冷却透平流热环境快速模拟与管控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气轮机中的透平叶片为了应对高温带来的叶片烧蚀风险,除了采用高温合金叶片和隔热涂层抗拒部分温升外,还必须依靠冷却技术。冷却技术的引入促使叶轮机三维粘性流动形成更复杂的流热环境。当前,对冷却透平流热环境的预测与管控已成为透平设计能力提升的重要基础。然而,面对叶片高度复杂的冷却结构导致的复杂流动与换热,全三维的精细模拟难以满足快速预测的工程需求,更难以预测变工况下引气脉动带来的非定常冷却问题。同时,作为透平流热环境组织的最关键部位之一,叶片与端壁交汇区域的流动传热出现了以叶身融合为代表的先进管控技术,但是还存在局部机理研究不足和对透平级环境和热环境下的效果与机理研究不足的问题。针对这两方面问题,本文开展了系列数值与理论研究,具体内容和结果如下:
     1.针对冷却透平叶片内部开展了基于流体网络法的快速模拟方法研究。发展了能考虑非定常计算、变截面元件、非理想气体工质以及压力边界、流量边界、温度边界和热流密度边界等多种边界条件的流体网络法。方法通过虚拟进出口的及时切换能实现边界流动倒灌的模拟。建立起气膜孔、冲击孔、扰流肋、扰流柱、弯曲通道以及尾缘劈缝等多种冷却结构的流体网络元件模型,使得流体网络法能应用到透平叶片冷气流动与传热的计算中。基于此方法编写计算机程序并通过算例校核初步证明了方法的可行性、快捷性和稳定性。
     2.研究了叶片内部流体网络与外部三维流动的耦合计算方法。通过内部冷却流体网络的计算结果给定叶片外部冷却的源项强度,通过叶片外部流场的计算结果提供叶片内部流体网络的部分边界条件,两个过程反复迭代,实现了叶片内外流场的快速耦合模拟。基于此方法编写计算机程序并以某全气膜冷却透平静叶的绝热壁模型为例开展数值研究。首先通过定常冷却计算初步证明了方法的可行性与快捷性。然后开展脉动冷气进气条件下的透平流热环境数值研究。结果发现,冷气腔进口流量的脉动会引起气膜孔下游壁温的显著变化,会在不改变冷气量周期平均值的情况下降低冷却有效度的周期平均值,脉动幅度较大时降低尤其明显;同腔各孔随时间的脉动幅度并不一定等于冷气腔进气的脉动幅度,低流量孔的脉动幅度可能更大,因而更容易出现负流量即倒灌;冷气腔进口流量脉动周期增大(即脉动速度减小)时,壁温的脉动幅度会降低,因为脉动有足够的时间传播得更远,分布更均匀;上游流量较小的气膜孔的脉动在经历下游大流量气膜孔后会因强烈掺混而迅速衰减趋于不可见,因此对大流量气膜孔下游的壁温影响非常微弱。相关结果为透平冷却裕度设计提供了参考。
     3.开展了叶片前缘与端壁交汇区流热环境的叶身融合管控机理研究。以某平板上孤立叶片模型为例,通过叶片/端壁融合技术设计了不同尺寸的融合面并开展数值研究。结果发现:前缘融合面通过有效削弱或消除马蹄涡实现了前缘交汇区流热环境的有效管控,一方面,马蹄涡的削弱能减小了前缘交汇区的流动分离从而改善流场的均匀性,另一方面,马蹄涡的削弱能减少自由流高温流体流入近壁从而降低壁面温度,能减小角区近壁流速从而降低壁面换热系数。前缘融合面削弱马蹄涡的具体机制是:通过展向型面间的位移生成展向压力梯度来削弱或抵消来流附面层减速引起的展向压力梯度。通过数值计算获得了融合面的尺寸设计准则:在保证融合面的展向高度足够高(大于附面层厚度)的情况下尽可能增加流向长度(至少要接近或超过展高)。最后通过理论推导发现消除马蹄涡的最佳融合面形状(中心平面内)是与来流边界层速度剖面形状一致的,其机制是,型面平移导致势流场在同一流向位置的不同展高处形成刚好与来流边界层相同的速度分布,此时的展向负压力梯度刚好可抵消来流边界层在减速过程中形成的展向压力梯度。
     4.开展了叶片与端壁整个交汇区(角区)流热环境的叶身融合管控机理研究。以某透平级为例,通过叶身融合技术设计了不同的融合模型,计算结果发现融合面对透平级流热环境产生了有效的管控作用。具体表现为:叶身融合技术通过端壁下沉技术准确补偿了由于融合面的引入带来的通流面积损失;侧面融合面削弱了静叶吸力面角区的分离;前缘融合面削弱了马蹄涡,抑制了前缘角区的分离;静叶的融合面降低了尾迹高度,使得动叶进口总温边界层高度也降低,在通道涡的作用下底层高总温的流体往吸力面轮毂角区堆积,而中展较低总温的流体则暴露到轮毂上,进而明显降低了轮毂绝热壁温。
Gas turbine blades must be cooled to prevent ablation immersed in high temperature, in addition to using super alloy and TBC(thermal barrier coating). The introduction of cooling, with the3D viscous flow field of the mainstream, leads to a much more complex aero-thermal environment. Currently, the prediction and management of the aero-thermal environment of the cooled turbine is important basis of improving design capability for cooled turbine. However, for the complex flow and heat transfer caused by the highly complex cooling configuration, full3D fine simulation is unlikely to fulfill fast prediction for engineering requirement, let alone predicting the unsteady cooling caused by pulsed bleeding air under off-design conditions; on the other hand, advanced management technology such as Blended Blade/EndWall(BBEW) was proposed for flow and heat transfer in the junction of blade and endwall which is the most important part of aero-thermal organization, but the mechanism research is not enough, and the effectiveness and mechanism in turbine stage environment and thermal environment is unclear. For these two aspects, this paper carries out numerical and theoretical research, with contents and results as follows:
     1. Study engineering simulation based on flow network method of internal cooling of cooled turbine. Develop the flow network method which take into account unsteadiness, variable cross-section, non-ideal gas and various kinds of boundary conditions such as pressure boundary, massflow boundary, temperature boundary and heat flux boundary. Real-time switch of virtual inlet&outlet is used to simulate backward flow of gas at the boundary. To apply the flow network method to calculation of flow and heat transfer of cooled turbine, build flow network branch models of various kinds of cooling configuration, such as film holes, impingement holes, turbulent ribs, turbulent pin-fins, bend passages, trailing edge slots and so on. A computer program is developed based on this method and checked by an example, which indicate the feasibility, quickness and stability of the method.
     2. Study the coupling of the internal flow network and blade external3D flow. Calculation result of internal flow network provides the source intensity of external cooling, calculation result of blade external flow provides some boundary condition of internal flow network, and by iteration of these two processes the fast method of coupling simulation of blade internal/external flow is founded. A computer programs is developed based on the method and the adiabatic wall model of a full-film cooling turbine vane is taken as example for numerical simulation. First, a calculation of steady cooling is carried out, which improves the feasibility and quickness of the method. Then begin to simulate turbine aero-thermal environment under pulsed inlet coolant. The results indicate that pulse of inlet coolant massflow will lead to a significant change of blade wall temperature downstream and reduction of period-average cooling effectiveness with the same period-average coolant massflow; the pulsing amplitude of each hole with the same cooling chamber are not all equal to that of the inlet of the cooling chamber, and those holes with lower massflow often have larger pulsing amplitude, which leads to higher tendency of negative massflow, i.e. backflow; longer pulsing period,.i.e. slower pulse, leads to smaller pulsing amplitude, for the pulse can be transported far more away and more uniform; pulse from film holes with less massflow will submerge after mixing downstream with flow from film holes with less massflow, and so it It has negligible impact on wall temperature of bladewall downstream. Results above provide references for design of turbine cooling margin.
