气膜孔几何结构对涡轮叶片气膜冷却的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高透平进口温度是改善燃气轮机性能和提高其经济性的重要途径,但却受到叶片材料耐热性能的限制,因此必须采取有效的冷却措施对涡轮叶片加以保护,使其免受高温腐蚀或损伤。在众多的冷却技术中,气膜冷却已被广泛地应用于压气机、燃烧室尤其是涡轮上,成为发动机热端部件的主要冷却方式之一,它通过在高温部件表面开设槽缝或小孔,将冷却介质以横向射流的形式注入到主流中。在主流的压力和摩擦力的作用下,射流弯曲并覆盖于高温部件表面,形成温度较低的冷气膜,从而对高温部件起到隔热和冷却的作用。
     气膜冷却效果主要受气膜孔的几何结构(包括气膜孔的喷射角度、孔径大小、孔长与孔径比、孔的间距、孔出口的形状等)、叶片的几何参数和气膜孔的气动参数等因素的影响。许多研究表明,射流出口处速度分布很不均匀,流场结构复杂,不同气膜孔结构对气膜的附壁性、横向覆盖宽度、纵向覆盖长度及对孔口下游的冷却效果都有很大的影响。因此,详细了解不同气膜孔孔口的流场流动特性及传热机理对燃气轮机叶片设计和实际气膜孔的优化设计起着至关重要的作用。目前,国内外对圆柱孔研究的较多,对其它孔形的研究和对比相对较少,近几年,有学者尝试采用缩放槽缝孔、月牙孔以及开槽孔等新型孔来对气膜孔的结构进行优化,得到了较好的气膜冷却效果和孔口气动性能。本课题采用数值模拟的方法研究了圆柱孔、前向扩张孔、月牙孔、开槽前向扩张孔、缩放槽缝孔以及具有不同横向槽尺寸的气膜孔,在射流下游处及展向上的气膜冷却效率及流场分布,并将几种孔形的计算结果进行了详细地对比分析,揭示了新型气膜孔结构强化冷却的原理。针对缩放槽缝孔,进一步详细研究了孔长与孔径比、气膜孔间距与孔径比和冷气入射角度对其冷却效率的影响。另外,本文对前缘有两排气膜孔的对称涡轮叶片进行了数值模拟研究,并与试验数据进行了比较,详细分析了叶片前缘滞止区附近复杂的流场特征和冷却特性以及喷射角和孔间距对气膜冷却效率的影响。本文的主要研究内容和结论如下:
     (1)应用两层k ?ε湍流模型对涡轮叶片气膜冷却进行数值模拟,采用多重网格方法对计算程序加速,利用微分方程建立贴体坐标系的网格生成方法生成了气膜孔射流区域的三维网格,通过算例验证,计算程序对冷却孔平板气膜冷却及叶片前缘气膜冷却的主要流动特征与冷却特性具有良好的模拟能力。
     (2)模拟计算了月牙孔、缩放槽缝孔在射流下游处及展向上的气膜冷却效率及流场分布,并与常规圆柱孔进行了对比分析,深入分析新型孔提高气膜冷却效率的原理。计算结果表明,月牙孔的出口截面积增大,在展向使冷气向两侧扩张,孔出口形状可使冷气流与主流均匀地发生相互作用,特别是在高吹风比时,冷气可以均匀地覆盖在壁面,并且削弱了孔口附近反向涡旋对的强度,其气膜有效覆盖面积、平均冷却效率以及气膜的均匀性均好于圆柱孔和前向扩张孔。缩放槽缝孔在垂直于射流流动方向的展向是扩张的,在射流流动方向是收缩的,使得冷气流动在气膜孔内得以充分发展,流动分离现象几乎消失,流动较规则,由于其特殊的射流结构,致使在孔内发展均匀的高速气流紧贴出口底平面出流后直接冲刷表面,形成了较大的顺压力梯度,有利于消除射流在孔入口处形成的分离,使射流更易贴近被冷却壁面,并能有效地抑制反向涡旋对的产生,整体气膜冷却保护效果较好。
     (3)针对缩放槽缝孔,本文应用数值模拟方法进一步详细研究了孔长与孔径比、气膜孔间距与孔径比和冷气入射角度对其冷却效率的影响。结果表明,在任何吹风比下,缩放槽缝孔的冷却效率都随着孔长与孔径比的增大而增大。对于同一长径比,在气膜孔下游某位置处,孔与孔之间沿展向的冷却效率均有不同程度的增加,小吹风比时增加的幅度小,随着吹风比的增大,冷却效率增加的幅度也随之增大。在任何吹风比下,小角度喷射的冷却效率较高,并且随着吹风比的增大,小角度喷射优于其它喷射角的趋势也越来越大。孔间距较小时,在孔口附近及孔间区域会发生强烈的气膜干扰,使得孔排的作用类似于单个孔的效果,冷却气膜分布比较集中,在孔口下游近处冷却效率较高,但是气膜覆盖的区域较小。随着孔间距的增大,气膜覆盖
     面积增加,孔口附近的冷却效率低于小孔距,在孔下游远处发生的气膜干涉较为明显。
     (4)通过数值模拟的计算方法,研究了具有六种不同开槽尺寸的气膜孔在射流下游处及展向上的气膜冷却效率及流场分布,将几种开槽孔的计算结果进行了详细地对比分析,分析了横向槽的作用机理。计算结果表明,在任何吹风比下,所有开槽气膜孔沿孔排下游及展向的冷却效率均高于圆柱孔,这种趋势随着吹风比的增大而日益明显。在低吹风比时,几种开槽尺寸的冷却效率相差不大。随着吹风比的增大,不同开槽孔冷却效率的变化趋势不尽相同。不同开槽尺寸对气膜冷却性能的影响较复杂,在本文研究的条件下,具有中等开槽深度和最大开槽宽度的开槽孔,气膜孔下游较大范围内的温度处于较低水平,且孔口处射流中心轴线离壁面较近,其气膜有效覆盖面积、平均冷却效率以及气膜覆盖的均匀性都好于其它几种开槽孔,因而具有最佳的气膜冷却效果,并且孔下游及展向的冷却效率随着吹风比的增大而增大。而具有最大开槽深度的开槽孔,较低温度覆盖的范围最窄,射流抬离壁面,射流的附壁性差,因而冷却效果较差。
     (5)本文对叶片前缘滞止区附近双排孔喷射的复杂流场特征和冷却特性以及喷射角和孔间距对双排孔气膜冷却效率的影响进行了数值研究。结果表明,对于位于前缘滞止线附近的第一排孔,存在较大的顺压力梯度,这一较大的顺压力梯度有利于冷气流向冷气孔下游均一地发展。第二排孔冷气射流处于低压区,冷气射流在与主流相互作用的过程中,由于冷气射流对主流的阻碍,在冷气孔后部区域生成了一对旋转方向相反的旋涡,使得冷气射流抬离壁面向冷气孔下游发展。由于主流与冷气射流的掺混作用,冷气射流在向下游运动的过程中又重新贴近壁面。减小喷射角度可以减小反向涡旋对的强度和尺寸,使射流核心更易于贴近壁面,有利于冷气在壁面上的覆盖。在不同吹风比下,两排孔的冷却效率和孔间距成反比关系,即随着孔间距的增加.冷却朴立睛夕下降.相下降的幅磨不尺相同。
To increase the temperature of turbine inlet is an important method for improving turbine performance and its economics. However, the inlet temperature increasing is restricted by the heat resistance ability of blade material. Therefore, some effective manners must be taken to protect the turbine blades from high temperature erosion. Among these methods, film cooling technique has been used for gas turbine blades and became a major cooling method for turbine rotor. In film cooling, cooling medium was injected to main stream in lateral jet through slots and/or little holes on the surface of high temperature turbine rotor. Under the effect of pressure and friction of the main stream, the jet curved and covered the surface of high temperature parts, and then low temperature gas film was formed, which can perform the action of isolation and cooling.
