水工混凝土温控和湿控防裂方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要就混凝土的水化温升模型、考虑损伤的温度及应力计算模型、混凝土湿度及干缩应力宏观、细观基本理论及模型、水管冷却计算方法以及与温度、湿度参数相关的试验等几个与实际工程紧密相关的问题进行了较为系统的研究,主要内容和成果如下:
     (1)系统地回顾和阐述了混凝土温控及仿真计算、湿度场与干缩应力以及细观损伤力学等方面的发展及研究现状,指出了在这些领域仍然存在及尚待解决的问题,并提出了解这些问题的一些较为实用先进的思路和方法。
     (2)引入考虑自身温度历程影响的水化放热理论新模型及考虑损伤影响的混凝土应力场仿真计算理论,认为传统的粘弹性温度、徐变应力场仿真计算中,除了温度计算时需要考虑混凝土的温变、时变特性外,在应力计算中还需考虑各种外荷载导致损伤作用的影响。
     (3)实现了不同材质水管内边界分别被视为第一类和第三类边界时的水管冷却计算程序,反演得出了周公宅拱坝塑料质PE水管边界被视为第三类边界时的“等效表面散热系数”,明确了“等效表面散热系数”与水管通水流量之间的相互关系,并对比分析了塑料质水管与铁管之间冷却效果的差异,从中获取了一些具有实际应用价值的结论和建议。
     (4)分别从宏观和细观的角度实现了混凝土三维非线性、非稳定湿度及干缩应力场的仿真计算。在宏观计算理论中,认为高性能混凝土湿度及干缩应力计算时应考虑内部自干燥作用的影响;细观研究方面,混凝土被视为由骨料及砂浆组成的多相复合材料,研究混凝土湿度扩散及干缩特性时,必须考虑骨料与砂浆材料特性差异以及应力导致的损伤影响,最后实现了细观层次上混凝土湿度、干缩变形及干缩应力场与损伤场的耦合计算。
     (5)引入改进加速遗传算法,对混凝土多参数反问题进行了反演计算识别。提出采用多重指数与双曲线的组合模型对混凝土的水化放热过程进行拟合,几个室内及实际工程反演计算结果表明,温度计算值与实测结果非常吻合。
     (6)采用混凝土水管冷却三维非线性非稳定温度和应力的精细算法,对周公宅拱坝7#(岸坡坝段)和12#(河床坝段)两个典型坝段的水管冷却效果进行了仿真计算分析,提出了“变温冷却方案”以适用不同季节温控防裂的需要,总结了一套针对拱坝两类典型坝段行之有效的温控防裂方案,研究成果已经应用于指导该坝混凝土后期坝体的水管冷却布置和冷却方法与过程,且取得很好效果。
     (7)采用现场试验与理论研究相结合的思路,对平原地区典型水工薄壁混凝土结构姜唐湖退水闸和曹娥江大闸两工程施工期混凝土的温度和应力进行了仿真计算。深入分析了此类“倒丁字形”混凝土结构出现“枣核形”裂缝的开裂机理,提出“表面保温+内部降温+表面养护”这一联合式防裂技术,实现了此类工程不出现或很少出现裂缝的防裂目标。
In this dissertation, several topics including the simulative model and the theoretics of temperature field and stress field in concrete, the macro-mesco theory and numerical method of moisture field and drying shrinkage stress, the calculation method of cooling pipe, and feedback analysis of thermal characteristic parameters, which all have correlation with practical engineering, are studied. The main contents of this dissertation are as follows:
    (1) The development and present research state of the concrete temperature controlling and simulative calculation, moisture field and drying shrinkage stress, and the mescopical damage mechanics have been reviewed and expatiated. Some problems still remained and needed to be solved in these fields were pointed out, and some advanced practical way and research thought for solved the aforementioned problem are suggested.
    (2) The un-stability calculation theory of concrete temperature field and stress field in which the influence of temperature itself and the time have been considered was introduced, the characteristic of temperature varied with the time and itself temperature was added to the hydration model of cement, and the influence of materials damage also has been taken into account in simulation of temperature and structure calculation of massive concrete.
    (3) The calculation of cooling pipe was realized when the inner boundary of pipe was considered as the first-kind and the third-kind separately, the "equivalent surface coefficient" of pipe in Zhougongzai arch dam when the boundary of cooling pipe was considered as the third-kind. The relation between the "equivalent surface coefficient" and the water of flux in pipe was understand. The different cooling effect between PE pipe and iron pipe are compared, and some useful conclusion and suggestion could be used in practical engineering were obtain.
    (4) The simulative calculation of the 3-D non-linearity un-stability moisture field and the drying shrinkage stress field in the macro and micro level was carried out. It think that autogenous shrinkage should not omitted from the simulation of moisture for HPC. In the mescopical level, a random mescopical multilaminate composite model of concrete was build, the difference of diffusion mechanism between the macroscopical and mescopical moisture field was discussed and the mescopical law of the drying distortion and its stress was studied when the materials characteristic of different phases were considered. Moreover, the calculation of drying shrinkage distortion and its stress built on moisture diffusion theory should consider the influence of the damage. In the last, coupling calculation of the moisture, drying shrinkage distortion and its stress has been realized in the mescopical level.
    (5) The Improved accelerating genetic algorithm was used to solved the feedback problem of multi-parameter. One new model "multi-exponential+hyperbola" was put forward to draw up the hydration progress of concrete, results from several tests in laboratory and in-situ have showed that the calculation value made a good agree with the measurement value. It is successful to carry out the simulative calculation and result predicting of the going project by using the parameter get from the project have already been ended.
    (6) With the help of an improved strict numerical algorithm of 3D-non-linearity un-stability temperature and stress field including pipe cooling, simulative analysis of the effect of cooling pipe in two typical (7# and 12#)in Zhougongzai arch dam ,has been put on, "varied temperature scheme" was suggested to meet the need for temperature controlling and crack protecting in different seasons, a suit of effective scheme for the two typical segment in arch dam was
引文
[1] 龚召熊,张锡祥,肖汉江,等.水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999.5:3-4.
    [2] 姚激,雷劲松,袁伟斌,等.箱形基础大体积混凝土裂缝控制计算与施工[J].昆明理工大学学报,2001,26(5):23-26.
