are as follows:(1)Based on the past and current research work, the calculation theory of the transient temperature field and creep stress field of mass concrete which self temperature influence is considered is deduced. The couple effect between the temperature field and humidity field of concrete, is considered on the basis of conservation law of water and energy, and the coupled formulation which coefficient is not constant of the heat and moisture in concrete is deduced. The calculation theory and model which is theoretically strict for solution to thermal problem in concrete with water-cooling pipes are recommended. And the shortages of two simplifications are pointed out.(2)A new networked PC cluster parallel computing environment is set up, and the detailed method of configuration and use is presented. The parallelism of the FEM dealing with structure problems is analyzed, and the parallel computing strategy of FEM in distributed environment is introduced.(3)According to the higher and higher request of the simulation to scale, accuracy and time in the course of the large hydraulic engineering construction, The parallel simulative calculation to temperature field and creep stress field of mass concrete with water pipe-cooling is realized in distributed environment, and the technique is applied to an actual arch dam engineering which needs whole 3-D simulate.(4)On the basis of genetic algorithm which used for feedback analysis of thermal characteristic parameters, the improved genetic algorithm is advanced. The contrasts of the function test results show that the various improvements measures can resolve the low search ability of the algorithm in part area, and premature convergence. Considered the distributed environment, a coarse grained parallel genetic algorithm is put forward, the function test results show that the parallel efficiency and parallel speed-up ratio of the algorithm is high, and it is suitable for feedback of large-scale simulative calculation.(5)Three solution methods for SIF are introduced, the influencing factors in FEM are analyzed. Fractal theory is used to picture fracture phenomenon, and the relationship between the SIF of induced joint in concrete and fractal is analyzed too. A fractal model of SIF in I type fractal crack-tip is established on the basis of the fractal equations for concrete stress field and displacement field on the induced joint crack-tip in the state of plane. Then the fractal dimension seeking method for SIF is introduced, and the parallel method is suggested in 2-D problem. Actually seeking the fractal dimension for SIF of induced joint by normal way is very difficult, so a feedback seeking method is suggested.
引文
[1] 龚召熊,张锡祥,肖汉江,等,水工混凝土的温控与防裂[M],北京:中国水利水电出版社,1999,5:3—4
    [2] Sims FW. Rhodes JA. Clough R, W. Cracking in Norfork dam[J], Journal ACI, Vol. 61, No. e, March, 1964: 265—285
    [3] Bmnner WJ. Wu KH. Cracking of the Revelstoke concrete gravity clam mass concrete. 15th International Congress on Large Dams. Vol.2, Lausanne, 1985: 563—574
    [4] 朱伯芳,王同生,丁宝瑛,等,水工混凝土结构的温度应力与温度控制[M],北京:水利电力出版社,1976,9:491—505
    [5] 丁宝瑛,王国秉,黄淑萍,等,国内混凝土坝裂缝成因综述与防止措施[J],水利水电技术,1994,4:12—18
    [6] 沈兴华,林秋英,王新赋,观音寺闸裂缝处理及效果评价[J],人民长江,2002,5:16—17
    [7] 郭念春,马殿君,徐艳军,沙颖河郑埠口枢纽工程节制闸闸墩裂缝成因分析[J],水运工程,2000,8:88—92
    [8] 王敬莲,贵秋明,新河大闸铺盖裂缝成因及防渗处理措施[J],湖南水利,1998,5:25—26
    [9] 李长城,张晓园,马有国,水闸破坏与修复及法泗闸的整险加固[J],中国农村水利水电,2000,6:35—38
    [10] 叶国华,港工混凝土结构物的温度应力和温度裂缝的研究[J],水运工程,1996,8:19—26
    [11] Wilson E L, The determination of temperatures within mass concrete structures(SESM Report No. 68—17),Structures and Materials Research, Department of Civil Engineering, University of California, Berkeley, Dec. 1968: 187—202
    [12] Tatro Stephen B, Schrader Ernest K, Thermal analysis for RCC—a Practical Approach. Roller Compacted Concrete Ⅲ, San Diego, California: Published by ASCE, 1992: 389—406
    [13] Barrett P K et al. Thermal structure analysis methods for RCC dams, Proceeding of conference of roller compacted concrete Ⅲ, San Diedo, California, 1992: 407—422