     3. Study the management mechanism of the aero-thermal environment by blade/endwall blending in the junction of the leading edge of the blade and endwall. Take a wing-on-plate model as example for the research in which blending surfaces with different sizes are added to the junction, under the guidance of the Blended Blade/EndWall technology(BBEW). The results shows:leading edge blending surface succeeds in managing the aero-thermal environment in the junction of the leading edge of the blade and endwall by weakening or eliminating the horseshoe vortices(HSV), on the one hand, weakened HSV can reduce the flow separation at the leading edge junction and get more uniform flowfield, on the other hand, weakened HSV can reduce fluid in mainstream with high temperature running to the platewall which reduce the wall temperature, and can reduce the velocity near the junction which reduce the heat transfer coefficient. The mechanism of weakening HSV by leading edge blending surface goes like this:the leading edge blending surface weakens the pressure gradient from the stagnated boundary layer by negative pressure gradient generated by shift forward of blade section near the plate. The design rules of leading edge blending surface are obtained by series of numerical simulation as below: increase the streamwise length while keeping the blending surface high enough(higher then the boundary layer). At last, a theoretical derivation finds that he best shape of the blending surface in the centplane for eliminating the HSV is the same as the profile of the coming boundary layer, that the mechanism can be explained like this: the forward shift blade sections near the plate causes the same velocity profile as that of the boundary layer.
     4. Study the management mechanism of the aero-thermal environment by blade/endwall blending in the whole junction of the blade and endwall. Take a turbine stage as example, based on which various kinds of blending models are designed by the guidance of Blending Blade/EndWall technology(BBEW). The simulation results show that BBEW makes effective managing on the aero-thermal environment of the turbine, with details as such:BBEW compensates through-flow loss caused by introduction of the blending surface with a slight sink of the endwall. The side blending surface weakens the flow separation in the suction corner of the vane; the leading edge blending surface weakens the HSV and the flow separation at the leading edge corner; the blending surface of the vane reduce the height of the wake, which reduce the height of the boundary layer of total temperature at the inlet of the blade. Then the passage vortex moves the fluid with high total temperature at the bottom to the suction corner, while the fluid with lower total temperature expose itself to the hub wall, which reduce the adiabatic wall temperature of the hub evidently.
引文
[1]李孝堂.现代燃气轮机技术[M].北京:航空工业出版社,2006.
    [2]曹玉璋等.航空发动机传热学[M].北京:北京航空航天大学出版社,2005.
    [3](美)韩介勤,(美)桑地普·杜达,(美)斯瑞纳斯·艾卡德.燃气轮机传热和冷却技术[M].西安:西安交通大学出版社,2005.
    [4]Boyce M P. Gas Turbine Engineering Handbook [M].3 ed. Oxford, UK:Gulf Professional Publishing,2006.
    [5]Eifel M, Caspary V, Honen H, et al. Experimental and Numerical Analysis of Gas Turbine Blades With Different Internal Cooling Geometries [J]. Journal of Turbomachinery,2011,133(1):4000541.
    [6]吴文东(译).冷却涡轮气体动力学[M].(内部资料),1997.
    [7]Simpson R L. Junction flows [J]. Annual Review of Fluid Mechanics,2001, 33(1):415-43.
    [8]Devenport W J, Simpson R L. Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction [J]. Journal of Fluid Mechanics, 1990,210(Compendex):23-55.
    [9]Gessner F B. Origin of Secondary Flow in Turbulent-Flow Along a Corner [J]. Journal of Fluid Mechanics,1973,58(Mar20):1-25.
    [10]Hunt JCR, Abell C J, Peterka J A, et al. Kinematical Studies of Flows around Free or Surface-Mounted Obstacles-Applying Topology to Flow Visualization [J]. Journal of Fluid Mechanics,1978,86(1):179-200.
    [11]Olcmen S M, Simpson R L. An Experimental-Study of a 3-Dimensional Pressure-Driven Turbulent Boundary-Layer [J]. Journal of Fluid Mechanics, 1995,290(May):225-62.
    [12]Gand F, Deck S, Brunet V, et al. Flow dynamics past a simplified wing body junction [J]. Physics of Fluids,2010,22(Compendex):115111.
    [13]Thomas A S W. The Unsteady Characteristics of Laminar Juncture Flow [J]. Physics of Fluids,1987,30(2):283-5.
    [14]Bradshaw P. Turbulent Secondary Flows [J]. Annual Review of Fluid Mechanics, 1987,19(1):53-74.
    [15]季路成,程荣辉,邵卫卫,et al.最大负荷设计之:角区分离预测与控制[J].工程热物理学报,2007,28(02):219-22.
    [16]钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究[D].哈尔滨;哈尔滨工业大学,1996.
    [17]Kravchenko A G, Moin P. Numerical studies of flow over a circular cylinder at ReD=3900 [J]. Physics of Fluids,2000,12(2):403-17.