    [3] 陈仲先,汤累.大型桥梁大体积混凝土的温度控制[J].桥梁建设,2001,3(1):33-37.
    [4] 张杰.地铁车站顶板(逆筑法)施工阶段抗裂研究[J].西南交通大学学报,2000,35(2):2-6.
    [5] Sims F W, Rhodes J A, Clough R W.Cracking ill Norfork dam[J]. Journal ACI, Vol.61, No.2.March, 1964.
    [6] Brunner W J,Wu K H. Cracking of the Revelstoke concrete gravity clam mass concrete.:15th International Congress on Large Dams, 1985,3:35-42.
    [7] 朱伯芳,王同生,丁宝瑛,等.水工混凝土结构的温度应力与温度控制[M].北京:水利电力出版社,1976,9:491~505.
    [8] 丁宝瑛,王国秉,黄淑萍,等.国内混凝土坝裂缝成因综述与防止措施[J].水利水电技术,1994,4:12~18.
    [9] 邓进标,邹志军,韩伯鲤,等.水工混凝土建筑物裂缝分析及其处理[M].武汉:武汉水利电力大学出版社,1998.
    [10] 叶国华.港工混凝土结构物的温度应力和温度裂缝的研究[J].:水运工程,1996,8:19~26.
    [11] 白继中,贾海亮,辛雁清.水工混凝土裂缝的研究[J].山西水利科技,2000,1:23-27.
    [12] 吴相豪.高碾压混凝土拱坝原型正反分析模型研究[D].:河海大学博士学位论文,2000.5.
    [13] 朱伯芳.大体积混凝土温度应力与温度控制.北京[M]:中国电力出版社.1999.3:1~2.
    [14] Wilson E L. The determination of temperatures within mass concrete structures(SESM Report No. 68-17). Structures and Materials Research[R].:Department of Civil Engineering University of California, Berkeley, 1968.12.
    [15] Tatro Stephen B, Schrader Ernest K. Thermal considerations for roller-compacted concrete[J]. ACI Journal,1988,3:242-258.
    [16] Ditchey E J,Schrader E K, Monksvill dam temperature studies[A].:Trans of the 16th International Congress on Large Dams[C]. San Francisco, 1988.:Vol.3:12-21.
    [17] Yonezawa Takushi et,al. Measurement and analysis of cracks by thermal stress in mass concrete[A]. Trans. Of the 16th of International Congress on Large Dams[C] San Francisco, 1988.3:46-54.
    [18] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:水利电力出版社,1999,3:31-34.
    [19] 潘家铮.水工建筑物的温度控制[M].北京:水力电力出版社,1990,3.
    [20] 朱伯芳.混凝土坝的温度计算[J].:中国水利,1956,11:8-20.
    [21] 朱伯芳.朱伯芳院士文选[M].北京:中国电力出版社,1997.3.
    [22] 王润富,陈和群,李克敌.在有限单元法仲根据有限子域热量平衡原理求解不稳定温度昌[J].水利学报,1981,(6):56-73.
    [23] 陈里红,傅作新.碾压混凝土坝温度控制设计方法[J].河海科技进展,1993,(12):35-39.
    [24] 陈里红,傅作新.大体积混凝土结构施工期软化开裂分析[J].水利学报,1992(3):34-40.
    [25] 黄达海,宋玉普,赵国藩.碾压混凝土坝温度徐变应力仿真分析的进展[J].土木工程学报,2000,33(4):48-54.
    [26] 朱伯芳.多层混凝土结构仿真应力分析的并层算法[J].水力发电学报,1994,(3):32-38.
    [27] 王建江,陆述远.RCCD仿真分析的非均质单元模型[J].力学与实践 1995,(3):24-30.
    [28] 朱岳明,马跃锋,等.非均质层合单元法。工程力学[J]2006,(1):239-243.
    [29] Yaolong Chen,Changjiang Wang,el,ct. Simulation analysis of thermal stress of RCC dams using 3-D FEM relocating mesh method[J]. Advances in Engineering Software,2001(32):667-682
    [30] 刘宁,刘光廷.水管冷却效应的有限元子结构模拟技术[J].北京:水利学报.1997,(12),:43~49
    [31] 黄达海,殷福新,宋玉普,碾压混凝温度场仿真分析的波函数法[J],大连理工大学学报,2003,(3),vol.40.No.2:38-43.
    [32] 黄淑平,等,观音阁水库碾压混凝土大坝温度应力仿真计算研究[J].水力发电,1996(7):34-38.
    [33] 刘光廷,麦家煊,张国新.溪柄碾压混凝土薄拱坝的研究[J].水力发电学报,1997(2):32-39.
    [34] 麦家煊,李惠娟,裴文林.用断裂力学法研究混凝土表面温度裂缝问题[J].水力发电学报,2002(2):46-43.
    [35] 曾昭扬,马黔.高碾压混凝土拱坝中的构造缝问题研究[J].水力发电,1998(2):34-40.
    [36] 张国新,金峰,王光纶.用基于流形元的子域奇异边界元法模拟重力坝的地震破坏[J].工程力学,2001(4):34-40.
    [37] 李广远,赵代深,柏承新.碾压混凝土坝温度场与应力场全过程的仿真计算和研究[J].水利学报,1991(10):68-74.
    [38] 赵代深,薄钟禾,李广远,等.混凝土拱坝应力分析的动态模拟方法[J].水利学报,1994(8):2-6.
    [39] 曾兼权,李国润,陈希昌,等.用基岩各向异性热学参数分析混凝土基础块的温度徐变应力[J].四川大学学报,1994(5):23-28.
    [40] 黄达海,等.碾压混凝土上下层结合面上初始温度赋值方法研究[J].水力发电学报,1999(3):2-8.
    [41] 朱岳明,刘勇军,等.确定混凝土温度特性多参数的试验与反演分析[J].岩土工程学报,2002(2):36-42.
    [42] 朱岳明,张建斌.碾压混凝土坝高温期连续施工采用冷却水管进行温控的研究[J].水利学报,2002(11):46-52.
    [43] 朱岳明,汪基伟,等.安徽临淮岗49孔浅孔闸加固工程温控防裂研究[R].南京:河海大学 2002.