    [14] Tohru Kawaguchi and Sunao Nakane, Investigations on determining thermal stress in massive concrete structures, ACI, 1996, 93(1): 96—101
    [15] Chikahisa H, Tsuzaki J, Nakahara H, Sakurai S. Adaptation of back analysis methods for the estimation of thermal and boundary characteristics of mass concrete structures[J],Dam Engineering, 1992,3(2): 117—138
    [16] Zhu Bofang, Computation of thermal stresses in mass concrete with consideration of creep effect, Fifteenth International Congress on Large Dams, Lausanne, Suisse, Q. 57. R. 31,24—28, Junin: 1985: 529—546
    [17] 张子明,V.K.Garga,碾压混凝土坝的温度应力.河海大学学报[J],1995(3):8—14
    [18] 王润富,陈和群,李克敌,在有限单元法中根据有限子域热量平衡原理求解不稳定温度场[J],水利学报,1981(6):15—19
    [19] 陈里红,混凝土坝施工期徐变应力分析及考虑软化特性的开裂分析初步[J],河海科技进展,1993(12):29—34
    [20] 陈里红,傅作新,碾压混凝土坝温度控制设计方法[J],河海科技进展,1993(4):1—12
    [21] 傅作新,陈和群,梅明荣,等,大体积混凝土结构施工期、运行期温度场和徐变应力场三维有限元程序.姜弘道主编:水工结构工程与岩土工程的现代计算方法及程序.南京:河海大学出版社[C],1992
    [22] 陈里红,傅作新,大体积混凝土结构施工期软化开裂分析[J],水利学报,1992(3):16—21
    [23] 黄达海,宋玉普,赵国藩,碾压混凝土坝温度徐变应力仿真分析的进展[J],土木工程学报,2000,33(4):97—100
    [24] 朱伯芳,多层混凝土结构仿真应力分析的并层算法[J],水力发电学报,1994,3:19—27
    [25] 王建江,陆述远,RCCD仿真分析的非均质单元模型[J],力学与实践,1995,3:41—44
    [26] 张建斌,碾压混凝土坝三维温度场有限元仿真分析的层合单元浮动网格法,南京:河海大学硕士学位论文,2000,3
    [27] 丁宝瑛,王国秉,黄淑萍,等,国内混凝土坝裂缝成因综述与防止措施[J],水利水电技术,1994(4):12—18
    [28] 黄淑萍,胡平,岳耀真,观音阁水库碾压混凝土大坝温度应力仿真计算研究[J],水力发电,1996(7):40—45
    [29] 刘光廷,麦家煊,张国新,溪柄碾压混凝土薄拱坝的研究[J],水力发电学报,1997,2:19—28
    [30] 麦家煊,李惠娟,裴文林,用断裂力学法研究混凝土表面温度裂缝问题[J],水力发电学报,2002(2):52—56
    [31] 曾昭扬,马黔,高碾压混凝土拱坝中的构造缝问题研究[J],水力发电,1998(2):30—33
    [32] 张国新,王光伦,基于流形元法的的结构破坏分析[J],岩石力学与工程学报,2001,20(3):281—287
    [33] 李广远,赵代深,柏承新,碾压混凝土坝温度场与应力场全过程的仿真计算和研究[J],水利学报,1991(10):60—69
    [34] 侯朝胜,赵代深,混凝土拱坝横缝开度三维仿真计算研究[J],水利水电技术,2000,31(8):52—55
    [35] 赵代深,薄钟禾,李广远,混凝土拱坝应力分析的动态模拟方法[J],水利学报,1994(8):19—27
    [36] 曾兼权,李国润,陈希昌,等,用基岩各向异性热学参数分析混凝土基础块的温度徐变应力[J],成都科技大学学报,1994(5):1—7
    [37] 张涛,黄达海,王清湘,等,沙牌碾压混凝土拱坝温度徐变应力仿真计算[J],水利学报,2000(4):1—7
    [38] 姜袁,黄达海,混凝土坝施工过程仿真分析若干问题[J],武汉水利电力大学学报,2000,33(3):64—68
    [39] 黄达海,杨生虎,碾压混凝土上下层结合面上初始温度赋值方法研究[J],水力发电学报,1999(3):34~38
    [40] 朱岳明,刘勇军,谢先坤,确定混凝土温度特性多参数的试验与反演分析[J],岩土工程学报,2002(2):175—178
    [41] 朱岳明,黎军,刘勇军,石梁河新建泄洪水闸闸墩裂缝成因分析[J],红水河,2002(2):44—47
    [42] 朱岳明,张建斌,碾压混凝土坝高温期连续施工采用冷却水管进行温控的研究[J],水利学报,2002(11):55—59
    [43] 朱岳明,秦宾,张建斌,基于生长单元网格浮动的碾压混凝土坝温度场分析[J],河海大学学报,2002,30(5):52—57
    [44] 朱岳明,徐之青,张琳琳,掺MgO混凝土筑坝技术述评[J],红水河,2002(3):5—10
    [45] 美国内务部垦务局编,侯建功译,混凝土坝冷却[M],水利电力出版社,1958
    [46] 朱伯芳,有内部热源的大块混凝土用埋设水管冷却的降温计算[J],水利学报,1997,4:87—106
    [47] 朱伯芳,蔡建波,混凝土坝水管冷却效果的有限元分析[J],水利学报,1985,4:27—36
    [48] 朱伯芳,大体积混凝土非金属水管冷却效果的降温计算[J],水利发电,1996,12:26—29
    [49] 朱伯芳,考虑水管冷却效果的混凝土等效热传导方程[J],水利学报,1991,3:28—34
    [50] 刘宁,刘光廷,水管冷却效应的有限元子结构模拟技术[J],水利学报,1997,12:43—49
    [51] 朱岳明,徐之青,严飞,含有冷却水管混凝土结构温度场的三维仿真分析[J],水电能源科学,2003,1:83—85
    [52] 朱岳明,徐之青,混凝土水管冷却温度场计算方法研究[J],长江科学院院报,2003,4:19—21
    [53] 朱岳明,贺金仁,肖志乔,等,混凝土水管冷却的试验、计算与应用[J],河海大学学报,2003,11:626—630
    [54] 刘勇军,水工混凝土温度与防裂技术研究,河海大学博士学位论文.2002.12
    [55] Douigill, J. W. Some effects of thermal volume changes on the properties and behavior of concrete, The Structure of Concrete Cement and Concrete Associate London, 1968: 499—513
    [56] Carino, N.J. The maturity method, theory and application[J], ASTM J. Cement, Concrete and Aggregates, 61—73
    [57] H. Woods, H.H. Steinour and H.R. Starke, Heat evolved by cement in concrete, Chapter 6: The heats of hydration of the cements, Proc. ASTM, 50, 1950: 1235—57, H
    [58] G. J. Verbeck and C.W. Foster, Proc. Am. Soc. Test. Mater. 50,1950:1235
    [59] W. Lerch and C. L. Ford, Long—time study of cement performance in concrete, Chapter 3: Chemical and physical tests of the cements, J. Amer. Concr. Inst., 44, April, 1948: 743—95
    [60] D. L. Kantro, S. Brunauer and C.H. Weise, Adv. Chem. Ser. 33, 199(1961): J. Phys. Chem. 66(10),1962:1804
    [61] T.M. Berkovitch, R ILEM International Conference on Accelerated Hardening of Concrete, Dokl. Akad. Nauk SSSR, Moscow: 1964