    [18]王仲奇,冯国泰,王松涛,et al.透平叶片中的二次流旋涡结构的研究[J].工程热物理学报,2002,23(5):553-6.
    [19]李伟,乔渭阳,许开富,et al.涡轮叶尖泄漏流被动控制数值模拟[J].推进技术,2008,29(5):591-7.
    [20]杨策,马朝臣,王延生,et al.透平机械叶尖间隙流场研究的进展[J].力学进展,2001,31(1):70-83.
    [21]Papa M, Goldstein R J, Gori F. Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade [M]. GT2002-30192. American Society of Mechanical Engineers.2002.
    [22]Nasir H. Turbine Blade Tip Cooling and Heat Transfer [D]. Louisiana; Louisiana State University,2004.
    [23]Hodson H P. An Inviscid Blade-to-Blade Prediction of A Wake-Generated Unsteady Flow [M].84-GT-43. American Society of Mechanical Engineers. 1984.
    [24]Stieger R D, Hodson H p. The Unsteady Developement Wake Through A Downstream-Pressure Turbine Blade Passage; proceedings of the GT20O4-53061, American Society of Mechanical Engineers, F,2004 [C].
    [25]Greitzer E M. An Introduction to Unsteady Flow in Turbomachines [M]. Thermodynamics and Fluid Mechanics of Turbomachine.1997:967-1024.
    [26]Abhari R S, Guenette G R, Epstein A H, et al. Comparison of Time-Resolved Turbine Rotor Blade Heat-Transfer Measurements and Numerical Calculations [J]. Journal of Turbomachinery,1992,114(4):818-27.
    [27]Ameri A A, El-Gabry L A. Comparison of Steady and Unsteady RANS Heat Transfer Simulations of Hub and Endwall of a Turbine Blade Passage [J]. Journal of Turbomachinery,2009,133(3):553-64.
    [28]Dunn M G. Phase-Resolved and Time-Resolved Measurements of Unsteady Heat-Transfer and Pressure in a Full-Stage Rotating Turbine [J]. Journal of Turbomachinery,1990,112(3):531-8.
    [29]Abhari R S, Guenette G R, Epstein A H, et al. Comparison of Time-Resolved Turbine Rotor Blade Heat-Transfer Measurements and Numerical-Calculations [J]. Journal of Turbomachinery,1992,114(4):818-27.
    [30]Abhari R S, Epstein A H. An Experimental Study of Film-Cooling in a Rotating Transonic Turbine [J]. Journal of Turbomachinery,1994,116(1):63-70.
    [31]Mehendale A B, Han J C, Ou S, et al. Unsteady Wake over a Linear Turbine Blade Cascade with Air and Co2 Film Injection.2. Effect on Film Effectiveness and Heat-Transfer Distributions [J]. Journal of Turbomachinery,1994,116(4): 730-7.
    [32]Ou S, Han J C, Mehendale A B, et al. Unsteady Wake over a Linear Turbine Blade Cascade with Air and Co2 Film Injection.1. Effect on Heat-Transfer Coefficients [J]. Journal of Turbomachinery,1994,116(4):721-9.
    [33]Abhari R S. Impact of rotor-stator interaction on turbine blade film cooling [J]. Journal of Turbomachinery,1996,118(1):123-33.
    [34]Wolff S, Fottner L, Ardey S. An experimental investigation on the influence of periodic unsteady inflow conditions on leading edge film cooling [M]. GT2002-30202. American Society of Mechanical Engineers.2002.
    [35]蒋雪辉,赵晓路.非定常尾迹对叶栅气膜冷却效率的影响[J].推进技术,2004,25(04):311-6.
    [36]蒋雪辉,赵晓路.非定常尾迹对气膜冷却影响的数值研究[J].工程热物理学报,2005,2(02):322-4.
    [37]Burdet A, Abhari R S. Influence of Near Hole Pressure Fluctuation on the Thermal Protection of a Film-Cooled Flat Plate [J]. Journal of Heat Transfer, 2009,131(2):022202.
    [38]Vitt P, Iverson C, Malak M F, et al. Impact of Flowfield Unsteadiness on Film Cooling of a High Pressure Turbine Blade [M]. GT2010-22773. American Society of Mechanical Engineers.2010.
    [39]王成荫.非定常尾迹对气膜冷却影响的数值研究[D];东北电力大学,2010.
