基于视觉伺服的平面非完整移动机器人鲁棒镇定和跟踪方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的非完整运动学系统的镇定和跟踪控制器设计时大多假定运动学模型是精确已知的。但当模型参数不精确或测量不准确时,实际系统的运动学模型存在复杂的不确定性。轮式移动机器人是一类典型的非完整系统,近年来,由于机器人动力学内在非线性特性以及在实际中的多方面的应用,具有非完整约束的移动机器人的控制问题引起了学术界的广泛的关注。由于未校准参数、外部扰动的存在以及测量和未建模动态等的不确定性,实际中很难获取到机器人系统精确的运动学模型。而且这种不确定常常使得模型中含有状态和控制耦合的不确定非线性成分,输入前面带有不确定性,这给控制研究带来了极大的困难。本论文就是借助于视觉伺服反馈,利用自适应控制、变结构控制、动态反馈控制、两步法等多种控制方法结合以及Backstepping技巧和Lyapunov稳定性理论研究视觉参数未知情形下不确定的非完整移动机器人的鲁棒镇定、轨迹跟踪以及同时镇定和跟踪控制问题。具体展开了以下几个方面的工作:
     1、探讨平面非完整移动机器人在单目摄像机下的不确定运动学和动力学模型。
     2、研究了视觉参数未知情形下,(2,0)型不确定非完整移动机器人在质心与几何中心重合和不重合两种情形下的运动学和动力学系统的鲁棒镇定问题,给出了运动学镇定控制器以及基于动力学的更加实际的力矩镇定控制器设计,并给出严格的证明。
     3、研究了视觉参数未知情形下,(2,0)型不确定非完整移动机器人在质心与几何中心重合和不重合两种情形下的运动学和动力学系统的轨迹跟踪控制问题,设计了运动学跟踪控制器以及基于动力学的力矩跟踪控制器,并给出严格的证明。
     4、研究了视觉参数未知情形下,(1,1)型不确定非完整移动机器人基于链式标准形式的轨迹跟踪控制问题,设计了基于动力学的力矩跟踪控制器,并严格证明了控制系统的稳定性。
     5、研究了视觉参数未知情形下,(2,0)型不确定非完整移动机器人的同时镇定和跟踪控制器设计问题,设计了统一的跟踪和镇定控制器,并给出严格的证明。
     6、在上面几个内容研究成果的基础上,搭建由平面非完整移动机器人和单目视觉传感器构成的实验平台,进行仿真实验检验。
The designing of stabilizing and tracking controller of nonholonomic kinematicsystems is mostly investigated based on the assumption that the kinematics model isexactly known. But when the model parameters are not accurate or inaccuratemeasurement exists, the kinematics model of the actual system is uncertain. Wheeledmobile robots are a class of typical nonholonomic system. The control of mobile robotswith nonholonomic constraints has attracted much attention due to the inherentnonlinearity in dynamics of the robots and the usefulness in many applications. In thereal world, the precise kinematic model of mobile robot systems is difficult to obtainedbecause of the uncalibration parameters, external disturbances and unmodeled dynamics,measurement uncertainties. The uncertain nonlinear part with state and control couplingincluded in the model can bring the uncertain parameters in front of the inputs, it willbring great difficulties to the study. In this paper, based on visual servo feedback, theadaptive control, variable structure control, feedback control, two step method,Backstepping techniques and Lyapunov stability theory are used to study the robuststabilization, trajectory tracking and simultaneous stabilization and tracking control ofnonholonomic mobile robots when visual parameters are unknown. The main studiesare as follows:
     1、Discuss the uncertain kinematics and dynamics models of planar nonholonomicmobile robots with the monocular camera.
     2、The robust stabilization problem of the type (2,0) nonholonomic mobile robot atthe two cases that the mass center and geometry center is coincide and not coincide arediscussed, the kinematic stabilization controller is firstly designed, and then, the morerealization torque stabilization controller is designed, the strict proof is given.
     3、The trajectory tracking control problem of the type (2,0) nonholonomic mobilerobot at the two cases that the mass center and the geometry center is coincide and notcoincide are discussed, the kinematic tracking controller is firstly designed, and then,the more realization torque tracking controller is designed, the strict proof is given.
     4、The trajectory tracking control problem of the type (1,1) nonholonomic mobilerobot is discussed, based on the standard chained system model, the torque trackingcontroller is designed, the strict proof is given.