    [62] P.P. Budnikov et al., Dokl. Akad. Nauk SSSR 16, 25(1959),148(1), 91(1963)
    [63] P.Barnes[英]著,吴兆琦,汪瑞芬译,水泥的结构和性能[M],北京:中国建筑工业出版社,1991:229—280
    [64] H. Zur Strassen, Zem. Bet. 16,32(1959)
    [65] J.H. Taplin, Sym., Washington 1960:263
    [66] T. Tsumura, Zement—Kalk—Gips 19(11),511(1966)
    [67] J.—E. Jonasson, P. Groth and H. Hedlund. Modeling of temperature and moisture field in concrete to study early age movements as a basis for stress analysis. RILEM Proceedings 25: Thermal Cracking in Concrete at Early Ages. 45—52
    [68] P. E. Roelfstra, T. A. M. Salet. Modeling of heat and moisture transport in hardening concrete. RILEM Proceedings 25:Thermal Cracking in Concrete at Early Ages, 37—44
    [69] Carino, N. J. The maturity method, theory and application, ASTM J. Cement[J],Concrete and Aggregates. 1984: 61—73
    [70] Suzuki, Y. Harada, S. Maekawa, K. and Tsuji, Y.: Evaluation of adiabatic temperature rise of concrete measured with the new testing apparatus, Concrete Library of JJCE, 9,1988: 109—117
    [71] Suzuki, Y harada, S. Maekawa, K. and Tsujiy. Quantification of hydration—heat generation process of cement in concrete, Concrete Library of JSCE, 12: 155—164
    [72] Jonasson, J. —E. Moisture fixation and moisture transfer in concrete, in 8th International Conference on Structural Mechanics in Reactor Technology, Brussels, Belgium August19—23, 1985: 235—242
    [73] Jonasson, J.—E. and Ronin, V.: Energetically Modified Cement, in Proceedings of the International symposium Utilization of High—Strength Concrete 1993, 20—24 June Lillehammer, Norway, 753—749
    [74] Wang, C., and Dilger, W.H., Prediction of concrete strength development during construction, paper presented at the 1994 Annual Conference of the Canadian Society for Civil Engineering, 1994
    [75] 张子明,宋智通,黄海燕,混凝土绝热温升和热传导方程的新理论[J],河海大学学报,2002,5:1—6
    [76] Bazant Z. P. Constructive equation for concrete creep and shrinkage based on thermodynamics of multi—phase system, Materials and structures, RILEM. Paris, 1970: 3—36
    [77] ASTM C1074-93, Standard practice for estimating concrete strength by maturity method, 1996
    [78] Drugan. W.J. Thermodynamic equivalence of steady—state shocks and smooth waves in general media, applications to elastic—plastic shocks and dynamic fracture[J], J. Mech. Phys. Solids. 1998, Vol46. No. 2: 313—336
    [79] Brannon. R.M., Drugan. W. J. and Shen Y Drugan. W. J. Requirements of thermodynamies in the analysis of elastic—plastic shock waves[J],J. Mech. Phys. Solids, 1995, Vol43: 973—1001
    [80] P.Barnes[英]著,吴兆琦,汪瑞芬译,水泥的结构和性能[M],北京:中国建筑工业出版社,1991:293—301
    [81] Verbeck, G. J. and Helmuth, R.A. Proceedings of the Fifth International Congress on the Chemistry of Cement, Moscow, 1974
    [82] Feldman, R. F. and Sereda, P. J. Eng. J. Canada, 53(8/9), 53(1970)
    [83] Ishai, O, Proceedings of International Conference on The Structure of Concrete, London Cement and Concrete Association, London, 1968:345
    [84] Bentur, A. et al. 7th International congress on the Chemistry of Cement, Paris: vol. Ⅲ(1980), p. Ⅳ—26
    [85] Bazant, Z.P. and Raftshol, W. J. Effect of cracking in drying and shrinkage specimens[J], Cement and Concrete Research, Vol. 12, No. 2, Mar.: 209—226
    [86] Harada, S., Suzuki, Y. and Maekawa, K. Coupling analysis of cement heat generation and diffusion for massive concrete, Proc. and Int. Conf. on Computer Aided Analysis and Design of Concrete Structures, Vol. w, Pine ridge Press, 1990: 785—796
    [87] Hundt, J. Zur Warme—und Feuchtigkeitsleitung in Beton (Heat and moisture conduction in concrete, Berlin, Wilhelm Ernst and sohn, Deutscher Ausschuss fur Stahlbeton. Heft 280, 1977: 21—41
    [88] Pihlajavaara, S. E. and Vaisanen, M. Numerical solution of Diffusion Equation with Diffusivity Concertration Dependent, The State Institute of Technology Research, Helsinki, Finland: 1965
    [89] Hedenblad, G. Moisture permeability of mature concrete, cement mortar and cement paste. Report TVBM—1014, Lund Institute of Technology, Lund 1993