    [40]Gomes R A, Niehuis R. Film Cooling Effectiveness Measurements With Periodic Unsteady Inflow on Highly Loaded Blades With Main Flow Separation [J]. Journal of Turbomachinery,2011,133(2):021019.
    [41]Fawcett R J, Wheeler A P S, He L, et al. Experimental Investigation Into Unsteady Effects on Film Cooling [M]. GT2010-22603. American Society of Mechanical Engineers.2010.
    [42]Medic G, Durbin P A. Unsteady Effects on Trailing Edge Cooling [J]. Journal of Heat Transfer,2005,127(4):388-92.
    [43]Schwanen M, Duggleby A. Identifying Inefficiencies in Unsteady Pin Fin Heat Transfer [M]. GT2009-60219. American Society of Mechanical Engineers.2009.
    [44]伊卫林.风扇/压气机三维气动优化设计方法及其应用研究[D].哈尔滨;哈尔滨工业大学,2006.
    [45]Goormans-Francke C, Carabin G, Hirsch C. Mesh Generation for Conjugate Heat Transfer Analysis of a Cooled High Pressure Turbine Stage [M]. GT2008-50660. American Society of Mechanical Engineers.2008.
    [46]王华阁.航空发动机设计手册.第16分册.空气系统及传热分析[M].北京:航空工业出版社,2001.
    [47]Hunter S D. Source Term Modeling of Endwall Cavity Flow Effects on Gaspath Aerodynamics in an Axial Flow Turbine [D]. Cincinnati; University of Cindnnati, 1998.
    [48]Turner M G, Vitt P H, Topp D A, et al. Multistage Simulations of the GE90 Turbine [M]. NASA/CR-1999-209311.1999.
    [49]Tartinville B, Hirsch C. Modelling of Film Cooling for Turbine Blade Design [M]. GT2008-50316. American Society of Mechanical Engineers.2008.
    [50]Heidmann J D, NASA/TM-2001-210817 [R],2001.
    [51]Cross H. Analysis of Flow in Networks of Conduits or Conductors [J]. Bulletin (University of Illinois (Urbana-Champaign campus)),1936, XXXIV(22):1-31.
    [52]Majumdar A K, VanHooser K P. A General Fluid System Simulation Program to Model Secondary Flows in Turbomachinery [M]. AIAA-95-2969.1995.
    [53]Majumdar A K. Mathematical modeling of free convective flows for evaluating propellant conditioning concepts [M]. A1AA-96-3117.1996.
    [54]Richards D R, Vonderwell D J. Flow Network Analyses of Cryogenic Hydrogen Propellant Storage and Feed Systems [M]. AIAA-97-3223.1997.
    [55]Majumdar A, Schallhorn P. Unstructured Finite Volume Computational Thermo-Fluid Dynamics Method for Multi-Disciplinary Analysis and Design Optimization [M]. AIAA-98-4810.1998.
    [56]Majumdar A K, Bailey J W, Schallhorn P A, et al. A Generalized Fluid System Simulation Program To Model Flow Distribution In Fluid Networks [M]. NASA/CR-1998-207793.1998.
    [57]Schallhorn P A, Majumdar A K, Hooser K V, et al. Flow Simulation in Secondary Flow Passages of a Rocket Engine Turbopump [M]. AIAA 98-3684.1998.
    [58]Bandyopadhyay A, Majumdar A. Modeling of Compressible Flow with Friction and Heat Transfer using the Generalized Fluid System Simulation Program (GFSSP) [M]. Thermal Fluid Analysis Workshop (TFAWS).2007.
    [59]Wilton M E, Murtaugh J P. Computer Program for Compressible Flow Network Analysis [M]. NASA/LEW-11859 1973.
    [60]Kumar G N, Roelky R J, Meiner P L. A generalized one dimensional computer code for turbomachinery cooling passage flow calculations [M]. AIAA-89-2574. 1989.
    [61]Meitner P L. Procedure for determining 1-D flow distributions in arbitrarily connected passages without the influence of pumping [M]. GT2003-38061. American Society of Mechanical Engineers.2003.
    [62]吴丁毅.内流系统的网络计算法[J].航空学报,1996,32(06):653-7.
    [63]陆海鹰,杨燕生,王鸣.航空发动机空气系统特性的数值模拟[J].航空发动机,1997,23(01):6-13.