     The effectiveness of film cooling is mainly dependent on the shape of hole geometry, such as jet angle, hole diameter, length-to-diameter ratio, pitch, outlet configuration, blade geometry, and aerodynamic parameters. Many studies have shown the presence of uneven outlet velocity and complicated flow fields configuration, and the different film configuration has significant effects on the film. Therefore, it is very important to understand the flow filed feather of different hole mouth and mechanism of heat transfer for the optimum design of turbine blades and practical holes. The present studies are manly focused on cylindrical hole relatively to other types of hole. Recently, some researchers has tried to adopt novel holes, such as converged-slot hole, crescent hole, and trenched hole, in the optimum design of film holes and get better performance of cooling . In this dissertation, numerical simulation method was adopted to study cylindrical hole, forward diffused hole, crescent hole, trenched forward diffused hole, converged-slot hole and trenched cylindrical hole in film cooling effectiveness and flow fields of jet downstream and spanwise, and comparison among these holes were analyzed in detail, thereby the principle of strengthen cooling of novel hole was clarified. With regard to converged-slot hole, further study was carried out about the effect of length-to-diameter ratio, pitch-to-diameter ratio and injection angle on converged-slot hole cooling effectiveness. In addition, film cooling characteristics of a turbine blade’s leading edge with two rows cooling orifices were investigated in this dissertation. The computed results were presented in the form of effectiveness contours on the blade surface and compared with experimental results. Complicated characteristic of flow fields and cooling on the stagnation area of blade leading edge, the effect of injection angle and hole pitch on film cooling effectiveness were investigated in detail. The main content and conclusion in this dissertation were listed as follows:
     (1)A numerical code for the calculation of turbine blade film cooling was accomplished by the two-layer k ?εturbulence model. Coordinate system is set up by the differential equation and by adoption of the multi-block grids accelerated compute procedure. The trait of numerical code was provided with account precision high, generate grid and compute convergence rapidly, so it preferably simulated flat plate film cooling and main flow and film cooling character in leading edge of turbine blade.
     (2)Numerical simulation about film cooling effectiveness in downstream and spanwise and flow fields of crescent hole, converged-slot hole were carried out. Comparison between novel hole and cylindrical hole was carried out, and the principal of high effectiveness of novel hole was thoroughly analyzed. It was shown that the expanded exit of crescent hole reduced the vortex intensity especially high blowing ratio, cooling gas expanded laterally in spanwise and uniformly covered plate surface, and the interaction between mainstream and the jet uniformed duo to exit geometry of crescent hole, so film coverage, averaged film cooling effectiveness and film uniformity of crescent hole were best among the cylindrical hole and forward diffused hole. In vertical jet direction the walls of converged-slot hole diverge, and in jet direction the walls converge, so that jet in film hole enough was developed and flow separation was disappeared. Because of special jet structure of converged-slot hole, the flow accelerated from inlet to outlet made suitable pressure gratitude, so the ejected coolant film was continuous and the film didn’t lift off from blade surface. Consequently, the typical two counter rotating vortices were restrained and the film cooling protection effect was improved.