    [44] 朱岳明,贺金仁,等.龙滩水电站大坝混凝土温控防裂研究[R].南京:河海大学,2003,4.
    [45] 朱岳明,肖志乔,等.浙江华光潭水电站拱坝混凝土温控防裂研究[R]。南京:河海大学 2003,12
    [46] 朱岳明,刘有志,等.宁波周公宅拱坝水管冷却优选方案及其温控效果仿真计算分析研究[R].南京:河海大学 2005.12
    [47] 吴中伟 补偿收缩混凝土[M],北京:中国建筑工业出版社,1979.3.
    [48] 吴中伟,膨胀混凝土[M],北京:中国铁道出版社,1990.4.
    [49] 朱伯芳.微膨胀混凝土自生体积变形的计算模型及实验方法[J].水利学报,2002.12:18-21.
    [50] 丁宝瑛,岳耀东,等,掺MgO混凝土的温度徐变应力分析[J],水力发电学报,1991,第四期:45-55.
    [51] 张国新,考虑温度历程效应的氧化镁膨胀混凝土仿真分析模型[J],水利学报,2002.8,29-34.
    [52] 张国新,杨波等,MgO微膨胀混凝土拱坝裂缝的非线性模拟[J].水力发电学报,2004.6,vol.23(3):51-55.
    [53] 李承木,掺MgO混凝土自生变形的温度效应试验及其应用[J],水利水电科技进展,1999,vol.19.No.5:34-40.
    [54] 梅明荣,掺MgO微膨胀混凝土结构的温度应力研究及其有效应力法[D],河海大学,博士学位论文2004.11.
    [55] Wittmann.F.H,Interaction of hardened cement paste and water[J]. J.Amer.Ceram.Soc,1956,pp:409-415.
    [56] T.C. Powers, T.L. Brownyard, Studies of the physical properties of hardened Portland cement paste[J], Proc. Am. Concr. Inst., 1946(43):95-101.
    [57] Feldman.R.F and Sereda.P.J(1970), A new model for hydrated Portland cement paste and its practical implications[J],J.Engrg..No.8-9,pp.53-64.
    [58] Taylor.H.F.W, Proposed structure for calcium silicate hydrate gel[J], J.Amer.Ceram.Soc. 1986, vol.69.No.3,PP:464-467.
    [59] Roper.H, Dimensional change and water sorption studies of cement paste[R], in The Structure of Portland Cement Paste and Concrete,Highway Res.Bd.Sec.Rpt.90,pp:235-248.
    [60] Helmuth.R.A and Turk.D.H(1967).The reversible and irreversible drying shrinkage of hardened Portland cement and tricalcium silicate pastes[J]. J.Portland Cement Assoc.Res.Devel.Labs,pp:8-21.
    [61] R.F. Feldman, E.G. Swenson, Volume change on first drying of hydrated Portland cement with and without admixtures [J]. Cem. Concr. Res. 5(1975),PP:25-35.
    [62] Powers.T.C, Proceedings of conference on the structure of concrete and its behaviour under load[C], London, Cement and Concrete Association, London(1968),pp:301-319.
    [63] Wittmann.F.H. Materiaus and Constructions. 1968.vol.1.NO.6: 346-352.
    [64] 岩崎训明,混凝土的特性.尹家辛、李景星译,中国建筑工业出版社,1980.12.
    [65] Bazant.Z.P. and Chern,J.C(1965),Concrete creep at variable humidity:constitutive laws and mechanisms[J]. Mater. Struct.(Paris),vol.18.No. 103: 1-20.
    [66] Bazant,Z.P. and Raftshol, W.J. Effect of cracking in drying and shrinkage specimens[J].Cement and Concrete Research, 1992.Vol. 12, No.2, pp.209~226.
    [67] Harada, S., Suzuki, Y. and Maekawa, K. Coupling analysis of cement heat generationg and diffusion for massive concrete[A], Proc. and Int. Conf. on Conputer Aided Analysis and Design of Concrete Structures[C], Vol.w, Pineridge Press, 1990. pp.785~796.
    [68] Hundt, J. Zur Warme-und Feuchtigkeitsleitung in Beton (Heat and moisture conduction in conerete)[M], Berlin, Wilhelm Ernst and sohn, Deutscher Ausschnss fur Stahlbeton. Heft 280, 1977. pp.21~41.
    [69] Hedenblad, G. Moisture permeability of mature concrete, cement mortar and cement paste[R]. Report TVBM-1014, Lurid Institute of Technology, Lund 1993.
    [70] Bazant Z.P. Mathematical models for creep and shrinkage of concrete[A]. In: Bazant Z.P. Wittman F.H. eds. Creep and shrinkage in concrete structure[C]. New York. John Wiley & Sons 1982. 163~226.
    [71] Bazant.Z.P,J.K.Kim. Consequences of diffusion theory for shrinkage of concrete[J]. Materials and structures, 1991,24:232-326.
    [72] Bazant Z.P. Xi Y. Drying creep of concrete: constitutive model and experiments separating its mechanics[J]. Materials and Struture, 1994(27). pp3~14.
    [73] Y.Xi. A model for moiture capacities of composite materials Part Ⅰ: formulation [J]. Computational Materials Science, 1995(4):65-77.
    [74] 贝尔J.多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
    [75] 虞维平.含湿多孔介质热湿迁移特性研究[D].北京:清华大学,博士学位论文,1987.
    [76] Christopher H, Hoff W D.Thesorptivity of brick:dependence on the initial water content[J].J Phys applies 1983,16:331-339.
    [77] Mikhailov M D. Exact solutions of temperature and moisture disttibution ing a porous half space with moving evaporation front[J]. Int J Heat and Mass transfer, 1975,18:797-805.
    [78] Z.P.Bazant,Werapol.Thonguthal. Pore pressure and drying of concrete at high temperature[J].Journal of the engineering mechanics division. 1978,10: 1059-1079.
    [79] Meschke, G., and Grasberger, S. Numerical Modeling of Coupled Hygromechanical Degradation of Cementitious Materials[J]. ASCE Journal of Engineering Mechanics,2OO3.Vol.129,No.4: 383-392.
    [80] K. van Breugela, E.A.B. Koendersb. Numerical simulation of hydration-driven moisture transport in bulk and interface paste in hardening concrete[J]. Cement and Concrete Research 2000(30):1911-1914.