     5、The simultaneous stabilization and tracking control problem of the type (2,0)nonholonomic mobile robot is discussed, the torque controller is designed which canguarantee the uniform stabilization and tracking control when the visual parameters areunknown, the stability of the proposed control system is rigorously proved.
     6、Based on the research results mentioned above, the experimental platform ofplanar nonholonomic mobile robot with monocular camera sensor is set up, simulationsor experiments are done to illustrate the effectiveness of the proposed controllers.
引文
[1]胡跃明,周其节,裴海龙.非完整控制系统的理论与应用.控制理论与应用,1996,13(1):1-10.
    [2] Kolmanovsky I, McClamroch N H. Developments in nonholonomic controlproblems. IEEE Control Systems,1995,15(6):20-36.
    [3] Brockett R W. Asymptotic stability and feedback stabilization. In DifferentialGeometric Control Theory, Boston: Birkhauser,1983:181-191.
    [4] Kolmanovsky I, Reyhanoglu M, McClamroch N H. Discontinuous feedbackstabilization of nonholonomic systems in extended power form. In: Proceedings ofthe33rd IEEE Conference on Decision and Control,1994:3469-3474.
    [5] Astolfi A. Discontinuous control of nonholonomic systmes. Systems&ControlLetters,1996,27(1):37-45.
    [6] Teel A R, Murray R M, Walsh G C. Nonholonomic control systems: from steering tostabilization with sinusoids. International Journal of Control,1995,62(4):849-870.
    [7] Prieur C, Astolfi A. Robust stabilization of chained systems via hybrid control.Proceedings of the41st IEEE Conference on Decision and Control,2002:522-527.
    [8] Samson C. Time-varying feedback stabilization of a car-like wheeled mobile robots.International Journal of Robotics Research,2005,12(1):55-66.
    [9] Murray R, Sastry S. Nonholonomic motion planning: steering using sinusoids. IEEETrans. on Automatic Control,1993,38(5):700-716.
    [10] Astolfi A. On the stabilization of nonholonomic systems. Proceedings of the33rdIEEE Conference on Decision and Control,1994:3481-3486.
    [11] Samson C. Control of chained system application to path following andtime-varying point-stabilization of mobile robots. IEEE Transactions on AtomaticControl,1995,40(1):64-77.
    [12] Ferrara A, Giacomimi L, Vecchio C. Control of nonholonomic systems withuncertainties via second-order sliding modes. International Journal of Robust andNonlinear Control,2008,18(4-5):515-528.
    [13] Sordalen O J, Egeland O. Exponential stabilization of nonholonomic chainedsystems. IEEE Transactions on Automatic Control,1995,40(1):35-49.
    [14] Tian Y P, Li S H. Exponential stabilization of nonholonomic dynamic systems bysmooth time-varying control. Automatica,2002,38(7):1139-1146.
    [15] Ma B, Tso S K. Unified controller for both trajectory tracking and point regulationof second-order nonholonomic chained systems. Robotics and AutonomousSystems,2008,56(4):317-323.
    [16] Hu Y, Ge S S, Su C Y. Stabilization of uncertain nonholonomic systems viatime-varying sliding mode control. IEEE Trans. Automatic Control,2004,49(5):757-763.
    [17]马保离,霍伟.非完整链式系统的时变光滑指数镇定.自动化学报,2003,29(2):301-305.
    [18] Dong W, Xu Y, Huo W. On stabilization of uncertain dynamic nonholonomicsystems. International Journal of Control,2000,73(4):349-359.
    [19]董文杰,霍伟.链式系统的轨迹跟踪控制.自动化学报,2000,26(13):310-316.
    [20] Hong Y, Wang J, Xi Z. Stabilization of uncertain chained form systems withinfinite settling time. IEEE Transactions on Automatic Control,2005,50(9):1379-1384.
    [21] Jiang Z P. Robust exponential regulation of nonholonomic systems withuncertainties. Automatica,2000,36(2):189-209.
    [22] Xi Z, Gang F, Jiang Z P, et al. A switching algorithm for global exponentialstabilization of uncertain chained systems. IEEE Transactions on AutomaticControl,2003,48(10):1793-1798.
    [23] Wang Q D, Wei C L. Robust adaptive control of nonholonomic systems withnonlinear parameterization. Acta Automatica Sinica,2007,33(4):399-403.
    [24] Wang Z P, Ge S S, Lee T H. Robust adaptive neural network control of uncertainnonholonomic systems with strong nonlinear drifts. IEEE Transactions on Systems,Man, and Cybernetics-PartB: Cybernetics,2004,34(5):1-12.