     (3)With regard to converged-slot hole, further study was developed about the effect of length-to-diameter ratio, pitch-to-diameter ratio and injection angle on converged-slot hole cooling effectiveness in this dissertation. It was found that cooling effectiveness of converged-slot hole increased along with length-to-diameter increasing for any blowing ratios. Furthermore, the film cooling effectiveness had the different degree raising along the span direction between adjacent holes within the somewhere downstream the holes for fixed length-to-diameter, and extent of rising a little at low blowing ratio, and that extent of rising for cooling effectiveness corresponding augment along with blowing ratio increasing. Results also showed that cooling effectiveness for small injection angle was very high. Furthermore, the improvement realized by the small jet angle compared to the other jet angle holes is more important at the higher blowing ratio than it is at the lower one. For short hole pitch, intensive disturbance was happened at nearby injection outlet and between two holes, and hence effect of row made single hole. It caused film cooling distributed convergence, and the improvement for cooling effectiveness realized by downstream the holes, but film coverage was poor. The broad coverage realized by the increase hole pitch, and but cooling effectiveness was low by comparison with short pitch at injection outlet. In addition, interference of film was very clear at a bit far downstream the holes.
     (4) Numerical simulation about film cooling effectiveness in downstream and spanwise and flow fields of six kinds of trench hole were carried out. Results of several special of trench hole were detailed analyzed, as well as the mechanism of transverse trench was thoroughly analyzed. It was shown that effectiveness in downstream and spanwise of all of trench hole was better than that of cylindrical hole at any blowing ratio, and this trend was got over evidence along with increasing of blowing ratio. Film cooling effectiveness of several kinds of trench hole was almost consistent at low blowing ratio, change trend of effectiveness of different trench hole was unlikeness along with increasing blowing ratio. The effect of trenched size on film cooling performance was very complicated. In this dissertation, temperature of trench hole with moderate depth and maximal width was very low at large-scale of film hole downstream, and jet center axes was near from wall at hole exit, so its film effective coverage, average cooling effectiveness and film uniformity were best among other cases. Furthermore, film cooling effectiveness in downstream and spanwise direction increased along with increasing of blowing ratio. However, temperature of trench hole with maximal depth was high at large-scale of film hole downstream and jet tended to lift-off wall, so film cooling effectiveness was reduced.
     (5)Film cooling characteristics of a turbine blade’s leading edge with two rows cooling orifices were investigated in this dissertation. Complicated characteristic of flow fields and cooling on the stagnation area of blade leading edge, the effect of injection angle and hole pitch on film cooling effectiveness were studied in detail. Results showed that the first row of orifices located nearby leading stagnation line existed suitable pressure gratitude, which was beneficial to cooling gas uniformly development towards downstream of the orifices. The second row of coolant, which is situated in a low-pressure region, created counter rotating vortex pairs at back of the coolant hole on account of coolant jet interrupting mainstream during both interaction. The net result is that coolant jet tended to lift-off surface development towards downstream of the holes. Because mainstream and coolant jet mixed, coolant tended to stay near surface again during development towards downstream of the holes. Vortex pairs were weakened in virtue of reducing injection angle, and therefore coolant jet core tended to near the surface, which was propitious to covering surface. For different blowing ratios, cooling effectiveness of two rows was opposite proportion to pitch, that is cooling effectiveness declined along with increasing pitch, and but the drop extent of efficiency was difference.
引文
[1] Han J C, DUTTA S, EKKAD S V.程代京,谢永慧译.燃气轮机传热和冷却技术.西安:西安交通大学出版社,2005:87-88页
