跨声速高压气冷涡轮级气动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代航空燃气涡轮发动机为了获得更高的推重比和热效率,不断提高涡轮前温度,精简涡轮级数。高温、高膨胀比必然带来涡轮内部流动的局部超声速。国际上先进气冷涡轮气动设计的理念是在不影响涡轮做功能力的前提下,实现叶片表面的冷却效果最大化。这使冷气与主流的掺混研究成为涡轮研究设计中的一个关键问题。本文主要对尾缘冷气喷射形式对流场的影响、考虑冷气喷射影响的叶型设计以及非定常条件下局部优化设计对流场的影响进行了深入分析和研究。
     本文首先通过对高压涡轮静叶尾缘不同方案的冷气喷射数值模拟,分析了不同冷气喷射方式以及不同冷气喷射量对于静叶尾缘激波强度和下游动叶流场的影响。研究发现,采用压力面尾缘斜劈缝冷却对于减弱尾缘激波强度,减小掺混损失,改善流场流动有优势。采用尾缘对开缝冷却,可以削弱尾迹涡对强度,减小尾迹损失,但是掺混损失较大。动叶进口气流角随着冷气注入量的增大而减小,冷气喷射对动叶栅顶部马赫数影响要较其他部分弱。
     然后,探讨了具有凹陷特征的跨声速气冷涡轮叶型以及在静叶吸力面激波反射点进行冷气喷射来削弱激波强度的可行性。结果表明,具有前缘凹陷特征的气冷涡轮叶型可以把冷却气体以冷气旋涡的形式控制在其凹陷部位;与传统叶型比较,新型叶型的主流流动较合理。在吸力面激波反射点附近喷射冷气是一种行之有效的控制激波强度的方法;冷气喷射位置位于激波反射点附近时注入冷气对减弱激波强度有积极作用。
     接着,本文又详细研究了有静叶尾缘冷气喷射条件下的跨音速高压涡轮级内的流动规律,探讨了静叶尾缘激波对于附面层分离以及下游动叶流动的影响、采用正弯静叶片后对于级内激波强度的削弱带来的积极影响以及上游静叶变化对于下游动叶流动的影响,为高压涡轮级内冷气与主流掺混对流动影响的研究提供了必要的知识储备和理论依据。
     实验研究不能完全模拟航空发动机的实际工作条件,利用数值模拟的优势深入研究涡轮叶片的实际工作状态具有很重要的工程意义,本文为了更加深入研究高压涡轮级内的真实流动特性,对无冷气喷射和有尾缘冷气喷射情况下的各种方案的涡轮高压级进行了详细的非定常数值模拟和分析。研究发现,跨音速涡轮静叶受非定常势流影响的主要区域集中在吸力面扩压段到尾缘区域,动叶表面压力的非定常波动非常明显,叶片负荷变化很大;静叶尾缘激波强度呈现周期性变化,相对来说尾缘激波的压力面分支受下游动叶周期性运动的影响较小;尾迹涡对的吸力面一侧涡受到动静叶间的非定常干扰影响较小,而压力面侧尾迹涡受非定常效应影响较大,旋涡强度变化较剧烈。尾迹传播方向随着下游势流的变化而产生相应的变化;采用正弯静叶片后,下游动叶中部截面的非定常波动幅度有所增强,动叶根部和顶部截面的静压波动幅度较采用直静叶时要小;当采用压力面斜劈缝冷却时,尾迹涡对的压力面一侧涡受非定常效应的影响较大;尾迹受到下游动叶势流影响传播方向也发生周期性的变化;当采用尾缘对开缝冷却时,尾迹涡对受到下游动叶势流影响非常小,且尾迹受到下游势流的影响也较小,尾迹传播方向的非定常波动幅度很小;静叶尾缘冷气喷射后下游动叶30%弦长前负荷减小,30%弦长后较静叶不喷冷气时负荷增大。
In order to obtain higher thrust weight ratio, nowadays, aero engine improves inlet temperature of turbine and reduces turbine stage constantly. High temperature and high expansion ratio lead to local transonic in the turbine. The advanced air-cooled turbine aerodynamic design idea is to realize blade surface's maximum cooling effect, base on there is not effect on performance ability of turbine. It makes the research of cooling air and main stream mixing become to a key problem in the turbine design. In this paper, the effect of trailing cool-air injection on flow field, the blade profile design which consider the cool-air injection effects and effect of unsteady local optimize design on flow field have been analyzed and studied in detail.