    [25]慕小武,虞继敏,毕卫萍等.不确定非完整系统的鲁棒适应控制.应用数学和力学,2004,25(3):792-799.
    [26] Xi Z, Gang F, Jiang Z P, Cheng D Z. Output feedback exponential stabilization ofuncertain chained systems. Journal of the Franklin Institute,2007,344(1):36-57.
    [27] Zheng X, Wu Y. Adaptive output feedback stabilization for nonholonomic systemswith strong nonlinear drifts. Nonlinear Analysis,2009,70(2):904-920.
    [28] Jiang Z P, Nijmeijer H. Tracking control of mobile robots: a case study inbackstepping. Automatica,1997,33(7):1393-1399.
    [29] Jiang Z P, Nijmeijer H. A recursive technique for tracking control of nonholonomicsystems in chained form. IEEE Transactions on Automatic Control,1999,44(2):265-279.
    [30] Wu Y, Wang B, Zong G D. Finite-time tracking controller design fornonholonomic systems with extended chained form. IEEE Transactions on Circuitsand Systems-II: Express Briefs,2005,52(11):798-802.
    [31] Tian Y P, Cao K C. An LMI design of tracking controllers for nonholonomicchained-form system. Proceedings of the2007American Control Conference, NewYork, USA,2007:4512-4517.
    [32] Cao K C. Global exponential tracking control of nonholonomic systems inchained-form by output feedback. Acta Automatica Sinica,2009,35(5):568-576.
    [33]吴玉香,胡跃明.一类不确定非完整移动机械臂的鲁棒镇定.控制与决策,2006,21(11):1289-1297.
    [34]董文杰,霍伟.一类不确定非完整动力学系统的鲁棒镇定.控制理论与应用,1999,16(5):708-710.
    [35]王朝立,霍伟,董文杰.不确定非完整动力学系统的变结构指数镇定.北京航空航天大学学报,1999,25(5):601-604.
    [36]王朝立.北京航空航天大学博士论文.非完整控制系统的鲁棒镇定研究,1999.
    [37] Dong W, Xu W. Adaptive tracking control of uncertain nonholonomic dynamicsystem. IEEE Trans. on Automatic Control,2001,46(3):450-455.
    [38] Dong W, Huo W, Tso S K, et al. Tracking control of uncertain dynamicnonholonomic system and its application to wheeled mobile robots. IEEE Trans.on Robotics and Automation,2000,16(6):870-874.
    [39] Su C Y, Stepanenko Y. Robust motiod/force control of mechanical systems withclassical nonholonomic constraints. IEEE Transactions on Automatic Control,1994,39(3):609-614.
    [40]蔡自兴.机器人学.北京:清华大学出版社,2000.
    [41] Kanayama Y, mura Y, et al. A stable tracking conrtol for an auotnomous moilerobot. Proceeding of1990IEEE International Conference on Robot andAutomatic,1990:1142-1147.
    [42] Campion G, Bastin G, D’Andr′ea-Novel B. Structural properties and classificationof kinematic and dynamic models of wheeled mobile robots. IEEE Transaction onRobotics and Automation,1996,12(1):47-62.
    [43] D’Andr′ea-Novel B, Campion G, Bastin G. Control of nonholonomic wheeledmobile robots by state feedback linearization. The International Journal ofRobotics Research,1995,14(6):543-559.
    [44] Sarkar N, Yun X, Kumar V. Control of mechanical systems with rolling constraints:Application to Dynamic Control of Mobile Robots. Int. J. Rob. Res.,1994,13(1):55–69.
    [45]霍伟.机器人动力学与控制.高等教育出版社,2005-1.
    [46] Wu W G, Chen H T, Wang Y J, et al. Adaptive exponential stabilization of mobilerobots with with unknown constant-input. Robotic Systems,2001,18(6):289-295.
    [47] Wang C L. Semiglobal practical stabilization of nonholonomic wheeled mobilerobots with saturated inputs. Automatica,2008,44(1):816-822.
    [48]李胜,马国梁,胡维礼.一类不确定非完整移动机器人的时变自适应镇定.机器人,2005,27(1):10-13.
    [49]李传峰,王朝立.一类不确定非完整运动学系统的鲁棒镇定.北京航空航天大学学报,2007,33(4):427-430.
    [50]马海涛,谢圆,王永.一类参数不确定非完整移动机器人的鲁棒镇定.中国科学技术大学学报,2009,39(9):990-995.
    [51] Fierro R, Lewis F L. Control of a nonholonomic mobile robot using neuralnetworks. IEEE Transactions on Neural Networks,1998,9(4):589-600.