    [2] Nirmalan N V, Hylton L D. An experiment study of turbine vane heat transfer with leading edge and downstream film cooling. ASME Journal of Turbomachinery, 1990, 112: 477-487P
    [3] Abuaf N, Bunker R, Lee C P. Heat transfer and film cooling effectiveness in a linear airfoil cascade. ASME Journal of Turbomachinery, 1997, 119: 302-309P
    [4] Drost U, Bolcs A. Investigation of detailed film cooling effectiveness and heat transfer distributions on a gas turbine airfoil. ASME Journal of Turbomachinery, 1999, 121: 233-242P
    [5] Ames F E. Aspects of vane film cooling with high turbulence. PartⅠ: heat transfer. ASME Journal of Turbomachinery, 1998, 120: 768-776P
    [6] Mehendale A B, Ekkad S V, Han J C. Mainstream turbulence effect on film effectiveness and heat transfer coefficient of a gas turbine blade with air and CO2 film injection. International Journal of Heat and Mass Transfer, 1994, 37: 2702-2714P
    [7] Heidmann J D, Lucci B L, Reshotko E. An experimental study of the effect of wake passing on turbine blade film cooling. ASME Paper97-GT-255
    [8] Du H, Han J C, Ekkad S V. Effects of unsteady wake on detailed heat transfer coefficient and film effectiveness distributions for a gas turbine blade. ASME Journal of Turbomachinery, 1998, 120: 808-817P
    [9]蒋雪辉,赵晓路.非定常尾迹对叶片头部气膜冷却的影响.航空动力学报,2005,20(4): 540-544页
    [10]蒋雪辉,赵晓路.非定常尾迹对叶栅气膜冷却效率的影响.推进技术,2004,25(4):311-315页
    [11]蒋雪辉,赵晓路.非定常尾迹对气膜冷却影响的数值研究.工程热物理学报, 2005, 26(2): 322-324页
    [12] Ekkad S V, Zapata D, Han J C. Heat transfer coefficients over a flat surface with air and CO2 film injection through compound angle holes using a transient liquid crystal image method. ASME Journal of Turbomachinery, 1997, 119: 580-586P
    [13] Du H, Ekkad S V, Han J C. Effect of unsteady wake with trailing edge coolant ejection on film cooling performance for a gas turbine blade. ASME Journal of Turbomachinery, 1999, 121: 448-455P
    [14]陶智,杨晓军,丁水汀,等.旋转状态下曲率对气膜与主流掺混区域的影响.北京航空航天大学学报,2007,33(2):132-135页
    [15] Friedrichs S, Hodson H P, Daws W N. Distribution of film-cooling effectivenesson a turbine endwall measured using the ammonia and Diazo technique. ASME Journal of Turbomachinery, 1996, 118:613-621P
    [16] Harasgama S P, Burton C D. Film cooling research on the endwall of a turbine Nozzle guide vane in a short-duration annular cascade. PartⅠ: Experimental technique and results. ASME Journal of Turbomachinery, 1992, 114: 734-740P
    [17]刘高文,刘松龄,朱惠人,等.涡轮叶栅前缘上游端壁气膜冷却的传热实验研究.航空动力学报,2001,16(3): 249-255页
    [18]刘高文,刘松龄,许都纯,等.涡轮叶栅前缘上游端壁气膜冷却的流场实验研究.航空动力学报,2001,16(2):135-141页
    [19]刘高文,刘松龄.喷射角对涡轮叶栅端壁气膜冷却传热的影响.推进技术,2002,23(6):496-500页
    [20]刘高文,刘松龄.喷射角对涡轮叶栅端壁气膜冷却的气动影响.推进技术,2004,25(3):206-209页
    [21]刘高文,刘松龄.涡轮叶栅端壁气膜冷却数值模拟.推进技术,2004,25(2):130-133页
    [22] Mick W J, Mayle R E. Stagnation film cooling and heat transfer including its effect within the hole pattern. ASME Journal of Turbomachinery, 1988, 110: 66-72P
    [23]朱惠人,许都纯,郭涛,等.叶片前缘气膜冷却换热的实验研究.推进技术,1999,20(2):64-68页
    [24]王虎齐,陈党慧,康顺.涡轮叶片前缘气膜冷却的数值研究.动力工程, 2007, 27(1): 6-10页
    [25] Mehendale A B, Han J C. Influence of high mainstream turbulence on leading edge film cooling heat transfer. ASME Journal of Turbomachinery, 1992, 114: 707-715P
    [26] Funazaki K, Yokota M, Yamawaki K. The effect of periodic wake passing on film effectiveness of discrete holes around the leading edge of a blunt body. ASME Journal of Turbomachinery, 1997, 119:292-301P
    [27] Salcudean M, Gartshore I, Zhang K, et al. An experimental study of film cooling effectiveness near the leading edge of a turbine blade. ASME Journal of Turbomachinery, 1994, 116:71-79P
    [28] Ekkad S V, Han J C, Du H. Detailed film cooling measurements on a cylindrical leading edge model: Effect of free-stream turbulence and coolant density. ASME Journal of Turbomachinery, 1998, 120: 799-807P
    [29] Cruse M W, Yuki U M, Bogard D G. Investigation of various parametric influence on leading edge film cooling. ASME Paper 97-GT-296
    [30] Kim Y W, Metzger D E. Heat transfer and effectiveness on film cooled turbine blade tip models. ASME Journal of Turbomachinery, 1995, 117: 12-18P
    [31] Chen Y, Matalanis C G, Eaton J K. High resolution PIV measurements around a model turbine blade trailing edge film-cooling breakout. Journal of Experimental Fluids, 2007, 10: 1-11P
    [32]周超,常海萍,崔德平,等.涡轮叶片尾缘斜劈缝气膜冷却数值模拟.南京航空航天大学学报,2006,38(5):583-589页
    [33]朱惠人,原和朋,周志强,等.几何结构对后台阶缝隙气膜冷却效率的影响.推进技术,2006,27(4):312-320页