    [81] 王补宣,王仁.含湿建筑材料的导热系数[J].工程热物理学报,1983,(5):146-152.
    [82] 刘光廷,黄达海.混凝土温湿耦合研究[J].建筑材料学报,2003.5(6):173-181.
    [83] 黄达海,刘光廷.混凝土等温传湿的试验研究[J].水利学报,2002,47(6):96-100.
    [84] 刘光廷,黄达海.混凝土湿热传导与湿热扩散性的试验研究——实验成果分析[J].三峡大学学报,2002,3(2):1-6.
    [85] Alvaredo,A.M, Wittmann,EH, Shrinkage as influenced by strain softening and crack formation[A]. In:E FN SPON(ed.), Fifthe RILEM international Symposium: Creep and Shrinkage of Concrete[C]. 1993, pp:103-113.
    [86] M.Asad, Baluch.M.H, AL-Gadhib.A.H, Drying shrinkage stresses in concrete patch repair systems[J]. Magazine of Concrete Research, 1997,49(181):303-322.
    [87] Bazant.Z.P and Najjar.L.J, Nonlinear water diffusionin nonsaturated concrete[J]. Mater.Struct(Paris), 1972(5),1-18.
    [88] 蔡正咏,混凝土性能[M],北京:中国建筑工业出版社,1994,PP:32—60,72—83.
    [89] Torrenti J M,Ganger I,et al. Modeling concrete shrinkage under variable ambient conditions{J}. ACI Materials Journal, 1999,96(1):35-39.
    [90] Majorana C E, Vitaliani R. Numerical modeling of creep and shrinkage of concrete by finite element method[A]. In:Bicanic N,Mang H eds. Computer Aided Analysis and Design of Concrete Structure, Proceedings of SCI-C Second International Conference Hel in Zell am Sea[C]. Austria 1990,773-784.
    [91] F.H.Wittmann and P.Schwesinger,High Performance Concrete Material Properties and Design[C].冯乃谦等译,中国铁道出版社,1998 PP:44-53.
    [92] Rahman.M.K, Baluch.M.H, Al-Gadhib.A.H, Modeling of shrinkage and creep stresses in concrete repair[J]. ACI Materials Journal, 1999,96(5):542-549.
    [93] E.J.Garboczi and D.P.Bentz Modelling of the microstructure and transport properties of concrete[J]. Construction and Building Materials, 1996,Vol.10.No.5,PP:293-300.
    [94] Mattea,b, M. Moranvillea,*, Simulated microstructure and transport properties of ultra-high performance cement-based materials[J]. Cement and Concrete Research,2000(3):1947-1954.
    [95] 牛道昌。水工混凝土干缩与裂缝的关系[J]。水利水电工程设计,1995(11):44-50.
    [96] 刘立军.水工混凝土挡土墙裂缝原因及防治办法的探讨[J].东北水利水电,1995(2):22-24.
    [97] 牛焱洲,涂传林,混凝土浇筑块的湿度场与干缩应力[J].水力发电学报,1991(2):87-95.
    [98] 王同生,混凝土结构的随机温度应力[J]。水利学报,1985(1):23-31.
    [99] 袁迎曙,钢筋混凝土结构局部补强的收缩应力分析[J]。土木工程学报,1996,29(1):33-40
    [100] Khan.A.A,Cook.W.D, Mitchell.D, Creep,shrinkage and thermal strains in normal,medium,and high-strength concrete during hydration[J]. ACI Materials Journal, 1997,94(2):156-163.
    [101] A.M.Alvaredo,F.H.Wittmann.普通混凝土与高性能混凝土的收缩和开裂[A].:44-54.In:高性能混凝土—材料特性与设计[C],1998.2.
    [102] H.M. Jennings, P.D. Tennis, Model for the developing microstructurein Portland cement pastes[J]. J. Am. Ceram. Soc. 1994,77(12):3161-3172.
    [103] H.M. Jennings, P.D. Tennis, Correction to A model for the developingmicrostructure in Portland cement pastes[R]. ASTM Bull. 1995(194):70-74.
    [104] A. Bentur, N.B. Milestone, J.F. Young, Creep and drying shrinkage of calcium silicate pastes: Ⅱ. Induced microstructural and chemical changes[J]. Cem. Concr. Res. 1978(8): 721-732.
    [105] A. Bentur, R.L. Berger, F.V. Lawrence, N.B. Milestone, elt. Creep and drying shrinkage of calcium silicate pastes: Ⅲ. A hypothesis of irreversible strains[J]. Cem. Concr. Res. 1979(9): 83-96.
    [106] Dale P. Bentz, Daniel.K.Quenard,et, modeling drying shrinkage of cement paste and mortar, Part Ⅰ: structure model from nanometres to millimeters[J]. Materials and structure, 1995,vol.28,pp:450-458
    [107] C. M. Neubauer, * H. M. lennings, *t and E. J. Garboczi A Three-Phase Model of the Elastic and Shrinkage Properties of Mortar Advanced cement based materials[J]. 1996, 4, pp. 6-20
    [108] Shimomura T, Maekawa K. Analysis of the drying shrinkage behaviour of concrete using a micromechanical model based on the micropore structure of concrete[J]. Magazine of Concrete Research, 1997,49(181):303-322.
    [109] Granger L, Torrenti J M,el ct.Thoughts about drying shrinkage: experimental results and quantification of structureal drying creep[J]. Materials and Structures, 1997,30(12):588-598.
    [110] D. Bentz, E.J. Garboczi, D.A. Quenard, Modelling drying shrinkage in reconstructed porous materials: Application to porous Vycor glass[J]. Mater. Sci. Eng. 1998(6): 211-236.
    [111] 马怀发、陈厚群等.混凝土细观力学研究进展及评述[J],中国水利水电研究院学报,2004.6,Vol.2 No.2:124-130.
    [112] 周维垣、剡公瑞,岩石、混凝土类材料断裂损伤过程区的细观力学研究[J],水电站设计.1997,13(1):1-9.
    [113] 杨强、张浩、周维垣,基于格构模型的岩石类材料破坏过程的数值模拟[J],水利学报,2002.4,No.4:46-50.