     At first, numerical simulations have been carried out on stator trailing cool-air injection in different schemes, the effects of different cool-air injection methods and different cool-air injection mass on the intensity of stator trailing shock wave and downstream rotor flow field have been analyzed. Result shows that, slot cooling on suction side of trailing edge can reduce the intensity of trailing shock wave and mixing loss, improve flow field. Slot cooling on trailing point can reduce the intensity of trailing vortex and trailing loss, but its mixing loss is bigger. Rotor's inlet flow angle reduces with the mass increasing of cool-air injection. Effects of cool-air injection on the mach number of rotor blade shroud part is weaker than other parts.
    
     Secondly, the feasibility of a transonic air cooled turbine blade profile with depression feature at leading edge and injection cool-air at shock wave reflection point to reduce the intensity of shock wave has been researched. Results shows that, new blade profile can control the cool-air vortex in the depression part. Compared with traditional blade, new blade profile's main flow is more reasonable. Injecting cool-air at shock wave reflection point is a feasibility method to reduce shock wave intensity. When cool-air has been injected near the shock wave reflection point, the cool-air injection has positive role on the reducing of shock wave intensity.
     Then, the flowing law of transonic high pressure turbine stage with stator trailing edge cooling has been studied in detail. The effects of stator trailing edge wave on the boundary layer separation and rotor's flow field have been analyzed. Theory basis and knowledge reserve have been provided for the study of effects of cool-air and main flow mixing on flow. in high pressure turbine stage.
     Experimental study could not simulate the real working condition of aero engine entirely, so using the advantage of numerical simulation to study the real working condition of turbine blade has important project meaning. In this paper, in order to study the real working condition of flow field in high pressure turbine stage further, unsteady numerical simulations and system analyses have been carried out on different schemes of high pressure turbine stage with cool-air injection and without cooling. Results shows that, the effects of unsteady potential flow on stator is mainly in the range between suction side pressure expansion part and trailing edge part; the unsteady fluctuation on rotor's surface is very obviously. Rotor's loading change greatly. The intensity of shock wave at stator trailing edge become in periodicity. Relatively, the pressure side branch of trailing shock wave has been affected smaller by downstream rotor periodicity movement. There is small effect of rotor and stator's unsteady interfere on suction side vortex of trailing edge vortexes, but the effect on pressure side trailing vortex is bigger and its vortex intensity changes acutely. The transfer direction of wake changes with the potential flow of downstream changing. After using positive bowed stator, the unsteady fluctuation of rotor's mid-section has been increased, the fluctuations of rotor's hub-section and shroud-section are smaller than using straight stator. When slot cooling on trailing edge of pressure side has been used, trailing vortexes' pressure side branch has been influenced greater by unsteady effect and the wake's spread direction changes periodically with the effects of rotor's potential flow. When slot cooling on trailing point has been adopted, the potential flow of downstream rotor has very small effect on trailing vortexes and spread direction of wake. Cooling of stator trailing edge makes the rotor's load reduce before 30% chord length and increase behind 30% chord length.
引文
1张彦仲. 21世纪航空科学技术发展展望. International Aviation. 2001,(2):12~15
    2胡松岩.大飞机发动机多级低压涡轮设计技术分析.大型飞机关键技术高层论坛暨中国航空学会2007年学术年会. 2007:47
    3刘大响.对加快发展我国航空动力的思考.航空动力学报. 2001,16(1):1~7
    4周人治.航空发动机核心机技术及发动机发展型谱研究.电子科技大学. 2007.
    5陈光. F119发动机的设计特点.航空发动机. 2000,(1):21~29
    6梁春华. F136发动机及其关键部件.航空发动机. 2003,(1):45.