    [90] Helsing—Atlassi, E. A quantitative thermogravimetric study on the nonevaporable water in matures silica fume concrete. Publication P—93: 6, Chalmers University of Technology, Gotehorg. 1993
    [91] Bazant. Concrete at High Temperatures[M].1994: 198—248
    [92] Bazant Z. P. Xi Y. Drying creep of concrete: constitutive model and experiments separating its mechanics[J], Materials and Structure, 1994. 27: 3—14
    [93] Bazant Z. P. Mathematical models for creep and shrinkage of concrete, In: Bazant Z. P. Wittman F.H. eds. Creep and shrinkage in concrete structure. New York: John Wiley & Sons 1982: 163—226
    [94] Mehta K.P. Concrete—structure, properties and materials. Prentice—Hall, Englewood Cliffs, 1986
    [95] A.D. Ross, Shape, size, and shrinkage, Concrete and Constructional Engineering[M], London: 1994, 8: 193—199
    [96] Emmons P. H. and Vaysburd A. M. Factors affecting the durability of concrete repair: the contractor's viewpoint. Construct. Bldg Mater., 1994, 8, No. 1: 5—16
    [97] Emmons P. H., Vaysburd A. M. and Mcdonald J. E. A rational approach to durable concrete repairs. Concr. Int.,1993, 15, No. 9: 40—45
    [98] Emmons P. H., Vaysburd A. M. and Mcdonald J. E. Concrete repair in the future turn of the century-any problems, Concr. Int.,1994,16, No. 3: 42—49
    [99] Emmons P. H., Vaysburd A. M. The total system concept—necessary for improving the performance of repaired structures. Concr. Int.,1995,17, No. 3: 31—36
    [100] 梅明荣,任青文,混凝土结构的干缩应力研究综述[J],水利水电科技进展.2002,6:59—62
    [101] 牛道昌,水工混凝土干缩与裂缝的关系[J],水利水电工程设计,1995,11:44—50
    [102] 刘立军,水工混凝土挡土墙裂缝原因及防治办法的探讨[J],东北水利水电,1995,2:22—24
    [103] 吕爱钟,蒋斌松,岩石力学反问题[M],北京:煤炭工业出版社,1998,8:2—3
    [104] 田立平,热传导方程反问题的存在性[J],唐山工程技术学院学报,1994,16(1):32—37
    [105] 田立平,热传导方程反问题的存在性Ⅱ[J],唐山工程技术学院学报,1995,1:65—70
    [106] 李功胜,马逸尘,热传导反问题中非线性热源的存在性[J],数学物理学报,2000,20(1):48—57
    [107] 李春发,冯恩民,一类热传导方程非线性源项识别问题[J],大连理工大学学报,2002,7:391—395
    [108] 孙福伟,刘伟霞,热传导方程确定参数的反演方法[J],北方工业大学学报,2002,3:26—30
    [109] 崔成贤,李成林,热传导方程传热系数的识别方法[J],佳木斯工学院学报,1995,12:331—334
    [110] 钱炜琪,蔡金狮,用灵敏度法辩识热传导系数与热流参数[J],空气动力学学报,1998,6:226—231
    [111] 陈琪,马逸尘,张志斌,热传导问题参数识别的卷积方法[J],西安交通大学学报,2000,12:90—93
    [112] 钮佩琨,具有非线性边界条件的非齐次热传导方程的一类反问题[J],黑龙江大学自然科学学报,1999,9:26—31
    [113] 张金清,董令德,关于非齐次线性热传导方程的一类反问题的解[J],山东建筑工程学院学报,1996.6:94—98
    [114] 阎军,杨海天,李兴斯,凝聚函数法求解稳态热传导系数反问题的研究[J],大连理工大学学报,2002.7:407—411
    [115] 辛玉梅,臧述升,郑洪涛,利用边界元素法求解热传导反问题[J],哈尔滨工业大学学报,1997,6:26—28
    [116] Neuman S. P., Calibration of distributed parameter groundwater flow models viewed ad a multiple objective decision process under uncertainty[J], Water Resour. Res., Vol. o, No. 4, 1973:1006—1021
    [117] Chavent G., Identification of distributed parameter system: About the output least square method, its implementation and identifiability, Identification and System Parameter Estimation[M], edited by Isermann R., New York, Pergamon, No. 1, 1979b:85—97
    [118] 范鸣玉,张莹,最优化技术基础[M],北京:清华大学出版社,1982
    [119] 沈振中,三维粘弹性位移反分析的可变容差法[J],水利学报,No.9,1997:66—70
    [120] 孙道恒,力学反问题的神经网络分析法[J],计算结构力学及其应用,1996,13(2):115—118
    [121] 朱合华,摄动粘弹性模型的反演分析,上海:首届全国青年岩石力学学术研讨会论文集,1991:313—316
    [122] E Barragy, Graham F Carey, A parallel element—by—element solution scheme, Int. J. Numer. Methods Eng., 1988, 26:2367—2381
    [123] M Lesoinne, C Farhat, M Geradin, Parallel/vector improvements of the frontal method, Int. J. Numer. Methods Eng., 1991, 32:1267—1281
    [124] S Bitzarakis, M Papadrakakis, A Kotsopulos, Parallel solution techniques in computational structural mechanics, Comput, Methods Appl, Mech, Engrg., 1997, 148:75—104
    [125] P Geng, J T Oden, R A van de Geijin, A parallel multifrontal algorithm and its implementation, Comput. Methods Appl, Mech. Engrg., 1997, 149:289—301
    [126] Jennifer A Scott, A parallel frontal solver for finite element applications, Int. J. Numer. Methods Eng., 2001, 50:1131—1144