    [34] Hay N, Lampard D, Saluja C L. Effect of cooling films on the heat transfer coefficient on a flat plate with zero mainstream pressure gradient. ASME Journal of Engineering for Gas Turbine and Power, 1985, 107: 105-110P
    [35] Goldstein R J, Eckert E R G, Burgraff F. Effects of hole geometry and density on three-dimensional film cooling. International Journal of Heat and Mass Transfer, 1974, 17: 595-605P
    [36] Bons J P, Mac C D, Rivir R B. The effect of high free-stream turbulence on film cooling effectiveness. ASME Journal of Turbomachinery, 1996, 118: 814-825P
    [37] Ammari H D, Hay N, Lampard D. The effect of density ratio on the heat transfer coefficient from a film cooled flat plate. ASME Journal of Turbomachinery, 1990, 112: 444-450P
    [38] Pedersen D R, Eckert E R G, Goldstein R J. Film-cooling with large density differences between the mainstream and secondary fluid measured by the heat-mass transfer analogy. ASME Journal of Heat Transfer, 1977, 99: 620-627P
    [39] Ito S, Goldstein R J,Eckert E R G. Film cooling of a gas turbine blade. ASME Journal of Engineering for Power, 1978, 100: 476-481P
    [40] Schwarz S G, Goldstein R J. The two-dimensional behavior of film cooling jets on concave surface. ASME Journal of Turbomachinery, 1989, 111: 124-130P
    [41] Goldstein R J, Chen H P. Film cooling on a gas turbine near the endwall. ASME Journal of Engineering for Gas Turbine and Power, 1985, 107: 117-122P
    [42] Barlow D N, Kim Y W. Effect of surface roughness on local heat transfer and film cooling effectiveness. ASME Paper 95-GT-14
    [43] Schmidt D L, Sen B, Bogard D G. Film cooling with compound angle holes: Adiabatic effectiveness. ASME Journal of Turbomachinery, 1996, 118: 807-813P
    [44] Michael G, Achmed S, Sigmar W. Method for correlating discharge coefficients of film-cooling holes. AIAA Journal, 1998, 36(6): 21-27P
    [45] Gritsch M, Saumweber C, Schulz A, et al. Effect of internal coolant crossflow orientation on the discharge coefficient of shaped film-cooling holes. ASME Journal of Turbomachinery, 2000, 122:146-152P
    [46] Benmansour Y. Effect of length-to-diameter ratio on the discharge coefficient of cylindrical hole. ASME Journal of Turbomachinery, 1981, 103: 137-145P
    [47]倪萌,朱惠人,袭云,等.带肋壁与气膜孔内流通道中肋高度对流量系数的影响.燃气轮机技术,2004,17(2):30-33页
    [48]倪萌,朱惠人,袭云,等.肋角度对流量系数影响的数值模拟研究.航空动力学报,2004,19(2):196-200页
    [49]李广超,朱惠人,郭涛.旋转对内冷通道气膜孔流量系数的影响.推进技术,2007, 27(5): 394-398页
    [50]邓明春,朱惠人,王学文,等.密度比对涡轮叶片气膜孔流量系数的影响.航空动力学报,2006,21(5):795-799页
    [51]邓明春,朱惠人,李冰,等.动量比对涡轮叶片气膜孔流量系数的影响.燃气涡轮试验与研究,2006,19(1):35-38页
    [52]向安定,朱惠人,刘松龄,等.涡轮导向叶片表面气膜孔流量系数的实验研究.推进技术, 2003, 24(3): 216-219页
    [53]向安定,朱惠人,刘松龄,等.涡轮工作叶片型面气膜孔流量系数的实验研究.航空动力学报, 2003, 18(4): 507-511页
    [54]向安定,朱惠人,刘松龄,等.吹风比对涡轮动叶型面气膜孔流量系数的影响.西北工业大学学报,2004, 22(1): 104-107页
    [55] Day C R B, Oldfield M L G, Lock G D. The influence of film cooling on the efficiency of an annular nozzle guide vane cascade. ASME Journal of Turbomachinery, 1999, 121: 145-151P
    [56] Friedrichs S, Hodon H P, Dawes W N. Aerodynamics aspects of endwall film-cooling. ASME Journal of Turbomachinery, 1997, 119: 786-793P
    [57] Kubo R, Otomo E, Fukuyama Y, et al. Aerodynamic loss increase due to individual film cooling injection from gas turbine nozzle surface. ASME Paper 98-GT-497
    [58]乔渭阳,曾军,曾文演,等.气膜孔喷气对涡轮气动性能影响的实验研究.推进技术,2007,28(1): 14-19页
    [59] Ou S, Mehendale A B, Han J C. Influence of high mainstream turbulence on leading edge film cooling heat transfer: effect of film hole row location. ASME Journal of Turbomachinery, 1992, 114: 716-723P
    [60] Azzi A, Jubran B A. Influence of leading-edge lateral injection angles on the film cooling effectiveness of a gas turbine blade. Journal of Heat and Mass Transfer, 2004, 40: 501-508P
    [61]刘高文,刘松龄.喷射角对涡轮叶栅端壁气膜冷却传热的影响.推进技术,2002,23(6): 496-499页
    [62]刘高文,刘松龄.喷射角对涡轮叶栅端壁气膜冷却的气动影响.推进技术,2004,25(3): 206-209页
    [63] LigraniI P M, Wigle J M, Ciriello S, et al. Film-cooling from holes with compound angle orientations, PartⅠ: results downstream of two staggered rows of holes with 3d spanwise spacing[J]. ASME Journal of Heat Transfer, 1994, 116:341-352P
    [64] Ekkad S V, Zapata D, Han J C. Heat transfer coefficients over a flat surface with air and CO2 film injection through compound angle holes using a transient liquid crystal image method. ASME Journal of Turbomachinery, 1997, 119: 580-586P
    [65] Gritsch M, Schulz A, Wittig S. Heat transfer coefficient measurements of film cooling holes with expanded slots. ASME Paper 98-GT-28.