    [64]刘玉芳,邓化愚,郭文,et al.发动机空气系统的改进设计[J].燃气涡轮试验与研究,2001,14(03):48-53.
    [65]侯升平,陶智,韩树军,et al.非稳态流体网络方法在发动机空气冷却系统中的应用[J].航空动力学报,2009,24(03):494-8.
    [66]侯升平,陶智,韩树军,et al.非稳态流体网络模拟新方法及其应用[J].航空动力学报,2009,24(06):1253-7.
    [67]陶智,侯升平,韩树军,et al.流体网络法在发动机空气冷却系统设计中的应用[J].航空动力学报,2009,24(01):1-6.
    [68]侯升平,陶智,韩树军,et al.流固网络一体化模拟方法探索及应用[J].航空动力学报,2010,25(03):509-14.
    [69]谷艳萍,杨燕生.带热障涂层涡轮冷却叶片冷却特性计算方法研究[J].航空发动机,2001,27(3):31-5,51.
    [70]郭文,吉洪湖,蔡毅,et al.高压涡轮导叶内冷通道流动特性计算分析[J].航空动力学报,2005,20(05):831-5.
    [71]Andrews G V, Starkweather J H,王华阁(译).应用AUTD-AIRFOIL进行气冷涡轮叶片的传热设计[J].航空发动机,1991,17(2):90-7.
    [72]Martin T J. compute-automated multi-disciplinary analysis and design optimization of internally cooled turbine blades [D]. University Park; The Pennsylvania State University,2001.
    [73]Sturm W, Scheugenpflug H, Fottner L. Performance Improvements of Compressor Cascades by Controlling the Profile and Sidewall Boundary-Layers [J]. Journal of Turbomachinery-Transactions of the Asme,1992,114(3):477-86.
    [74]McAuliffe B R, Sjolander S A. Active flow control using steady blowing for a low-pressure turbine cascade [J]. Journal of Turbomachinery,2004,126(4): 560-9.
    [75]Filippow G A, Wang Z. The effect of flow twisting on the characteristics of guide rows [J].Teploenergetika,1964,11(5):54-7.
    [76]Han W J, Wang Z Q, Tan C Q, et al. Effects of Leaning and Curving of Blades with High Turning Angles on the Aerodynamic Characteristics of Turbine Rectangular Cascades [J]. Journal of Turbomachinery-Transactions of the Asme, 1994,116(3):417-24.
    [77]岳国强,韩万金.掠叶片对涡轮叶栅气动性能的影响[J].推进技术,2004,25(06):512-6.
    [78]唐洪飞,颜培刚,黄洪雁,et al.大子午扩张涡轮的分离控制[J].航空学报,2009,30(05):825-31.
    [79]Jenkins L, Gorton S A, Anders S. Flow control device evaluation for an internal flow with an adverse pressure gradient [M].40th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV.2002.
    [80]Kaci H M, Habchi C, Lemenand T, et al. Flow structure and heat transfer induced by embedded vorticity [J]. International Journal of Heat and Mass Transfer,2010,53(17-18):3575-84.
    [81]Kubendran L R, W.D. Harvey. Juncture Flow Control Using Leading-Edge Fillets [M]. AIAA-85-4097.1985.
    [82]Sung C-H, C.-W. Lin D. Numerical Investigation on the Effect of Fairing on the Vortex Flows Around AirfoilFlat-Plate Junctures [M]. AIAA-88-0615.1988.
    [83]Devenport W J, Simpson R L, Dewitz M B, et al. Effects of a Leading-Edge Fillet on the Flow Past an Appendage-Body Junction [J]. Aiaa Journal,1992, 30(9):2177-83.
    [84]Bernstein L, Hamid S. On the effect of a strake-like junction:Fillet on the lift and drag of a wing [J]. Aeronautical Journal,1996,100(992):39-52.
    [85]Green B E, Whitesides J L. A Method for Designing Leading-Edge Fillets to Eliminate Flow Separation [M]. AIAA-2000-4527.2000.
    [86]Van Oudheusden B W, Steenaert C B, Boermans L M M. Attachment-Line Approach for Design of a Wing-Body Leading-Edge Fairing [J]. Journal of Aircraft,2004,41(Compendex):238-46.