    [52] Astolfi A. Exponential stabilization of a wheeled mobile robot via discontinuouscontrol. Journal of Dynamic Systems, Measurement and Control,1999,121(1):121-126.
    [53] Hou Z G, Zou A M, Cheng L, et al. Adaptive control of an electrically drivennonholonomic mobile robot via backstepping and fuzzy approach. IEEETransaction on Control Systems Technology,2009,17(4):803-815.
    [54] Leung T P, Zhou Q J, Su C Y, An adaptive variable structure model followingcontrol design for robot manipulators. IEEE Transactions on Automatic Control,1991,36(3):347-353.
    [55] Gourdeau R, Schwartz H M. Adaptive control of robotic manipulators:experimental results. Proceedings of1991IEEE International Conference onRobotics and Automation,1991:8-15.
    [56] Pourboghrat F, Karlsson M P. Adaptive control of dynamic mobile robots withnonholonomic constraints. Computers and Electrical Engineering,2002,28(4):241-253.
    [57] Fukao T, Nakagawa H, Adachi N. Adaptive tracking control of a nonholonomicmobile robot. IEEE Transactions on Robotics and Automation,2000,16(5):609-615.
    [58] Park B S, Yoo S J, Park J B, et al. A simple adaptive control approach fortrajectory tracking of electrically driven nonholonomic mobile robots. IEEETransaction on Control Systems Technology,2010,18(5):1199-1206.
    [59] Huang J T. Adaptive tracking control of high-order non-holonomic mobile robotsystems. IET Control Theory and Applications,2009,3(6):681-690.
    [60] Anupoju C M, Su C Y, Oya M. Adaptive motion tracking control of uncertainnonholonomic mechanical systems including actuator dynamics. IEE Proc.ControlTheory Appl.,2005,152(5):575-580.
    [61]魏剑简,白振兴,葛小凯.一种新型的机器人自适应跟踪控制器研究.机器人技术,2009,25(7-2):183-184.
    [62]李世华,田玉平.非完整移动机器人的轨迹跟踪控制.控制与决策,2002,17(3):301-305.
    [63]陈卫东,唐得志,王海涛等.基于Backstepping的机器人鲁棒跟踪控制.系统仿真学报,2004,16(4):837-839.
    [64]刘珊,王永骥,方慧娟等.机器人轨迹跟踪滑模控制研究.机器人技术,2008:261-262.
    [65]高为炳.变结构控制的理论及其设计方法.北京:科学出版社,1996.
    [66] Park K-B, Tsuji T, Lee J-J. Variable structure model following control with robuststability. Proceedings of1998IEEE/RSJ Int. Conf. on Intelligent Robots andSystems,1998:812-817.
    [67]晁红敏,胡跃明,吴忻生.高阶滑模控制在非完整移动机器人鲁棒输出跟踪中的应用.控制理论与应用,2002,19(2):253-257.
    [68]李万金,梅红,李前进.一种新的机器人滑模变结构控制.机床与液压,2009,37(6):161-163.
    [69] Chwa D. Sliding-mode tracking control of nonholonomic wheeled mobile robots inpolar coordinates. IEEE Transaction on Control Systems Technology,2004,12(4):637-644.
    [70] Yang J M, Kim J H. Sliding mode control for trajectory tracking of nonholonomicwheeled mobile robots. IEEE Transaction on Robotics and Automation,1999,15(3):578-587.
    [71]李菁,刘国栋.机器人的鲁棒自适应轨迹跟踪控制.江南大学学报,2008,7(4):448-452.
    [72] Kim M-S, Shin J-H, Hong S-G, et al. Designing a robust adaptive dynamiccontroller for nonholonomic mobile robots under modeling uncertainty anddisturbances. Mechatronics,2003,13(5):507-519.
    [73] Oya M, Su C-Y, Katoh R. Robust adaptive motion/force tracking control ofuncertain nonholonomic mechanical systems. IEEE Transactions on Robotics andAutomation,2003,19(1):175-181.
    [74] Wu J, Xu G, Yin Z. Robust adaptive control for a nonholonomic mobile robot withunknown parameters. Journal of Control Theory and Application,2009,7(2):212-218.
    [75]李胜,马国梁,胡维礼.基于Backstepping方法的车式移动机器人轨迹追踪控制.东南大学学报,2005,35(2):249-252.
    [76]王川,吴怀宇,王芬等.基于Backstepping的移动机器人轨迹跟踪控制.计算机应用技术,2008,24:113-119.