    7程荣辉. F414发动机及其发展型.燃气涡轮试验与研究. 2000,(3):30
    8梁春华,刘红霞. TECH56技术计划的涡轮技术.航空发动机. 2002,(4):11
    9王松涛,吴猛,冯国泰,王仲奇.叶片弯曲对跨音速涡轮叶栅流场的影响.热能动力工程. 2000,(3):239~242
    10王松涛,吴猛,冯国泰,王仲奇.正弯叶片降低叶栅内部损失的数值模拟.热能动力工程. 2000,(2):151~152
    11黄洪雁,袁宁,王仲奇,冯国泰.不同积叠线形式对涡轮性能的影响.工程热物理学报. 2000,(3):306~309
    12吴猛,王松涛,王仲奇,冯国泰.不同攻角下叶片弯曲对涡轮静叶流场的影响.上海理工大学学报. 2001,(3):193~196
    13 M. Tiedemann, F. Kost. Unsteady boundary layer transition on a high pressure turbine rotor blade. ASME Paper, 1999-GT-194, 1999
    14赵庆军,王会社,唐菲,赵晓路,徐建中.进口热斑在无导叶对转涡轮高压级中迁移的控制因素分析.中国科学(E辑:技术科学). 2008,(1):55~71
    15 J. S. Ewen, F. W. Huber and J. P. Mitchell. Investigation of the Aerodynamic Performance of Small Axial Turbines. ASME Paper, 1973-GT-3, 1973
    16 U. Okapuu. Some Results from Tests on a High Work Axial Gas Generator Turbine. ASME Paper, 1974-GT-81, 1974
    17 H. C. Liu, T. C. Booth and W. A. Tall. An Application of 3D Viscous Flow Analysis to the Design of a Low Aspect Ratio Turbine. ASME Paper, 1979-GT-146, 1979
    18 D. E. Crow, M. R. Vanco, H. Welna and I. D. Singer. Results from Tests on a HighWork Transonic Turbine for an Energy Efficient Engine. ASME Paper, 1980-GT-146, 1980
    19 J. D. Bryce, M. R. Litchfield and N. P. Leversuch. The Design, Performance and Analysis of a High Work Capacity Transonic Turbine. ASME Journal of Engineering for Gas Turbines and Power. 1985, 107(2):931~937
    20 S. H. Moustapha, U. Okapuu and R. G. Williamson. The Influence of Rotor Blade Aerodynamic Loading on the Performance of a Highly Loaded Turbine Stage. ASME Journal of Turbomachinery. 1987, 109(1):155~162
    21 E. P. Vlasic, S. Girgis and S. H. Moustapha. The Design and Performance of a High Work Research Turbine. ASME Journal of Turbomachinery. 1996, 118(3):792~799
    22 M.Woinowsky-Krieger, J. P. Lavoie, E. P. Vlasic and S. H. Moustapha. Off-Design Performance of a Single-Stage Transonic Turbine. ASME Journal of Turbomachinery. 1999, 121(4):177~183
    23 R. M. Urbassik, J. M. Wolff, M. D. Polanka. Unsteady aerodynamics and interactions between a high-pressure turbine vane and rotor. Journal of Turbomachinery. 2006, 128(1):35~42
    24 P. Gaetani, G. Persico, V. Dossena, C. Osnaghi. Investigation of the flow field in a high-pressure turbine stage for two stator-rotor axial gaps - Part II: Unsteady flow field. Journal of Turbomachinery. 2007,129(3): 580~590
    25 D. P. Schmidt and T. H. Okiishi. Detailed Measurements of the Periodically Unsteady Flow Produced by Rotor and StatorWake Interaction in a Multi-Stage Turbomachine. AIAA 1977,23(1):77~202
    26 E. Boletis and C. H. Sieverding. Experimental Study of the Three-Dimensional Flow Field in a Turbine Stator Preceded by a Full Stage. ASME Journal of Turbomachinery. 1991, 113(4):1~8
    27 O. P. Sharma, E. Renaud, T. L. Butler, K. Milsaps, R. P. Dring and H. D. Joslyn. Rotor-Stator Interaction in Multi-Stage Axial Flow Turbines. AIAA Paper, 1988-3013, 1988
    28 R. E. Mayle. The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME Journal of Turbomachinery. 1991, 113(1):124~130
    29 N. Arndt. Blade Row Interaction in a Multistage Low-Pressure Turbine. ASMEJournal of Turbomachinery. 1993, 115(4):137~140
    30 N. Arndt. Blade Row Interaction in a Multistage Low-Pressure Turbine. ASME Journal of Turbomachinery. 1993, 115(1):140~146