    [66]朱惠人,许都纯,郭涛,等.气膜孔形状对排孔下游换热的影响.航空动力学报,2001,16(4):360-364页
    [67]姚玉,张靖周,李永康.带三角形突片气膜冷却结构换热特性的数值研究.航空动力学报,2006,21(4):658-662页
    [68]杨卫华,马国锋,张靖周.突片作用下气膜冷却对流传热特性的试验研究.航空动力学报,2006,21(6):978-983页
    [69]杨卫华,马国锋,张靖周,等.气膜冷却孔几何结构对流量系数的影响.推进技术,2005,26(5):413-416页
    [70]张驰,赵梦梦,林宇震,等.弯曲壁上开孔倾角对气膜孔流量系数的影响.航空动力学报,2007,22(7):1127-1131页
    [71] Schmidt D L, Sen B, Bogard D G. Film cooling with compound angle holes: adiabatic effectiveness. ASME Journal of Turbomachinery, 1996, 118: 807-813P
    [72]郭婷婷,金建国,李少华,等.不同出射角度对气膜冷却流场的影响.中国电机学报,2006,26(16):117-121页
    [73] Gritsch M, Schulz A, Wittig S. Adiabatic wall effectiveness measurements of film cooling holes with expanded exits. ASME Journal of Turbomachinery, 1998, 120: 549-556P
    [74]朱惠人,许都纯,刘松龄.气膜孔形状对排孔下游冷却效率的影响.航空学报,2002,23(1):75-78页
    [75] Lu Y. Effect of hole configurations on film cooling from cylindrical inclined holes for the application to gas turbine blades [dissertation]. Louisiana State University, 2007:47-51P
    [76] Azzi A, Jubran B A. Numerical modeling of film cooling from converging slot-hole. Heat Mass Transfer, 2007, 43: 381-388P
    [77]刘存良,朱惠人,白江涛.收缩-扩张形气膜孔提高气膜冷却效率的机理研究.航空动力学报,2008,23(4): 598-604页
    [78] Seb B, Schmidt D L, Bogard D G. Film cooling with compound angle holes: heat transfer. ASME Journal of Turbomachinery, 1996, 118: 800-806P
    [79] Plesniak M W. Noncanonical short hole jets in cross-flow for turbine film cooling. ASME Journal Application Mechanism, 2006, 73: 474-482P
    [80] Theodoridis G S, Lakehal D, Rodi W. Three-dimensional calculations of the flow field around a turbine blade with film cooling injection near the leading edge. Flow Turbulence Combustion, 2001, 66: 57-83P
    [81] Abuaf N, Bunker R, Lee C P. Heat transfer and film cooling effectiveness in a linear airfoil cascade. ASME Journal of Turbomachinery, 1997, 119: 302-309P
    [82] Funazaki K, Yokota M, Yamawaki K. The effect of periodic wake passing on film effectiveness of discrete holes around the leading edge of a blunt body. ASME Journal of Turbomachinery, 1997, 119: 292-301P
    [83] Lakehal D, Theodoridis G, Rodi W. Three dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model. Journal of Fluid Flow, 2001, 22(2):113-122P
    [84] Azzi A, Lakehal D. Perspectives in modeling film cooling of turbine blades by transcending conventional two-equation turbulence models. ASME Journal of Turbomachinery, 2002, 124: 472-484P
    [85] Azzi A, Abidat M, Jubran B A, et al. Film cooling prediction of simple and compound angle injection from one and two staggered rows. Numerical Heat Transfer Part A, 2001, 40:1-21P
    [86] Rodi W, Mansour N N, MichelassiI V. One equation near wall turbulence modeling with the aid of direct simulation data. ASME Journal of Engineering for Fluids, 1993, 115: 196-205页
    [87]颜培刚,王松涛,韩万金.涡轮叶栅前缘气膜冷却对气动参数影响的数值研究.推进技术, 2004,25(1):44-47页
    [88]颜培刚,王松涛,韩万金,等.涡轮叶栅前缘气膜冷却数值模拟.航空动力学报, 2003, 18(5): 623-628页
    [89] He P, Licu D, Salcudean M. Leading edge film cooling: computations and experiments including density effect. ASME Paper 96-GT-176
    [90] Gart V K, Gaugler R E. Leading edge film cooling effects on turbine blade heat transfer. ASME Paper 95-GT-275
    [91] Lin Y L, Stephens M A, Shih T P. Computation of leading-edge film cooling with injection through rows of compound-angle holes. ASME Paper 97-GT-298
    [92]戴萍,林枫.燃气轮机叶片气膜冷却研究进展.热能动力工程, 2009, 24(1): 1-6页
    [93]戴萍,林枫.气膜孔形状对冷却效率影响的数值研究.动力工程,2009,29(2): 117-122页
    [94]戴萍,林枫.涡轮叶片前缘气膜冷却数值模拟.航空动力学报, 2009, 24(3): 519-525页( Ei: 20091612036295)
    [95]戴萍,林枫.新型缩放槽缝孔气膜冷却效率的数值研究.汽轮机技术, 2009, 51(1): 1-4页
    [96]戴萍,林枫.气膜孔几何结构对涡轮叶片气膜冷却影响的研究.热能动力工程, 2009, 24(4): 415-420页
    [97]戴萍,林枫.气膜孔形状对涡轮叶片气膜冷却效果的影响.热能动力工程, 2009,24(5): 560-565页
    [98]戴萍,林枫.不同孔型气膜冷却效率的数值研究.中国工程热物理学会2008年传热传质学术会议论文集.郑州,083012
    [99] Ping Dai, Feng Lin. Numerical study on film cooling effectiveness from shaped and crescent holes. Heat and Mass Transfer (accepted)
    [100]戴萍,林枫.旋转状态下燃气涡轮叶片内部冷却的研究.热能动力工程, 2010, 25(4)(已录用)
    [101]戴萍,林枫.气膜孔几何结构对缩放槽缝孔冷却效率的影响研究.航空动力学报, 2010(已录用)
    [102]戴萍,林枫.横向槽尺寸对气膜冷却性能的影响研究.推进技术,2010(已录用)
    [103]葛绍岩等著.气膜冷却.北京:科学出版社.1985:277-278页
    [104]王福军编著.计算流体动力学分析.北京:清华大学出版社.2004:116-118页
    [105] Rozati A, Tafti D K. Effect of coolant-mainstream blowing ratio on leading edge film cooling flow and heat transfer-LES investigation. International Journal of Heat and Fluid Flow, 2008, 29:857-873P
    [106] Rozati A, Tafti D K. Large-eddy simulations of leading edge film cooling: analysis of flow structures, effectiveness, and heat transfer coefficient. International Journal of Heat and Fluid Flow, 2008, 29: 1-17P