    [127] L S Chien, C T Sun, Parallel processing techniques for finite element analysis of nonlinear large truss structures[J], Computers & Structures, 1989, 31(6):1023—1029
    [128] N J Sorensen, B S Andersen, A parallel finite element method for the analysis of crystalline solids, Comput. Methods Appl. Mech. Engrg., 1996, 132:345—357
    [129] K. H. Law, A parallel finite element solution method[J], Computers & Structures, 1986, Vol. 23, No. 6:845—858
    [130] M. C. Dracopoulos, M. A. Crisfield, A partially sequential preconditional for a parallel and efficient finite element solution[J], Computing Systems in Engineering, 1995, Vol. 6, No. 6:549—561
    [131] C. J. Willis, R. Wait. Technical note distributed Finite Element calculations on Transputer arrays and the DAP[J], Computing Systems in Engineering, 1991, Vol. 2, No. 4:421—424
    [132] Edward Wilson, Charbel Farhat, Linear and nonlinear Finite element analysis on multiprocess or computer systems[J], Communications In Applied Numerical Methods, 1988, Vol. 4:425—434
    [133] Charbel Farhat, Luis Crivell, A general approach to nonlinear FE computations on shared—memory multiprocessors[J], Computer Methods In Applied Mechanics and Engineering, 1988, Vol. 72:153—171
    [134] B. N. Marker, D. T. Nguyen, Qin Jiangning, Performance of NIKE3D with PVSOLVE on vector and parallel computers[J], Computing Systems in Engineering, 1994, Vol. 5, No. 4—6:363—368
    [135] R. D. Vanluchene, R. H. lee, V. J. Meyers, Large scale Finite Element analysis on a vector processor[J], Computers & Structures, 1986, Vol. 24, No. 4:625—635.
    [136] Kincho H. Law, A parallel finite element solution method[J], Computers & Structures, 1986, Vol. 31, No. 6:845—858
    [137] Olaf Storaasli, Jonathan Ransom, Robert Fulton, Structural dynamic analysis on a parallel computer: the finite element machine[J], Computers & Structures, 1987, 26(4): 551—559
    [138] Ronfu Ou, Robert E Fulton, An investigation of parallel numerical integration methods for nonlinear dynamics[J], Computers & Structures, 1988, 30(1/2):403—449
    [139] Jerrome F Hajjar, John F Abel, Parallel processing for transient nonlinear structural dynamics of three—dimensional framed stuctures using domain decomposition[J], Computers & Structures, 1988, 30(6):1237—1254
    [140] All Namazifard, I D Parsons, An MPI parallel implementation of Newmak's method[J], Computer—Aided Civil and Infrastructure Engineering, 2000, 15:189—195
    [141] Petr Krysl, Zdenek Bittnar, Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual portioning scalability[J], Computers and Structures, 2001, 79:345—360
    [142] Arne S Gullerud, Robert H Dodds Jr, MPI—based implementation of a PCG solver using an EBE architecture and preconditioner for implicit, 3—D finite element analysis[][, Computers and Structures, 2001, 79:553—575
    [143] Zhang Ruqing, Parallel computational algorithm of substructure method of large—scale structure analysis[J], Applied Mathematics and Mechanics, 1991, Vol. 12, No.1:93—100
    [144] Ronfu Ou, Robert E. Fulton, An investigation of parallel numerical integration methods for nonlinear dynamic[]], Computers & Structures, 1988, Vol. 30, No12:403—409
    [145] S. Y. Synn R. E. Fulton, The concurrent element level processing for nonlinear dynamic analysis n a massively parallel computer[J], Computing Systems in Engineering, 1995, Vol. 6, No. 3:285—293
    [146] A. N. Danial J. F. Doyle, A massively parallel implementation of the spectral element method for impact problems in plate structures[J], Computing Systems in Engineering, 1994, Vol. 5, No. 4—6:375—388
    [147] S. H. Hsieh, J. F. Abel, Use of networked workstations for parallel nonlinear structural dynamic simulations of rotating bladed—disk assembles[J], Computing Systems in Engineering, 1993, Vol. 4, No. 4—6:521—530
    [148] J. F. Hajjar, J. F. Abel, Parallel processing for transient nonlinear structural dynamics of three—dimensional framed structures using domain decomposition[i], Computers & Structures, 1988, Vol. 30, No6:1237—1254