    31 F. W. Huber, P. D. Johnson, O. P. Sharma, J. B. Staubach and S. W. Gaddis. Performance Improvement Through Indexing of Turbine Airfoils Part 1– Experimental Investigation. ASME, Houston. 1995-GT-27,1995
    32 B. Oztürk, M. T. Schobeiri. Effect of turbulence intensity and periodic unsteady wake flow condition on boundary layer development, separation, and re-attachment over the separation bubble along the suction surface of a low pressure turbine blade. Proceedings of the ASME Turbo Expo. 2006,06:1911~1930
    33 S. J. Payne, R. W. Ainsworth, R. J. Miller, R. W. Moss, N. W. Harvey. Unsteady loss in a high pressure turbine stage: Interaction effects. International Journal of Heat and Fluid Flow. 2005, 26(5):695~708
    34 D. J. Doorly and M. L. G. Oldfield. Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade. ASME Journal of Engineering for Gas Turbines and Power. 1985, 107(4):998~1006
    35 H. P. Hodson. Blade Row Interactions in Low Pressure Turbines, von Kármán Institute for Fluid Dynamics. 1998,(2):9~12
    36 N. H. Kemp, W. R. Sears. Aerodynamic Interference Between Moving Blade Rows. J. Aero. Sci. 1953, 20(9):585~597
    37 R. Parker, J. F. Watson. Interaction Effects Between Blade Rows in Turbomachines. Proceedings of the Institute of Mechanical Engineering. 1972, 186(21):12~23
    38 H. E. Gallus, H. Grollius, J. Lambertz. The Influence of Blade Number Ratio and Blade Row Spacing on Axial-Flow Compressor Stator Blade Dynamic Load and Stage Sound Pressure Level. ASME Journal of Engineering for Power. 1982, 104(2):633~641
    39 M. G. Dunn. Turbine Heat Flux Measurements: Influence of Slot Injection on Vane Trailing Edge Heat Transfer and Influence of Rotor on Vane Heat Transfer. ASME Journal of Engineering for Gas Turbines and Power. 1985, 107(1):76~83
    40 T. Koriakianitis. On the Propagation of Viscous Wakes and Potential Flow in Axial-Turbine Cascades. ASME Journal of Turbomachinery, 1993, 115(1):118~123
    41 M. J?cker, F. S. Hillion, T. H. Fransson, U. W?hlen. Numerical unsteady Flow Analysis of a Turbine Stage With Extremely Large blade Loads. ASME Journal of Turbomachinery.2002, 124(2):429~430
    42 C. E. Kachel, J. D. Denton. Experimental and numerical investigation of the unsteady surface pressure in a three-stage model of an axial high pressure turbine. Journal of Turbomachinery. 2006, 128(2): 261~272
    43 M. J?cker, F. S. Hillion, T. H. Fransson, U. W?hlen. Numerical unsteady Flow Analysis of a Turbine Stage With Extremely Large blade Loads. ASME Journal of Turbomachinery. 2002, 124(2):430~438
    44 R. J. Howell, H. P. Hodson. Unsteady Flow: Its role in the Low Pressure Turbine. Proceedings of the 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Lyon 2000:58~94
    45 R. J. Howell, H. P. Hodson, V. Schulte, H. P. Schiffer, F. Haselbach, N. W. Harvey. Boundary Layer Development in the BR710 and BR715 LP Turbines– The Implenetation of High Lift and Ultra High Lift Concepts. ASME paper. 2001-GT-0441, 2001
    46 J. M. Verdon. Review of Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic and Aeroacoustic Applications. AIAA Journal, 1993,31(2):235~250
    47 J. M. Verdon. Linearized Analysis of the Acoustic Response to Wake/Blade-Row Interaction. Proceedings of the 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Lyon 2000: 148~159