    [107]郭婷婷,邹晓辉,刘建红,等.扇形喷孔气膜冷却流场的大涡模拟.动力工程,2008,28(2):23-27页
    [108]陈矛章.粘性流体动力学基础.北京:高等教育出版社,2002:21-29页
    [109] Hwang C B, Lin C A. Improved low-Reynolds-number k ?εmodel based on direct numerical simulation data. AIAA Journal, 1998, 36(1):38-43P
    [110] Lu Xiaochen, Jiang Peixue, Sugishita H, et al. Conjugate heat transfer analysis of film cooling flows. Journal of Thermal Science, 2005, 15(1): 85-91P
    [111] Azzi A, Jubran B A. Influence of leading-edge lateral injection angles on the film cooling effectiveness of a gas turbine blade. Heat and Mass Transfer, 2004, 40: 501-508P
    [112] Azzi A, Jubran B A. Numerical modeling of film cooling from converging slot-hole. Heat and Mass Transfer, 2007, 43: 381-388P
    [113] Rodi W, Mansour N N, Michelassi I V. One equation near wall turbulence modeling with the aid of direct simulation data. ASME Journal of Engineering for Fluids, 1993, 115: 196-205P
    [114] Azzi A, Lakehal D. Perspectives in modeling film-cooling of turbine blades by transcending conventional two-equation turbulence models. ASME Journal Turbomachinery, 2002, 124: 472-484P
    [115] Raithby G D. Skewed upstream differencing schemes for problems involving fluid flow. Compute Method Application Mechanical Engineering, 1976, 9(2):153-164P
    [116] Van D, Turan A, Raithby G D. Evaluation of new techniques for the calculation of internal recirculating flows. AIAA Paper, 87-0059, 1987
    [117]郭鹏程.水力机械内部复杂流动的数值研究与性能预测.西安理工大学博士学位论文.2006:24-25页,33页
    [118] Rhie C M, Chow W L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Paper 82-0998, 1982
    [119] Moita A. Numerical solution of the Euler equations for high-speed blended wing-body configurations. AIAA Paper 85-0123, 1985
    [120] Jamson A, Schmidt W, Turkel E. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. AIAA Paper 81-1259, 1981
    [110] Lu Xiaochen, Jiang Peixue, Sugishita H, et al. Conjugate heat transfer analysis of film cooling flows. Journal of Thermal Science, 2005, 15(1): 85-91P
    [111] Azzi A, Jubran B A. Influence of leading-edge lateral injection angles on the film cooling effectiveness of a gas turbine blade. Heat and Mass Transfer, 2004, 40: 501-508P
    [112] Azzi A, Jubran B A. Numerical modeling of film cooling from converging slot-hole. Heat and Mass Transfer, 2007, 43: 381-388P
    [113] Rodi W, Mansour N N, Michelassi I V. One equation near wall turbulence modeling with the aid of direct simulation data. ASME Journal of Engineering for Fluids, 1993, 115: 196-205P
    [114] Azzi A, Lakehal D. Perspectives in modeling film-cooling of turbine blades by transcending conventional two-equation turbulence models. ASME Journal Turbomachinery, 2002, 124: 472-484P
    [115] Raithby G D. Skewed upstream differencing schemes for problems involving fluid flow. Compute Method Application Mechanical Engineering, 1976, 9(2):153-164P
    [116] Van D, Turan A, Raithby G D. Evaluation of new techniques for the calculation of internal recirculating flows. AIAA Paper, 87-0059, 1987
    [117]郭鹏程.水力机械内部复杂流动的数值研究与性能预测.西安理工大学博士学位论文.2006:24-25页,33页
    [118] Rhie C M, Chow W L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Paper 82-0998, 1982
    [119] Moita A. Numerical solution of the Euler equations for high-speed blended wing-body configurations. AIAA Paper 85-0123, 1985
    [120] Jamson A, Schmidt W, Turkel E. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. AIAA Paper 81-1259, 1981number of arbitrary two dimensional bodies. Journal of Computational Physics, 1975, 14:135-147P
    [133]刘启明,丁昭,周强泰.三维复杂流场中TTM法的应用.东南大学学报,1999,29(2):129-133页
    [134]任安禄.用贴体坐标数值求解拉普拉斯方程.浙江大学报,1992,26(1):34-40页
    [135] Shi H H, Kiniyama K, Itoh M. Hot wire measurement of turbulent boundary layer film cooling plate with diffusion holes. Journal of Hydrodynamics, 2001, 13(2):15-23P
    [136] Shi H H, Kiniyama K, Itoh M. Effect of diffusively shaped holes on the turbulent flow field of a film cooling plate. Chinese Journal of Aeronautics, 2002, 15(1): 6-11P
    [137] Shi H H, Sa S. Study of turbulent flow of film cooling holes with lateral expanded. Chinese Journal of Aeronautics, 2002, 15(4): 200-207P
    [138]何建伟,董若凌,施红辉.圆柱孔平板气膜冷却的数值模拟.浙江理工大学学报,2009,26(3):384-390页
    [139] Lu Y P. Effect of hole configurations on film cooling from cylindrical inclined holes for the application to gas turbine blades [dissertation]. Louisiana State University, 2007: 58P
    [140] Schmidt D L, Sen B, Bogard D G. Film cooling with compound angle holes: adiabatic effectiveness. Journal of Turbomachinery, 1996, 118(4): 807-813P