    [149] C. F. hat, L. Crivelli, A transient FETI methodology for large—scale parallel implicit computations in structural mechanics[J], International Journal for Numerical methods in Engineering, 1994, Vol. 37:1945—1975
    [150] D. Y. Xue, K. Wu, Chun Mei, Iterative real/complex eigen—solver and parallel processing for nonlinear panel flutter analysis[J], Computing Systems in Engineering, 1994, Vol. 5, No. 4—6:407—414
    [151] I. Applegarth, P. Bettess, Implementation of the subspace iteration method for eigen problems on a symmetric multiprocessor system[J], Computing Systems in Engineering, 1993, Vol. 4, No.1:87—98
    [152] D. Y. Xue, K. Wu, Chun Mei, Nonlinear vector eigen—solver and parallel reassembly processing for structural nonlinear vibration[J], Computing Systems in Engineering, 1993, Vol. 4, No. 4—6:513—519
    [153] O. O. Storaasli, D. T. Nguyen, Computational mechanics analysis tools for parallel-vector supercomputers[J], Computing Systems in Engineering, 1993, Vol. 4, No. 4—6:349—354
    [154] B A Schrefler, R Matteazzi, D Gawin, X Wang, Two parallel computing methods for coupled thermohydromechanical problems[J], Computer—Aided Civil and Infrastructure Engineering, 2000, 15:176—188
    [155] C T Sun, K M Mao, Elastic—plastic crack analysis using a global—local appproach on parallel computer[J], Computers & Structures, 1988, 30(1/2):395—401
    [156] C Ozturan, H L deCougny, M S Shephard, J E Flaherty, Parallel adaptive mesh refinement and redistribution on distributed memory computers, Comput. Methods Appl. Mech. Engrg., 1994, 119:123—137
    [157] J T Oden, Abani Patra, A parallel adaptive strategy for hp finite element computations, Comput. Methods Appl. Mech. Engrg., 1995, 121:449—470
    [158] Xian Z Guo, Kent W Myers, A parallel solver for the hp—version of finite element methods, Comput. Methods Appl. Mech. Engrg., 1996, 133:229—246,
    [159] M Papadrakakis, A Kotsopulos, Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation, Comput. Methods Appl. Mech. Engrg., 1999, 168:305—320
    [160] Raninald Lohner, Jose Camberos, Marshal Merriam, Parallel unstructured grid generation[J], Computer Methods in Applied Mechanics and Engineering, 1992, 95:343—357
    [161] R Said, N P Weatherill, K Morgan, N A Verboeven, Distributed parallel delaunay mesh generation, Comput. Methods Appl. Mech. Engrg., 1999, 177:109—125
    [162] K Morgan, P J Brookes, O Hassan, N P Weatherill, Parallel processing for the simulation of problems involving scattering of electromagetic waves, Comput. Methods Appl. Mech. Engrg., 1998, 152:157—174
    [163] Noor AK. New computing systems and future high-performance computing environment and their impact on structural analysis and design[J], Computers and Structures, 1997, 64(1):1—30
    [164] Mackerle J. Parallel fnite element and boundary element analysis: theory and applications: A bibliography (1997-1999). Finite Elements in Analysis and Design, 2000, 35:283—296
    [165] Law K H. A parallel finite element solution method[J], Computers and Structures, 1986, 23(6):845—858
    [166] Lui E. M. Zhang W. P. Parallel frontal solution for large—scale structure analysis. In: Proceedings of the 10th Conference on Electronic Computation, 1991:329—336
    [167] Chiang KN and Fulton RE. Structural dynamics methods for concurrent processing computers[J], Computers and Structures, 1990, 36(6):1031—1037
    [168] C. Farhat F. X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 1991, 32:1205—1227
    [169] C. Farhat L. Crivelli. A transient FETI methodology for large—scale parallel implicit computations in structural mechanics. International Journal for Numerical Methods in Engineering, 1994, 37:1945—1975
    [170] Yagawa, G. Large scale finite element analysis using domain decomposition method on a parallel computer[J], Computers and Structures, 1991, 38, 5:615—625
    [171] Yagawa, G. Parallel finite element method with a supercomputer network[J], Computers and Structures, 1993, 47, 3:407—418