    [87]Kubendran L R, Bar-Sever A, Harvey W D. Flow Control in a Wing/fuselage-Type Juncture [M]. AIAA-88-0614.1988.
    [88]Hoeger M, Schmidt-Eisenlohr U. Numerical simulation of the influence of a bulb and a fillet on the secondary flow in a compressor cascade [J]. Task Quarterly, 2002,6(1):25-38.
    [89]Zess G A, Thole K A. Computational design and experimental evaluation of using a leading edge fillet on a gas turbine vane [J]. Journal of Turbomachinery, 2002,124(2):167-75.
    [90]Mahmood G I, Gustafson R, Acharya S. Experimental investigation of flow structure and nusselt number in a low-speed linear blade passage with and without leading-edge fillets [J]. Journal of Heat Transfer,2005,127(5):499-512.
    [91]Sauer H, Muller R, Vogeler K. Reduction of secondary flow losses in turbine cascades by leading edge modifications at the endwall [M].2000-GT-0473. American Society of Mechanical Engineers.2000.
    [92]Becz S, Majewski M S, Langston L S. Leading edge modification effects on turbine cascade endwall loss [M]. GT2003-38898. American Society of Mechanical Engineers.2003.
    [93]Han S, Goldstein R J. Influence of blade leading edge geometry on turbine endwall heat(mass) transfer [J]. Journal of Turbomachinery,2005,128(4): 798-813.
    [94]Hoeger M, Baier R D, Muller R, et al. Impact of a Fillet on Diffusing Vane Endwall Flow Structure [M]. The 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Honolulu, Hawaii.2006.
    [95]Goodhand M N, Miller R J. The Impact of Real Geometries on Three-Dimensional Separations in Compressors [J]. Journal of Turbomachinery, 2012,134(2):021007.
    [96]康顺,孙丽萍.叶根倒角对离心叶轮气动性能的影响[J].工程热物理学报,2009,30(01):41-3.
    [97]Schulz S, Meyer R, Liesner K, et al. A parameter study on the influence of fillets on the compressor cascade performance [J]. Journal of Theoretical and Applied Mechanics,2012,50(1):15.
    [98]石(?),李少军,李军,et al.动叶栅倒角对透平级气动性能的影响[J].航空动力学报,2010,25(08):1842-8.
    [99]王大磊,朴英,陈美宁.叶根倒角对轴流涡轮转子流场的影响[J].航空动力学报,2011,26(09):2075-81.
    [100]Lethander A T, Thole K A, Zess G, et al. Optimizing the vane-endwall junction to reduce adiabatic wall temperatures in a turbine vane passage [M]. GT2003-38939. American Society of Mechanical Engineers.2003.
    [101]Duden A, Raab I, Fottner L. Controlling the secondary flow in a turbine cascade by three-dimensional airfoil design and endwall contouring [J]. Journal of Turbomachinery,1999,121(2):191-9.
    [102]Mahmood G I, Acharya S. Measured endwall flow and passage heat transfer in a linear blade passage with endwall and leading edge modifications [M]. GT2007-28179. American Society of Mechanical Engineers.2007.
    [103]Mahmood G I, Gustafson R, Acharya S. Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage [M]. GT2009-60236. American Society of Mechanical Engineers.2009.
    [104]Bagshaw D A, Ingram G L, Gregory-Smith D G, et al. An Experimental Study of Reverse Compound Lean in a Linear Turbine Cascade; proceedings of the Proceedings of the Institution of Mechanical Engineers, Part A, F,2005 [C].
    [105]Bagshaw D A, Ingram G L, Gregory-Smith D G, et al. An Experimental Study of Three-Dimensional Turbine Blades Combined with Profiled Endwalls [J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,2008,222(A1):103-10.
    [106]Bagshaw D A, Ingram G L, Gregory-Smith D Q et al. The design of three-dimensional turbine blades combined with profiled endwalls [J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,2008,222(A1):93-102.
    [107]Gregory-Smith D, Bagshaw D, Ingram G, et al. Using Profiled Endwalls, Blade Lean and Leading Edge Extensions to Minimise Secondary Flow [M]. GT2008-50811. American Society of Mechanical Engineers.2008.
    [108]Ji L C, Shao W W, Yi W L, et al. A model for describing the influences of SUC-EW dihedral angle on corner separation [M]. GT2007-27618. American Society of Mechanical Engineers.2007.