    48 T. Korakianitis. On the Prediction of Unsteady Forces on Gas Turbine Blades: Part 1–Description of the Approach. ASME Journal of Turbomachinery. 1992, 114(1):114~122
    49 T. Korakianitis. On the Prediction of Unsteady Forces on Gas Turbine Blades: Part 1–Analysis of the Results. ASME Journal of Turbomachinery. 1992, 114(1):123~131
    50 R. X. Meyer. The Effects of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines. Journal of Basic Engineering. 1958:1544~1552
    51 M. D. Lefcort. An Investigation Into Unsteady Blade Forces in Turbomachines. ASME Journal of Engineering for Power. 1965:345~354
    52 L. H. Smith. Wake Dissipation in Turbomachines. ASME Journal of Basic Engineering. 1966, 88(D):688~690
    53 H. P. Hodson. Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines. ASME Journal of Engineering for Gas Turbines and Power. 1985, 107(3):467~476
    54 H. P. Hodson. An Inviscid Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow. ASME Journal of Engineering for Gas Turbines and Power. 1985, 107(2):337~344
    55 A. Binder, W. F?rster, H. Kruse, H. Rogge. An Experimental Investigation into the Effect of Wakes on the Unsteady Turbine Rotor Flow. Journal of Engineering for Gas Turbines and Power. 1985, 107(2):251~257
    56 M. B. Giles. Calculation of unsteady wake rotor interaction. AIAA Journal of Propulsion and Power. 1998,(4):356~362
    57 A. Chernobrovkin and B. Lakshminarayana. Unsteady Viscous Flow Causing Rotor Stator Interaction in Turbines. Part 2: Simulation, Integrated Flow Field and Interpretation. AIAA Journal of Propulsion and Power. 2000, 16(5):751~759
    58 B. Lakshminarayana, A. Chernobrovkin and D. Ristic. Unsteady Viscous Flow Causing Rotor-Stator Interaction in Turbines. Part I: Data, Code, and Pressure Field. AIAA Journal of Propulsion and Power. 2000, 16(5):744~750
    59 V. Schulte and H. P. Hodson. Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines. Birmingham.ASME, 1996-GT-486, 1996
    60 F. Eulitz, K. Engel, H. Gebing. Numerical Investigation of Clocking Effects in a Multistage Turbine. ASME Paper 1996- GT- 26, 1996
    61 N. Suryavamshi, B. Lakshminarayana, J. Prato. A spirating Probe Measurements of the Unsteady Total Temperature Field Downstream of an Embedded stator in a Multistage Axial Flow Compressor. ASME Journal of Turbomachineary, 1998, 120(1):156~169
    62 A. A. Ameri, Rigby, L. David, E. Steinthorsson, J. Heidmann, J. C. Fabian. Unsteady turbine blade and tip heat transfer due to wake passing. Proceedings of the ASME Turbo Expo. 2007,(4):507~515
    63 D. E. Bohn, Ren, Jing, Christian, M. Sell. Unsteady 3D-numerical investigation of the influence of the blading design on the stator-rotor interaction in a 2-stageturbine. Proceedings of the ASME Turbo Expo. 2005,(6):1285~1294
    64 B. R. Green, J. W. Barter, C. W Haldeman, M. G. Dunn. Averaged and time-dependent aerodynamics of a high pressure turbine blade tip cavity and stationary shroud: Comparison of computational and experimental results. Journal of Turbomachinery. 2005, 127(4):736~746
    65 T. Behr, L. Porreca, T. Mokulys, A. I. Kalfas, R. S. Abhari. Multistage aspects and unsteady effects of stator and rotor clocking in an axial turbine with low aspect ratio blading. Journal of Turbomachinery. 2006, 128(1):11~22