    [141] Beeck A. Stroemungsfelduntersuchungen zum aerodynamischen Verhalten eines hochbelasteten Turbinengitters mit Kuehlluftausblasung an der Vorderkante [Dissertation]. Universitaet der Bundeswehr Muenchen, Institut fuer Strahlantriebe 1992:69-81P
    [142] Schmidt D L, Sen B, Bogard D G. Film cooling with compound angle holes: adiabatic effectiveness. ASME Journal of Turbomachinery, 1996, 118: 807-813P
    [143] Gritsch M, Schulz A, Wittig S. Adiabatic wall effectiveness measurements of film cooling holes with expanded exits. ASME Journal of Turbomachinery, 1998, 120: 549-556P
    [144] Seb B, Schmidt D L, Bogard D G. Film cooling with compound angle holes: heat transfer. ASME Journal of Turbomachinery, 1996, 118: 800-806P
    [145] Plesniak M W. Noncanonical short hole jets in cross-flow for turbine film cooling. ASME Journal Application Mechanism, 2006, 73: 474-482P
    [146]朱惠人,许都纯,刘松龄.气膜孔形状对孔排下游冷却效率的影响.航空学报,2002,23(1):75-78页
    [147] Lee W, Lee J S, Ro S T. Experimental study on the flow characteristics of streamwise inclined jets in crossflow on flat plate. Journal of Turbomachinery, 1994, 116: 97-105P
    [148] Lakehal D, Theodoridis G, Rodi W. Three-dimensional flow and heat transfer calculation of film cooling at the leading edge of a symmetrical turbine blade model. International Journal of Heat and Fluid Flow, 2001, 22(2): 113-122P
    [149] Sargison J E, Guo S M, Oldfield M L, et al. A converging slot-hole film-cooling geometry, partⅠ: low-speed flat-plate heat transfer and loss. ASME Journal of Turbomachinery, 2002, 124: 453-460P
    [150] Sargison J E, Guo S M, Oldfield M L, et al. A converging slot-hole film-cooling geometry, partⅡ: transonic nozzle guide wane heat transfer and loss. ASME Journal of Turbomachinery, 2002, 124: 461-471P
    [151] Lu Y P. Effect of hole configurations on film cooling from cylindrical inclined holes for the application to gas turbine blades [dissertation]. Louisiana State University, 2007: 26P, 58P
    [152] Schmidt D L, Sen B, Bogare D G. Film Cooling with Compound Angle Holes: Adiabatic Effectiveness. Journal of Turbomachinery, 1996, 118: 807-813P
    [153] Liu J T, Peng X F. Effects of hole geometry on film coverage and cooling capability. 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, North Carolina USA, 2004: 3-4P
    [154] Lu Y, Ekkad S. Predictions of film cooling from cylindrical holes embedded in trenches. AIAA 2006-3401, 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, 2006: 5-8P
    [155] Azzi A, Jubran B A. Numerical modeling of film cooling from converging slot-hole. Heat Mass Transfer, 2007, 43: 381-388P
    [156] Gritsh M, Colban W, Schar H, et al. Effect of hole geometry on the thermal performance of fan-shaped film cooling holes. ASME Journal of Turbomachinery, 2005, 127(4): 718-725P
    [157] Kim Y J, Kim S M. Influence of shaped injection holes on turbine blade leading edge film cooling. International Journal of Heat and Mass Transfer, 2004, 47: 245-256P
    [158] Day C R B, Oldfield M L G, Lock G D. Aerodynamic performance of an annular cascade of film cooled nozzle guide vanes under engine representative conditions. Experimental Fluids, 2000, 29(1): 117-129P
    [159] Sargison J E, Oldfield M L, Guo S M, et al. Flow visualization of the external flow a converging slot-hole film-cooling geometry. Experiments in Fluids, 2005, 38: 304-318P
    [160] Seo B, Schmidt D L, Bogard D G. Film cooling with compound angle holes: heat transfer. ASME Journal of Turbomachinery, 1996, 118: 800-806P
    [161]许卫疆,朱惠人.孔间距对气膜冷却效率影响的数值模拟.西安交通大学学报, 2009, 43(3): 101-105页
    [162]谷萌,孟恒辉.不同孔间距下平板孔排的气膜冷却数值模拟.气体物理-理论与应用, 2009, 4(2): 180-183页
    [163] Wang T, Chintalapati S, Bunker R S, et al. Jet mixing in a slot. Experimental Thermal and Fluid Science, 2000, 22(1): 1-17P
    [164] Lu Y P, Nasir H, Ekkad S V. Film cooling from a row of holes embedded in transverse slots. ASME Paper GT2005-68598
    [165]左红,王鹏,武卫,等.横向槽深度对气膜孔冷却性能影响数值研究.机械科学与技术, 2008, 27(9): 1252-1260页
    [166]蒋永健,何立明,于锦禄,等.利用横向槽改善气膜冷却效率的数值研究.推进技术, 2008, 29(3): 286-289页
    [167]章大海,陈秋炀,曾敏,等.不同横槽结构对气膜冷却效率影响的数值研究.航空动力学报, 2008, 23(4): 611-616页
    [168]杨凡,郑洪涛,李智明.前缘气膜孔对涡轮静叶冷却效果影响的数值模拟.热能动力工程, 2006, 21(4): 345-349页
    [169]颜培刚,王松涛,韩万金.涡轮叶栅双排孔气膜冷却数值模拟.工程热物理学报, 2004, 25(5): 757-760页
    [170]王晓东,康顺.涡轮叶栅前缘槽缝气膜冷却的数值模拟.工程热物理学报, 2008, 29(11): 1835-1838页
    [171] Lakehal D, Theodoridis G, Rodi W. Three dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model. Journal of Fluid Flow, 2001, 22(2):113-122P
    [172] Goldstein R J, Chen H P. Film cooling on a gas turbine near the leading. ASME Journal of Engineering for Gas Turbine and Power, 1985, 107: 117-122P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700