    [172] M. EL Attar. Finite element analysis on distributed memory architectures[J], Applied Mathematics and Computation, 1992, 52:309—316
    [173] A. Meyer, Chemnitz. A parallel preconditioned conjugate gradient method using domain decomposition and inexact solvers on each subdomain [J], Computing, 1995, 45:217—234
    [174] A. I. Khan B. H. V. Topping. Parallel finite element analysis using Jacobi—conditioned conjugate gradient algorithm[J], Advances in Engineering Software, 1996, 25:309—319
    [175] Hojjat Adeli. Parallel processing in computational mechanics. Marcel Dekker Inc. 1992
    [176] Hojjat Adeli Sanjay Kumar. Distributed computer—aided engineering. LLC CRC Press 1999
    [177] H. S. Chada J. W. Baugh Jr. Network—distributed finite element analysis[J], Advances in Engineering Software, 1996, 25:267—280
    [178] Plaskacz EJ. Parallel finite—element analysis via message passing[J], Microcomputers in Civil Engineering, 1997, 12(2):101—118
    [179] 张汝清,并行计算结构力学[M],重庆:重庆大学出版社,1993
    [180] 周树荃,有限元结构分析并行计算[M],北京:科学出版社,1994
    [181] 周树荃,曾岚,有限元方程组的并行EBE预处理共轭梯度法,全国第四届并行算法学术会议论文集,1993
    [182] 程建钢,李明瑞,黄文彬,有限元分析的并行计算方法[J],北京农业工程大学学报,1994,14(2):5—12
    [183] 程建钢,姚振汉,李明瑞,结构动力分析显式积分并行算法与实现[J],清华大学学报,1996,36(10):80—85
    [184] 姚振汉,程建钢,并行计算模型与有限元并行算法设计[J],力学与工程应用,1996,6(9):58—65
    [185] 王希诚,一种全耦合多相流分析的并行计算方法[J],力学学报,1999,3,6(9):45—52
    [186] 王希诚,一种粗粒度并行遗传算法及其应用[J],计算力学学报,2002,2:17—21
    [187] 林泊洗,碾压混凝土筑坝技术在我国的应用和发展[J],水力发电,1999,(1)
    [188] 陈刚,碾压混凝土高拱坝分缝形式研究[J],四川大学学报,2000,32(6):15—19
    [189] 赵中极,碾压混凝土拱坝诱导缝的非线性断裂研究[J],华北水利水电学院学报,1995,16(4):1—8
    [190] 赵金城,碾压混凝土坝非稳定温度场、温度应力及其温度控制[J],大连大学学报,2001,22(2):1—8
    [191] 沈长松,混凝土重力拱坝下游面裂缝断裂稳定性初析[J],河海大学学报,1995,23(1):22—29
    [192] 陈宗卿,普定碾压混凝土拱坝布置和结构设计[J],水力发电,1995,(10):5—11
    [193] 曾昭扬,马黔,高碾压混凝土拱坝构造缝研究[J],水力发电,1998,(2):30—34
    [194] 黄达海,宋玉普,赵国藩,沙牌碾压混凝土拱坝诱导缝等效强度研究[J],工程力学,2000,17(3):16—21
    [195] 杨家修,普定碾压混凝土拱坝防裂结构设计[J],水力发电,1995,(10):26—28
    [196] 黄达海,碾压混凝土拱坝的发展[J],水利发电科技进展,1999,(4):12—19
    [197] 黄达海,宋玉普,吴智敏,大体积混凝土等效裂缝断裂模型研究[J]计算力学学报,2000,(3):293—299
    [198] Landall, Y. A. New Design for Composite Arch Dams with Partial Use of RCC[J], International Journal on Hydropower and Dams, 1998, Vol. 5, No. 3
    [199] Kenneth, Hansen D. Roller compacted concrete: A civil engineering innovation concrete[J], International Design & Construction, 1996, 18(3):25—31
    [200] Brown T L, Lemay H E. chemistry: The Central Science, 4th Ed, Prentice Hall, Englewood Cliffs, NJ, 1988
    [201] 张铀文,叶列平,吴佩刚,基于成熟度的大体积混凝土早期温度应力场有限元分析[J],建筑结构,2005,35(1):68—71
    [202] Freiesleben H P, Pedersen J. Maturity computer fox controlled curing and hardening of concrete. Nordisk Betona, 1977
    [203] CEB— FI P Model Code 1990 . Comite Euro— International du Bet on, Bulletin D information No. 213/214, Tomas Telford, London, 1993, 5:473
    [204] 刘海成,碾压混凝土拱坝诱导缝等效强度研究,大连:大连理工大学博士学位论文,2004
    [205] Wang Tie meng, Control of Cracking Engineering Structure[M], Beijing:China Architecture and Building Press, 1997
    [206] Huang Shi yuan, Cause of formation, prevention and cure of concrete cracking at early age[J], Concrete, 2000, (7):3—5
    [207] 虞维平,含湿多孔介质的热湿迁移特性,北京:清华大学博士学位论文,1987
    [208] 刘光廷,焦修刚,混凝土的热湿传导耦合分析[J],清华大学学报,2004,Vol.44,No.12:1653—1671
    [209] Catlett, L Smarr, Metacomputing, Comm. of ACM, 1992, 35(6):44—52
    [210] T E Anderson, D E Culler, D A Patterson et al, A case for NOW(Networks of Workstations), IEEE Micro, 1995, (4):54—64
    [211] C Amza, A L Cox, S D Warkadas et al, TreadMarks: Shared memory computing on networks of workstations, IEEE Computer, 1996, 29(2):18—28
    [212] 戴光明,戴晓明,基于PVM的微机网络并行计算及其应用[J],计算机工程与应用,2000,(9):154—156
    [213] 王莹,屈一新,PC集群的建立与MPI并行环境的实现及其应用[J],北京化工大学学报,2001,28(4):4—6
    [214] 黎康保,陶文正,用PC机群组构并行超级计算机[J],计算机工程,2000,26(9):1—3
    [215] 岳光来,杨耀忠,局域网分布式并行计算环境的建立与应用[J],计算机工程与应用,2002(4):136—138
    [216] MPICH http://www.mcs.anl.gov/mpi/mpich
    [217] 周树荃,梁维泰,邓绍忠,有限元结构分析并行计算[M],北京:科学出版社,1999.