    [114] 彭一江,黎保琨,刘斌,碾压混凝土细观结构力学性能的数值模拟[J],水利学报,2001.6:19-22.
    [115] 黎保琨,彭一江,碾压混凝土试件损伤断裂的强度与尺寸效应[J],华北水利水电学院学报,2001.22(3):50-53.
    [116] 刘越,混凝土材料承载能力及破坏模式的细观分析模型[J],中国铁路科学,2000.21(1):63-73.
    [117] 赵吉东、周维垣等,岩石混凝土类材料损伤局部化分叉研究及应用[J],岩土工程学报,2003.1,Vol.25 No.1:80-83.
    [118] Schlangen E,Garboczi E J. Fracture simulations of concrete using lattice models: computational aspects[J]. Engineering Fracture Mechanics,, 1997,57(2/3):319-332.
    [119] Van Mier J G M, Vervuurt A.elt. Materials engineering of cement-based composites using lattice models[A], In:Capinteri A,Aliabadi M,eds. Computational Fracture Mechanics in Concrete Technology[C], Southampton:WIT Press. 1999.PP:1-32.
    [120] Cundall P E,Hart G, Numerical simulation of discontinua. Engineering Computations[J], 1992,9(2):101-113.
    [121] Cundall P A, Strack O D. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979,28:47-65.
    [122] Zubelewics A,Mroz Z. Numerical simulation of Rock bursts processes treated as problems of dynamic instability. Rock Mechanics and Rock Engineering, 1983,16:253-274.
    [123] Bazant Z P, Tabbara M R. Random particle models ofr fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics, ASCE,1999,125(11):1280-1285.
    [124] Mohamed A R, Hansen W. Micromechanical modelling of concrete response under static loading, part 1:Model development and validation. ACI Materials Journal, 1999,96(2):196-203.
    [125] Zhong X X,Chang C S. Micromechanical modeling for behavior of cementitious granular materials[J]. Journal of Engineering Mechanics,ASCE,1999,125(11): 1280-1285.
    [126] 刘光廷,王宗敏.用随机骨料模型模拟混凝土开裂[J].清华大学学报(自然科学版),1996.Vol.36,No.1:84-89
    [127] 宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:水国水利水民出版社,2002..12.
    [128] 王宝庭.基于刚体—弹簧元法的全级配混凝土本构行为模拟[D],大连理工大学博士学位论文.1997.11.
    [129] Van Mier, J.G.M. Fracture Process of Concrete: Assessment of Material Parameters for Fracture Models[J]. Boca Raton Florida, US:CRC Press, Inc, 1997.
    [130] 朱万成,混凝土断裂过程的力学模型和数值模拟[D].东北大学博士学位论文,2002.12.579-598.
    [131] 唐春安.岩石发射规律的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    [132] 唐春安,傅宇方,朱万成.界面性质对颗粒增强复合破坏模式影响的数值模拟分析[J].复合材料 学报,1999,16(4):112-120.
    [133] W.C.Zhu, C.A.Tang. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model.Construction and Building Materials[J]. 2002(16):4S3-463.
    [134] Kachanov L M. Time of the rupture process under creep conditions[J]. TVZ Akad,Nauk.S.S.K. otd, Tech Nauk, 1958(8):34-40.
    [135] Rabolnov Y N. Creep rupture. Proc12, Inter, congress, Appl, Mech. Stanfrod,springer Berlin1969:1-5.
    [136] Lemaitre J, Chabocha J L. a nonlinear model of creep fatigue damage cumulation and interaction[A]. Symp of Mechauics of Viscoelastic Media and Bodies[C],Springs-Verlay, Gethenbure, 1974.3:34-44.
    [137] Leckie. F. A, Hayhurst. D. R. Creep rupture of Structure[J]. Proc. R. Soc. A340, 1974,3:24-34.
    [138] Hult. J, Damage induced tensile instability[A]. Trans 3 rd AMIRT. London, 1975,3.
    [139] Li. Z. X, Qian J. C. Creep damage analysis and its application to nonlinear creep of reinforced concrete beam[J]. Eng, Frac. Mech, 1989,34(4): 851~860.
    [140] Yu. T. Q, etal. An orthotropic of damage model for concrete at different temperatures[J]. Eng, Frac Mech, 1989, 32(5):58-69.
    [141] 尹双增.断裂损伤理论及应用[M].北京:清华大学出版社,1992,12.
    [142] Krajcinovic, D. Damage mechanics[J]. Mechanics of Material 1989.vol.34.NO.2:689-699.
    [143] Loland, K.E. Continuous damage model for load-responds estimation of concrete[J]. Cement and concrete research, 1980, 10: 395-402.
    [144] Mazars J. Application de la mecanique de lendnnag emment an comportememt nonlineaire de structure[D]. These de doctorat detat Univ. Paris, ENSET, Mai 1984,3.
    [145] 钱济成,周建方.混凝土的两种损伤模型及应用[J].河海大学学报,1989(3):40-47.
    [146] 何明,徐道远等.混凝土的损伤模型[J].福州大学学报,1994,22(4):110-114.
    [147] Supartoko F, Sidoroff F. Anisotropic Damage Modeling for Brittle Elastic Materials[A].Symp.of Franco-Poland[C], 1984,pp:32-36
    [148] Krajcinovic D, Fonseka G U. Continuous damage theory of Brittle materials (Part1 &2)[J]. J. Appl. Mech, 1981,48:809-824.
    [149] 李庆斌.混凝土静、动力双剪损伤本构理论[J].水利学报,1995(2):27-33.
    [150] 宋玉普.混凝土内时损伤本构模型[J].大连理工大学学报,1990,30(5):577-583.
    [151] 王哲.内时理论的推广及其在混凝土中的应用[D].大连理工大学博士学位论文,1993,10.
    [152] 张盛东.混凝土正交各向异性损伤本构关系的研究[J].哈尔滨建筑大学学报,1998(2):38-44.
    [153] 徐道远,符晓陵,等.坝体混凝土损伤—断裂模型[J].大连理工大学学报,1997,37(supp):1-6.
    [154] Bazant Z P. Microplane Model for Progressive Fracture of Concrete and Rock[J].Journal of Engineering Mechanics 1985,111(4):559-582.