    [77] Liu H, Fernando L. Results on variable structure adaptive robot control withoutjoint velocity measurement. Proceeding of the1995American Control Conference,1995:2317-2321.
    [78] Sun S. Designing approach on trajectory-tracking control of mobile robot. Roboticsand Computer-Integrated Manufacturing,2005,21(1):81-85.
    [79]王麟琨,徐德,谭民.机器人视觉伺服研究进展.机器人,2004,26(3):277-282.
    [80]赵清杰,连广宇,孙增圻.机器人视觉伺服综述.控制与决策,2001,16(6):849-853.
    [81]方勇纯.机器人视觉伺服研究综述.智能系统学报,2008,3(2):109-114.
    [82]薛定宇,项龙江,司秉玉等.视觉伺服分类及其动态过程,东北大学学报(自然科学版),2003,24(6):543-547.
    [83] Chaumette F, Hutchinson S. Visual servo control part I: basic approaches, IEEERobotics Automation Magazine,2006,12:82-90.
    [84] Chaumette F, Hutchinson S. Visual servo control part II: advancedapproaches.IEEE Robotics Automation Magazine,2007,3:109-118.
    [85] Espiau B, Chaumette F, Rives P. A new approach to visual servoing in robotics.IEEE Transactions on Robots and Automation,1992,8(3):313-326.
    [86] Hutchinson S, Hager G D, Peter I. A tutorial on visual servo control. IEEETransactions on Robotics&Automation,1999,12(5):2651-670.
    [87] Spong M W, Hutchinson S, Vidyasagar M. Robot Modeling and Control. New York:Wiley,2006.
    [88] Fakhry H H, Wilson W J. A modified resolved acceleration controller forposition-based visual servoing. Mathematical and Computer Modelling,1996,24(5/6):1-9.
    [89] Mariottini G L, Oriolo G, Prattichizzo D. Image-based visual servoing fornonholonomic mobile robots using epipolar geometry. IEEE Trans. On Robotics,2007,23(1):87-100.
    [90] Wang H Y, Itani S, Fukao T, et al. Image-based visual adaptive tracking control ofnonholonomic mobile robots. Proceefings of the2001IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Maui, Hawaii,USA,2001:1-6.
    [91] De Luca A, Oriolo G, Giordano P R. Image-based visual servoing schemes fornonholonomic mobile manipulators. Robotica,2007,25:131-145.
    [92] Malis E, Chaumette F, Boudet S.2-1/2-D visual servoing. IEEE Transactions onRobots and Automation,1999,15(2):234-246.
    [93] Corke P, Hutchinson S. A new hybrid image-based visual servo control.Proceedings of the IEEE Conference of Decision and Control,2000:2521-2527.
    [94] Piepmeier J A, Mcmurray G V, Lipkin H. Uncalibrated dynamic visual servoing.IEEE Transactions on Robotics and Automation,2004,20(12):143-147.
    [95] Fang Y, Dixon W E, Dawson D M, et al. An exponential class of model free visualservoing controllers in the presence of uncertain camera calibration. InternationalJournal of Robotics and Automation,2006,21(4):247-255.
    [96] Liu Y-H, Wang H, Wang C, et al. Uncalibrated visual servoing of robots using adepth-independent interaction matrix. IEEE Transactions on Robotics,2006,22(4):804-817.
    [97] Wang H, Liu Y, Zhou D. Adaptive visual servoingusing point and line features withan uncalibrated eye-in-hand camera. IEEE Transactions on Robotics,2008,24(4):843-856.
    [98] Fang Y, Dixon W, Dawson D M. Homography-based visual servo regulation ofmobile robots. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2005,35(5):1041-1050.
    [99] Ma Y, Kosecka J, Sastry S S. Visual guided navigation for a nonholonomic mobilerobot. IEEE Transactions on Robots and Automation,1999,15(3):521-536.
    [100] Chen J, Dixon W E, Dawson D M, et al. Homography-based visual servo trackingcontrol of a wheeled mobile robot. IEEE Transactions on Robotics,2006,22(2):407-416.
    [101] Dixon W E, Dawson D M, Zergeroglu E, et al. Adaptive tracking control of awheeled mobile robot via an uncalibrated camera system. IEEE Transactions onSystems, Man and Cybernetics-partB:cybernetics,2001,31(3):341-352.
    [102] Wang Y, Lang H, de Silva C W. A hybrid visual servo controller for robustgrasping by wheeled mobile robots. IEEE/ASME Transactions on Mechatronics,2010,15(5):757-769.