    [218] Hughes T J R, Levit I, Winger J. Element—By—Element implicit algorithms for heat conduction[J], Journal of Engineering Mechanics Division, ASCE, 1983, 109:576—585
    [219] 张健飞,姜弘道,带状对称正定矩阵的并行Cholesky分解及其实现,成都:第七届全国并行计算学术交流会论文集,2002,8:170-174
    [220] 刘耀儒,周维垣,陈欣,等,基于EBE方法的三维有限元并行计算[J],岩土力学,Vol.24.2003(10):69—72
    [221] 谷同祥,刘兴平,莫则尧,多搜索方向共扼梯度法——一种无需整体内积的共扼梯度类方法[J].数值计算与计算机应用,2002,4:253-263
    [222] Shang-Hsien Hsieh. Evaluation of automatic domain partitioning algorithms for parallel finite element analysis [J]. International Journal For Numerical Methods in Engineering, Vol. 40, No. 6, pp. 1025-1051 (1997).
    [223] 陈国良,王煦法,庄镇果,等,遗传算法及其应用[M],北京:人民邮电出版社,1996
    [224] 金菊良,杨晓华,储开凤,加速基因算法在海洋环境预报中的应用[J],海洋环境科学,1997(4):7—11
    [225] 孙焕泉,王加澄,地下构造裂缝分布规律及其预测[J],大庆石油学院学报,2000,Vol.24 No.3:83-86
    [226] 刘国彬,李文勇,地铁车站诱导缝位移的分析计算[J],岩土工程学报,2000,Vol.22 N0.2:195—198
    [227] 张小刚,宋玉普,碾压混凝土坝诱导缝设置及拱坝诱导缝等效强度[J],水利水运工程学报.2003,12:67—73
    [228] Xu shilang, Reihardt H W. Determination of double—K criterion for crack propagation in quasi— brittle fracture[J], International Journal of fracture, 1998, 00:1—29
    [229] Xu Shilang, Reihardt H W. Crack extension resistance and fracture properties of quasi—brittle softening materials like concretebased on the complete process of fracture[J], International Journal of Fracture, 1998, 00:1—29
    [230] Wu Zhi min, Xu Shilang. Influence of maximum aggregate sizes on double— K fracture parameters of concrete[J], J of Da lian Univ of Tech, 2000, 40(3):358—361
    [231] Zhao Yanhua, Xu Shilang. The influence of span/depth ratio on the double— K fracture parameters of concrete[J], Journal of China Three Gorgers Univ (Natural Sciences), 2002, 24(1):35—41
    [232] 赵中级,张镜剑,杨耀红,碾压混凝土断裂的数值仿真分析[J],华北水利学院学报,1995,16(3):1—7
    [233] Hillerborg A. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J], Cement and Concrete Research, 1976(6): 773—782
    [234] Wang Guanglun, O. A. Pekaub, Zhang Chuhan, Wang Shaomin. Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics[J], Journal of Engineering Fracture Mechanics, 2000, 65(3):67—87
    [235] F. Barpi and S. Valente. Numerical Simulation of Prenotched Gravity Dam Models[J], Journal of Engineering Mechanics, 2000, 126(6):611—619
    [236] Zihai Shi, Masaki Suzuki and Masaaki Nakano. Numerical Analysis of Multiple Discrete Cracks in Concrete Dams Using Extended Fictitious Crack Model[J], Journal of Structure Engineering, 2003, 129(3):324—336
    [237] Oliver J., Huespe A. E., Pulido M. D. G. and Chaves E. From continuum mechanics to fracture mechanics: The strong discontinuity approach[J], Engineering Fracture Mechanics, 2002, 69(2):113—136
    [238] J. Oliver. On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations[J], International Journal of Solids and Structures, 2000, 37(48):7207—7229
    [239] 简政,张浩博,黄松梅,碾压混凝土断裂性能研究[J],西安理工大学学报,1998,14(2):152—156
    [240] 沈英,曾昭扬,周立峰,碾压混凝土坝层面剪切断裂分析[J],力学学报,1994,26(6):679—689
    [241] 黄海燕,混凝土尺寸效应理论研究与断裂参数分析,南京:河海大学博士学位论文,2004
    [242] 徐道远,王向东,朱为玄,等,混凝土坝的损伤及损伤仿真计算[J].河海大学学报(自然科学版),2002,30(4):14—18
    [243] S. P. Shah, R. Sanker, Internal cracking and strain—softening response of concrete under uniaxial compression[J], ACI Materials Journal. Vol. 84, 1987(3):200—212
    [244] 谢和平,鞠杨,混凝土微细观损伤断裂的分形行为[J],煤炭学报,Vol.22.1997(12):586—590
    [245] 张济忠,分形[M],北京:清华大学出版社,1995
    [246] 谢和平,分形—岩石力学导论[M],北京:科学出版社,1996
    [247] A. Carpinteri, B. Chiaia. Multifractal scaling laws in the breaking behaviors of disordered materials[J], Chaos, Solitons & Fractals. 1997, 8(2):135—150
    [248] V. E. Saouma, C. C. Barton. Fractals, Fractures and Size Effects in Concrete[J], Journal of Engineering Mechanics, 1994(120):835—854
    [249] M. A. Issa, A. M. Hammad. Assessment and evaluation of fractal dimension of concrete fracture surface digitized images[J], Cement and Concrete Research, 1994, 24(2):325—334
    [250] A. S. Balankin. Physics of fracture and mechanics of self—affine cracks[J], Engineering Fracture Mechanics, 1997, 57(2):135—203
    [251] A. B. Mosolov. Cracks with fractal surface. Dokl. Akad. Nauk SSSR. 1991, 319(4):840—844

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700