    [155] 李广平.混凝土的细观损伤理论及其数值模拟[J].五邑大学学报,1994,8(4):30-37.
    [156] 谢和平,鞠杨.混凝土微细观损伤断裂的分形行为[J].煤炭学报,1997,22(12):586-590.
    [157] 陈升平,蒋俊玲,李四年.混凝土拉伸损伤演变的细观力学研究[J].工程力学,2003,21(5):190~193
    [158] 彭一江,黎保琨,刘斌.碾压混凝土细观结构力学性能的数值模拟[J].水利学报,2001,(6):19-22.
    [159] 李杰.混凝土随机损伤本构关系研究新进展[J].东南大学学报,2002,32(5):750~755.
    [160] Cameliet J, Hens H. Probabilistic Nonlocal Damage Model for Continua with Random Field Properties [J]. Journal of Engineering Mechanics, 1994, 120(10):2013-2027.
    [161] Breysse D. Probabilistic Formulation of Damage-Evolution Law of Cementitious Composites[J]. Journal of Engineering Mechanics, 1990,116(7):1489-1511.
    [162] Kandarpa S,Kirkner D J. Stochastic Damage Model for Brittle Materials Subjected to Monotonic Loading[J]. Journal of Engineering Mechanics, 1996, 122(8):788-795.
    [163] 唐春安,傅宇方,朱万成.界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析[J].复合材料学报,1999,16(4):112-120.
    [164] 朱万成、黄明利、唐春安.混凝土试件裂纹扩展及破坏过程的计算机模拟[J],辽宁工程技术大学学报(自然科学版),2000.6 Vol.19,No.3:271-274.
    [165] 朱万成、赵启林等,混凝土断裂过程的力学模型与数值模拟[J],力学进展,2002.11 Vol.32,No.4:579-598.
    [166] Mazars et,at. Thermo-mechanical damage due to by dration in large concrete dams[J].Bostan Society of civil Engineers Sect, 1990(3):456-467.
    [167] Yan-Zhou Niu, Chuan-Lin Tu, et,at. Modeling of Thermomechanical damage of early age concrete[J]. Journal of structural engineering,1995, 121(4): 717-726.
    [168] D Sumarac, M Krasulja. Damage of plain concrete due to thermal incompatibility of its phases[J]. International journal of damage mechanics, 1998, 1(7): 129-141.
    [169] 肖明.温变效应对大体积混凝土结构的损伤开裂分析[J].水利发电学报,1997(2),8-18.
    [170] 王振波.混凝土温度损伤模型研究[J].河海大学博士学位论文,2001,10
    [171] 王向东.混凝土损伤理论在水工结构仿真计算分析中的应用[D].河海大学博士学位论文,2004.7.
    [172] Ayman Ababneh, Yunping Xi,Kaspar Willam. Multiscal modeling of the coupled moisture diffusion and drying shrinkage of concrete[A]. In:Creep,Shrinkage and Durability Mechanics of Concrete and other Quasi-Brittle Materials[C].Edited by F.J.Ulm,Z.P.Bazant and F.H.Wittmann. 2001.3:159-164.
    [173] B. Gérard, J. Marchand Influence of cracking on the diffusion properties of cement-based materials Part Ⅰ: Influence of continuous cracks on the steady-state regime[J], Cement and concrete research 2000(30),37-43
    [174] G.V.JiZi,R.Borst,J.G.Rots FE analysis of the interaction betwween moisture migration,creep,shrinkage and cracking[C].Computational Modeling of Concrete Structures, de.Borst,B,Mang and Meschke(eds),1998,Balkema,Rotterdam:505-511.
    [175] F.X.Hubert,Burlion,J.F.Shao Drying of concrete modelling of a hydric damage[J]. Materials and Structures, Vol.36,January-Februar 2003,: 12-21
    [176] Persson.B, Self-desiccatin and its importance in concrete technology [J], Materials and structure, 1997,30(199):293-305
    [177] C.Hua,P.Acker and A.Ehracher, Analyses and models of the autogenous shrinkage of hardening cement paste(I, modeling at macoscopic scale [J]. C.C.R, Vol.25(1995),pp.1457-1468.
    [178] Ahmed Loukilia, etc, A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history[J]. Cement and Concrete Research 30 (2000), pp.915-922
    [179] Philippe Turcrya,Ect, Can the maturity concept be used to separate the autogenous shrinkage and thermal deformation of a cement paste at early age[J]. Cement and Concrete Research 32 (2002), pp.1443-1450.
    [180] Eiichi.Tazawa and Shingo.Miyazawa, Influence of cement and admixture on autogenous shrinkage of cement paste[J]. C.C.R, Vol25, No.2, pp.281~287.
    [181] 田泽荣一,宫泽伸吾,佐藤刚,等.自己收缩[A].工学年次论文报告集[C].东京:日本工学协会,1992.3:561-566.
    [182] 自己收缩研究委员会.自己收缩自己膨胀试验方法(案)[A].田泽荣一.自己收缩研究委员会报告集[C].东京:日本工学协会,1996:195-198.
    [183] Roy.R.L,DeLarrard.F,Pons.G, The after code type model for creep and shrinkage of high performance concrete[A], Proceedings of the 4th international symposium on utilizatin of high strength/high performance concrete[C],Paris: pressesdel,Ecole National edes pontset chausses, 1996(3):387~396.
    [184] D.P. Bentz, K.A. Snyder, P.E. Stutzman, Microstructural modelling of self-desiccation during hydration[J]. 1997, pp. 132-140.
    [185] CEB, FIP, MODEL-CODE 1990, Thomas Telford. 1990:249-250.
    [186] Tazawa.E, Autogenous shrinkage of concrete[M].New York: E & FN Spon, 1998:91-51.
    [187] Tsutsui.H,Sato.R,Xu.M, A study on stress due to autogenous shrinkage in high strength concrete [A].Proceedings of cement and concrete[C], Tokyo:JCA, 1996.478~483.
    [188] 安明哲 覃维祖 朱金铨,高强混凝土的自收缩试验研究[J].山东建材学院学报,1998,12(6):34-41.
    [189] 田倩 孙伟等,高精度混凝土变形自动化测试系统的实现[J].江苏建筑,2002年第3期:29-42.