    [103] Allen P, Timcenko A, Yoshimi B, et al. Automated tracking and grasping of amoving object with a robotic hand-eye system. IEEE Transaction on Roboticsand Automation,1993,9(2):152-165.
    [104] Hu G, Mackunis W, Gans N, et al. Homography-based visual servo control withimperfect camera calibration. IEEE Transactions on Automatic Control,2009,54(6):1318-1324.
    [105] Wang C, Liang Z, Jia Q. Dynamic feedback robust regulation of nonholonomicmobile robots based on visual servoing. Journal of Control Theory andApplications,2010,8(2):139-144.
    [106] Wang C, Mei Y, Liang Z, et al. Dynamic feedback tracking control ofnonholonomic mobile robots with unknown camera parameters. Transactions ofthe Institute of Measurment and Control,2010,32(2):155-169.
    [107] Yang F, Wang C. Adaptive stabilization for nonholonomic uncertain dynamicmobile robots based on visual servoing feedback. Acta Automatica Sinica,2011,37(7):857-864.
    [108] Wang C, Niu W, Li Q, et al. Visual servoing based regulation of nonholonomicmobilerobots with uncalibrated monocular camera. In: proceedings of IEEEinternational Conference on Control and Automation, Guangzhou, China: IEEE,2007:214-219.
    [109] Wang C, Mei Y, Liao Q. Rubust regulation of nonholonomic mobile robots withvisual servoing. In: Proceedings of the7th World Congress on Intelligent Controland Automation, Chongqing, China: IEEE,2008:2153-2158.
    [110] Wang C, Liang Z, Du J, et al. Robust stabilization of nonholonomic movingrobots with uncalibrated visual parameters. In: Proceedings of American ControlConference. HyattRegency Riverfront, USA: IEEE,2009:1347-1352.
    [111] Liang Z Y, Wang C L. Robust exponential stabilization of nonholonomic wheeledmobile robots with unknown visual parameters. Journal of Control Theory andApplications,2011,9(2):295–301.
    [112] Slotine J, Li W. Applied Nonlinear Control. Englewood Cliffs, New Jersey:Prentice-Hall, Inc,1991:115-116.
    [113] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive ControlDesign, New York: Wiley,1995.
    [114] Khalil H K. Nonlinear Systems,3rd ed. Upper Saddle River. NJ: Prentice-Hall,2002.
    [115]郑大钟.线性系统理论.北京:清华大学出版社,2002.
    [116] Fierro R, Lewis F L. Control of a nonholonomic mobile robots: backsteppingkinematics into dynamics. Journal of Robotic Systems,1997,14(3):149-163.
    [117]祝晓才.轮式移动机器人的运动控制.国防科学技术大学:国防科学技术大学博士论文,2006.
    [118] Dixon W E, Dawson D M, Zhang F, et al. Global exponential tracking control of amobile robot system via a PE condition. IEEE Transactions on System, Man andCybernetics-Part B: Cybernetics,2000,30(1):129–142.
    [119] Lee T C, Song K T, Lee C H, et al. Tracking control of unicycle-modeded mobilerobots using a saturation feedback controller. IEEE Transactions on ControlSystems Technology,2001,9(2):305–310.
    [120] Gu D B, Hu H S. Model predictive control for simultaneous robot tracking andregulation. Proceedings of International Conference on Intelligent mechatronicsand Automation,2004:212–217.
    [121] Gu D B, Hu H S. Receding horizon tracking control of wheeled mobile robots.IEEE Transactions on Control System Technology,2006,14(4):743–749
    [122] Dixon W E, Dawson D M, Zergeroglu E, et al. Robust tracking and regulationcontrol for mobile robots. International Journal of Robust and Nonlinear Control,2000,10(1):199-216.
    [123] Do K D, Jiang Z P, Pan J. Simultaneous tracking and stabilization of mobilerobots: an adaptive approach. IEEE Transactions on Automatic Control,2004,49(7):1147-1152.
    [124] Do K D, Jiang Z P, Pan J. A global output-feedback controller for simultaneoustracking and stabilization of unicycle type mobile robots. IEEE Transaction onRobotics and Automation,2004,20(3):589-594.
    [125] MacKunis W, Gans N, Kaiser K, et al. Unified tracking and regulation visualservo control for wheeled mobile robots. In Proceedings of the16th IEEEInternational Conference on Control Applications Part of IEEE Multiconferenceon Systems and Control, Singapore,2007:88-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700