    [109]季路成,伊卫林,田勇,et al.一种叶轮机械叶片与端壁融合设计方法:中国,201010623606.2 [P/OL].2010-2014[06-15].
    [110]季路成,田勇,李伟伟,et al.叶身/端壁融合技术研究[J].航空发动机,2012,39(6):10-7.
    [111]田勇,李伟伟,季路成,et al.应用二面角原理抑制马蹄涡的数值研究[M].第十六届叶轮机学术会议.中国,成都;中国航空学会.2012.
    [112]Ji L, Tian Y, li W, et al. Numerical Studies on Improving Performance of Rotor-67 by Blended Blade and EndWall Technique [M]. GT2012-68535. American Society of Mechanical Engineers.2012.
    [113]田勇,季路成,李伟伟,et al.叶身/端壁融合技术工况的适用性[J].航空动力学报,2013,28(08):1905-13.
    [114]伊卫林,陈志民,季路成,et al.离心压气机叶身/端壁融合技术应用初探[J].工程热物理学报,2014,35(2):256-61.
    [115]Majumdar A. Generalized Fluid System Simulation Program (GFSSP) Version 3.0 [M]. NASA/MG-99-290.1999.
    [116]蔡瑞忠,张力,谢茂清,et al.热工流体网络的实时仿真模型及其算法[J].系统仿真学报,1992,4(04):13-8.
    [117]Meitner P L. Computer Code for Predicting Coolant Flow and Heat Transfer in Turbomachinery [M]. NASA/TP-2985.1990.
    [118]迟重然.涡轮动叶冷却结构设计方法的研究第二部分:叶片冷却结构的管网计算方法[M].中国工程热物理年会·热机气动热力学分会.中国南京.2010.
    [119]NUMECA-Corporation. User Manual FINE/Turbo v8 (including Euranus) [M]. 2007.
    [120]Denton J D. Lessons from rotor 37 [J]. Journal of Thermal Science,1997,6(1): 1-13.
    [121]Hylton L D, Nirmalan V, Sultanian B K, et al., NASA-CR-182133 [R],1988.
    [122]Rood E P J. Experimental Investigation of the Turbulent Large Scale Temporal Flow in the Wing-Body Junction [D]. United States-District of Columbia; The Catholic University of America,1984.
    [123]Parneix S, Durbin P A, Behnia M. Computation of 3-D turbulent boundary layers using the V2F model [J]. Flow Turbulence and Combustion,1998,60(1): 19-46.
    [124]Apsley D D, Leschziner M A. Investigation of Advanced Turbulence Models for the Flow in a Generic Wing-body Junction [J]. Flow Turbulence and Combustion,2001,67(1):25-55.
    [125]Paciorri R, Bonfiglioli A, Di Mascio A, et al. RANS simulations of a junction flow [J]. International Journal of Computational Fluid Dynamics,2005,19(2): 179-89.
    [126]Clarke D J a D, DTSO-TR-1731 [R]:Australian Government Defence Department Technical Report,2005.
    [127]Fu S, Xiao Z X, Chen H X, et al. Simulation of wing-body junction flows with hybrid RANS/LES methods [J]. International Journal of Heat and Fluid Flow, 2007,28(6):1379-90.
    [128]Paik J, Escauriaza C, Sotiropoulos F. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction [J]. Physics of Fluids,2007, 19(Compendex):045107.
    [129]Wong J H, Png E K. Numerical investigation of the wing-body junction vortex using various large eddy simulation models; proceedings of the 39th AIAA Fluid Dynamics Conference, June 22,2009-June 25,2009, San Antonio, TX, United states, F,2009 [C]. American Institute of Aeronautics and Astronautics Inc.
    [130]ERCOFTAC. Wing/Body Junction with Separation, Experiments by Devenport, Simpson&Fleming.2000, http://cfd.mace.manchester.ac.uk/ercoftac/database/cases/case08/Case data/
    [131]ANSYS-Corporation. ANSYS CFD-Post User's Guide [M].2009.
    [132]Gottlich E, Neumayer F, Woisetschlager J, et al. Investigation of Stator-Rotor Interaction in a Transonic Turbine Stage Using Laser Doppler Velocimetry and Pneumatic Probes [J]. Journal of Turbomachinery,2004,126(2):297-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700