    [190] 李鹏辉,刘光廷,等,自生体积变形试验方法研究及应用[J].清华大学学报(自然科学版),2001.vol.11.NO.3:68-77.
    [191] A.Radocea, Autogenous volume change of concrete at very early age[J].Magazine of Concrete Research, 1998,Vol.50, No.2, pp. 107~113.
    [192] Lepage.S, Balbaki.M, Dallaire.E.etal, Early shrinkage development in a High performance concrete[J]. cement, concrete and aggregates, 1999.21(2): 31~35
    [193] O.M. Jensen, P.F. Hansen, A dilatometer for measuring autogenous deformation in hardening Portland cement paste[J]. Mater. Struct. 1995,28(181): 406-409.
    [194] 巴恒静 高小建 杨英姿,高性能混凝土早期自收缩测试方法研究[J].工业建筑,2003年第33卷第8期.
    [195] 李悦,谈謩华,等.混凝土的自收缩及其研究进展[J].建筑材料学报,2000,9,Vol.3,No.3:252-257.
    [196] 安明喆,朱金铨,覃维祖.高性能混凝土的自收缩问题[J].建筑材料学报,2001.6,vol.4.No.2:159-156.
    [197] 蒋正武,孙振平,等.国外混凝土处自收缩研究进展评述[J].混凝土,2001.4:30-34.
    [198] D.P. Bentza, O.M. Jensen, Mitigation strategies for autogenous shrinkage cracking[J], cement& Concrete Composites 2003(3) 123-129.
    [199] 田立平.热传导方程反问题的存在性[J].唐山工程技术学院学报.1994.16(1).pp.32~37.
    [200] 田立平.热传导方程反问题的存在性{Ⅱ)[J].唐山工程技术学院学报.1995.1,pp.65~70.
    [201] 李功胜,马逸尘.热传导反问题中非线性热源的存在性[J].数学物理学报.2000.20(1).pp,48~57.
    [202] 李春发,冯恩民.一类热传导方程非线性源项识别问题[J].大连理工大学学报.2002.7.pp.391~395.
    [203] 孙福伟,刘伟霞.热传导方程确定参数的反演方法[J].北方工业大学学报.2002.3.pp.26~30.
    [204] 钱炜琪,蔡金狮.用灵敏度法辩识热传导系数与热流参数[J].空气动力学学报.1998.6.pp.226~231.
    [205] 陈琪,马逸尘,张志斌.热传导问题参数识别的卷积方法[J].西安交通大学学报.2000.12.pp.90~93.
    [206] 张金清,董令德.关于非齐次线性热传导方程的一类反问题的解[J].山东建筑工程学院学报.1996.6.pp.94~98.
    [207] 阎军,杨海天,李兴斯.凝聚函数法求解稳态热传导系数反问题的研究[J].大连理工大学学报.2002.7.pp.407~411.
    [208] 辛玉梅,臧述升,郑洪涛.利用边界元素法求解热传导反问题[J].哈尔滨工业大学学报.1997.6.pp.26~28.
    [209] 朱岳明,刘勇军,谢先坤.确定混凝土温度特征多参数的试验及反演方法[J].岩土工程学报.2002.3.pp.175~178.
    [210] Neuman S.P., Calibration of distributed parameter groundwater flow models viewed ad a multiple objective decision process under uncertainty[J], Water Resour. Res. 1973, Vol. 1, No.4:pp. 1006~1021.
    [211] Chavent G., Identification of distributed parameter system: About the output least square method, its implementation and identifiability, Identification and System Parameter Estimation, edited by Isermann R., New York, Pergamon, 1979,NO.1: pp:85~97.
    [212] 范鸣玉,张莹.最优化技术基础[M].清华大学出版社.1982.
    [213] 沈振中,三维粘弹性位移反分析的可变容差法[J].水利学报,1997.No.9,pp:66~70.
    [214] 孙道恒等.力学反问题的神经网络分析法[J].计算结构力学及其应用.1996,13(2).pp.115~118.
    [215] 朱合华,摄动粘弹性模型的反演分析[A].首届全国青年岩石力学学术研讨会论文集[C].上海,1991.pp.313~316.
    [216] 朱岳明,王弘,闪黎.混凝土热学参数反问题求解的遗传算法[J].人民长江,2004,11(35):55-57.
    [217] 朱岳明.林志祥.混凝土温度场热力学参数的并行反分析[J].水电能源科学,2005,23(2):69-72.
    [218] Y Yuan, Z.L.Wan. Prediction of cracking within early-age concrete due to thermal,drying and creep behavior[J]. Cement and Concrete Research,2002(32):1053-1059.
    [219] D. Xin, D.G. Zollinger,G.D. Allent.An Approach to Determine Diffusivity in Hardening Concrete Based on Measured Humidity Profiles[J].Advanced cement based materials, 1995, 2, 138—144.
    [220] J.K.Kim, C.S.Lee Predictionof differential drying shrinkage in concrete[J]. Cement and Concrete Research 1998. Vol.28.No.7.:985-994.
    [221] 美国内务部垦务局编,侯建功译.混凝土坝的冷却[M].北京:水利电力出版社.1958.3.
    [222] 朱伯芳.混凝土坝的温度计算[J].中国水利.1956.11,8~20;1956.12,pp.48~60.
    [223] 朱伯芳.有内部热源的大块混凝土用埋设水管冷却的降温计算[J].水利学报.197.4.pp.87~106.
    [224] 朱伯芳,蔡建波.混凝土坝水管冷却效果的有限元分析[J].水利学报.1985.4.pp.27~36.
    [225] Zhu Bofang and Cai Jianbo. Finite element analysis of effect of pipe cooling in concrete dams[J]. Journal of Construction Eng. ASCE. Vol. 115, No.4, Dec, 1989, pp.487~498.
    [226] 朱伯芳.考虑水管冷却效果的混凝土等效热传导方程[J].水利学报.1991.3.pp.28~34.
    [227] 麦家煊.水管冷却理论解与有限元结合的计算方法[J].北京:水利发电学报.1998.4.pp.31~41
    [228] 朱岳明,徐之青,贺金仁,等.混凝土水管冷却温度场的计算方法[J].长江科学院院报,2003,20(2):19~22
    [229] 刘勇军,水管冷却计算的部分自适应精度法[J].刘勇军,2003.7(34):33-35.
    [230] Clark RR. Cool concrete at Detroit dam. Eng. News Rec. 1950. Dec. 21, Dec. 28; Pitman HV. Bull Shoals Dam now completed, Civil Engineering. 1951, Vol. 21:24-29.
    [231] 朱伯芳.高温季节进行坝体二期水管冷却时的表面保温[J].水利水电技术.1997.4.pp.10~13.
    [232] 董福品.考虑表面散热对冷却效果影响的混凝土结构水管冷却等效分析方法[J].北京:水利水电技术.2001.8.pp.16~19.
    [233] 丁宝瑛,大体积混凝土与冷却不泛间水管温差的确定[J].水利水电技术,1997.3(28):12-15.
    [234] 陆阳,陆力.大体积混凝土后期冷却优化控制[J]..北京:水力发电.1995.6.pp.42~46.
    [235] 赵代深,侯朝胜,李梅杉.混凝土坝接缝灌浆水管冷却三维仿真计算研究[J]..水利水电技术.2000.8.pp.8~12.
    [236] 刘有志,朱岳明.高拱坝水管通水时间优化方案研究[J].水力发电.2006.5.:31-35.
    [237] 朱伯芳.大体积混凝土非金属水管冷却的降温计算[J]..北京:水力发电.1996.12.pp.26~29
    [238] 朱伯芳.聚乙烯冷却水管的等效间距[J]..北京:水利发电.2002.1.pp.20~22.
    [239] 朱伯芳.高温季节进行坝体二期水管冷却时的表面保温[J]..水利水电技术.1997.4.pp.10~12.
    [240] 陈秋华,邵敬东,赵永刚.RCC高拱坝上埋设冷却水管技术研究[J]..水电站设计.2001.9.PP.12~28.
    [241] 黎汝潮.三峡工程塑料冷却水管现场试验与研究[J]..中国三峡建设.2000.5.pp.20~50.
    [242] 何戊生.聚乙烯管材在混凝土后冷中的应用[J]..水力发电.1999.5.pp.22~25.
    [243] 丁长青.高强度聚乙烯管在大朝山碾压混凝土围堰中的应用[J]..水力发电.2000.5.pp.26~27.
    [244] G.De.Schutterand L.Taerwe.General hydration model for portland cement and blast furnace slag cement[J].. Cement and Concrete Research, 1995, vol. 25. No. 3: 593-604.
    [245] 张子明,宋智通,黄海燕.混凝土绝热温升和热传导方程的新理论[J].河海大学学报,2002,5:1-6.
    [246] 朱伯芳.考虑温度影响的混凝土绝热温升表达式[J]..水力发电学报,2003,2:69-73.
    [247] 张轴文,叶列平,吴佩刚.基于成熟度的大体积混凝土早期温度应力场有限元分析[J].建筑结构,2005,35(1):68-71.
    [248] Brown T L, Lemay H E. Chemistry:The Central Science, 4th ED, Prentice Hall Cliffs, NJ, 1988.
    [249] 刘海成.碾压混凝土拱坝诱导缝等效强度研究[D].大连理工大学博士论文,2004.3.
    [250] 林志祥.混凝土大坝温度应力数值仿真分析关键技术研究[D].河海大学博士论文,2005.10.
    [251] 徐道远,等.拱坝破坏机理及损伤-断裂分析方法[A].北京:高拱坝学术论文集,1996,10:208-217
    [252] Santurjina. Thermal studies of concrete dams[J].. Dam Engineering, 1993, 4(1).
    [253] J K Kim, C S Lee. Moisture diffusion of concrete considering self-desiccation at early ages[J].Cement and Concrete Research, 1999(29):1921-1927.
    [254] T.Ayano, F.H.Wittmann. Drying,moisture distribution,and shrinkage of cement-based materials[J].Materials and Structures,2002.4(35):134-140.
    [255] CEB-FIP mode code 1990, Design code. Bulletin information, 1993, 213-214
    [256] Alvaredo,A.M, Wittmann,EH, Shrinkage as influenced by strain softening and crack formation[A]. In:E FN SPON(ed.), Fifthe RILEM international Symposium: Creep and Shrinkage of Concrete[C]. 1993, pp:103-113.
    [257] O M Jensen, Per Freiesleben Hansen, Autogenous deformation and RH-change in perspective [J]. Cement and Concrete Research 31(2001) 1859-1865.
    [258] A.E. Long, G.D. Hendersonb, F.R. Montgomeryc. Why assess the properties of near-surface concrete [J].Construction and Building Materials, 2001,15:65-79.
    [259] Wang Tiemeng. Control of cracking engineering structure[M]. Beijing:China Architecture and Building,1997.3.
    [260] Huang Shiyuan. Cause of formation, prevention and cure of concrete cracking at early age[J],Concrete, 2000,(7):3-5.
    [261] 刘光廷,焦修刚.混凝土的热湿传导耦合分析[J].清华大学学报,2004,vol.44.No.12:1653-1671.
    [262] Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures[J]. Mater Sci Engng,1984,68:239-248.
    [263] Beddow J K,Meloy T.Testing and characterizationof powders and fine particles[M]. Londom:Heyden, 1980.
    [264] Bazant Z P, Tabbara M R, Kazemi M T. et, al.Random particle model for fracture of aggregate or fiber composites[J]. J Engrg Mech ASCE, 1990, 116:1686-1705.
    [265] Schorn H, Rode U. Numerical simulation of crack propagation from microcracking to fracture[J]. CemConcr Compos, 1991,13:87-94.
    [266] Schlangen E, Van Mier J G M. Simple lattice model for numerical simulation of fracture of concrete [J]. Materials and structures, 1992,25:534-542.
    [267] 王宗敏.不均质材料(混凝土)裂缝扩展及宏观计算强度与变形[D].博士学位论文 北京:清华大学,1996.
    [268] De.Schutter G,Taerwe L. Random particle model for concrete based on Delaunay triangulation[J]. Mater Struct, 1993, 26:67-73.
    [269] 刘光廷,高政国.三维凸形混凝土骨料随机投放算法[J]..清华大学学报(自然科学版).2003,8(43):1120-1123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700