    66 P. Adami, F. Martelli. Three-dimensional unsteady investigation of HP turbine stages. Proceedings of the Institution of Mechanical Engineers. Journal of Power and Energy. 2006, 220(2):155~167
    67 D. J. Doorly and M. L. G. Oldfield. Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade. ASME Journal of Engineering for Gas Turbines and Power. 1985, 107(4):998~1006
    68 D. A. Ashworth, J. E. Lagraff, D. L. Schultz, K. J. Grindrod. Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage. Journal of Engineering for Gas Turbines and Power. 1985, 107(4):1022~1030
    69 A. B. Johnson, M. J. Rigby and M. L. G. Oldfield. Unsteady Aerodynamic Phenomena in a Simulated Wake and Shock Wave Passing Experiment. AGARD-CP-468, 1989
    70 M. B. Giles. Stator/Rotor Interaction in a Transonic Turbine. AIAA Journal of Propulsion and Power. 1990, 6(5):621~627
    71 B. Laumert, H. M?rtensson, T. H. Fransson. Investigation of Unsteady Aerodynamic Blade Excitation Mechanisms in a Transonic Turbine Stage Part I: Phenomenological Identification and Classification. ASME Journal of Turbomachinery. 2002, 124(5):410~418
    72 J. A. Busby, R. L. Davis, D. J. Dorney, M. G. Dunn, C. W. Haldeman, R. S. Abhari, B. L.Venable and R. A. Delaney. Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics: Part II–Time-Resolved Data and Analysis. ASME Journal of Turbomachinery. 1999, 121(3):673~682
    73 I. K. Jennions and J. J. Adamczyk. Evaluation of the InteractionLosses in a Transsonic Turbine HP Rotor/LP Vane Configuration. ASME Journal ofTurbomachinery. 1997, 119(1):68~76
    74 Frank, Hummel. Wake-Wake Interactions and its Potential for Clocking in a Transonic High Pressure Turbine. ASME 2001-GT-0302, 2001
    75 M. Michele, R. Pacciani. Numerical Investigation of Wake-Shock Interactions and Clocking in a Transonic HP Turbine. ASME GT2003-38401, 2003
    76 P. Gaetani, G. Persico, V. Dossena, C. Osnaghi. Investigation of the Flow Field in a HP Turbine Stage for Two Stator-Rotor Axial Gaps-Part II:Unsteady Flow Field. ASME-GT2006-90556, 2006
    77 P. Gaetani, G. Persico, V. Dossena, C. Osnaghi. Investigation of the Flow Field in a HP Turbine Stage for Two Stator-Rotor Axial Gaps-Part I:3-D Time-Averaged Flow Field. ASME-GT2006-90553, 2006
    78 G. Paniagua, T. Yasa, L. L. De, Andres, L. Castillon, T. Coton. Unsteady strong shock interactions in a transonic turbine: Experimental and numerical analysis. Journal of Propulsion and Power. 2008, 24(4):722~731
    79王松涛,王仲奇,冯国泰,吴猛.动静叶相互干涉的三维非定常流场数值模拟.上海理工大学学报. 2001,(3):213~216
    80王松涛,王仲奇,冯国泰,孙玺淼.非定常条件下叶片弯曲对流场参数的影响.航空动力学报. 2002,(3):314~318
    81 Mohsen Hassan Vand,王松涛,冯国泰,王仲奇.基于耗散函数的叶顶泄漏流动非定常数值模拟.节能技术. 2005,(1):3~5
    82赵庆军,王会社,赵晓路,徐建中.无导叶对转涡轮三维流场的非定常数值模拟.工程热物理学报. 2006,(1):35~38
    83葛绍岩,刘登瀛.气膜冷却.科学出版社. 1985
    84方昌德. 2020年前航空发动机的技术发展水平对比和对策研究.综合高性能涡轮发动机技术(IHPTET)计划文集.航空航天部航空科学技术情报研究所. 1992
    85刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报. 2002, 28(5):490~496
    86韩介勤,桑地普?杜达,斯瑞纳斯?艾卡德.燃气轮机传热和冷却技术.西安交通大学出版社. 2005.7
    87 W. Koop. Integrated High Performance Turbine Engine Technology(IHPTET)Program. ISABE 97-7175. 1997
    88张惠. 1+1/2对转涡轮流动特性分析及其气膜冷却流动机理研究.中国科学院研究生院. 2008
    89张效伟,朱惠人.大型燃气涡轮叶片冷却技术. 2008, 23(1):1~6
    90 M .Suo. Turbine Blade Cooling. AFAPC-TR-88-52. 1988,(1):112~117
    91 S. M. Coulthard. Effects of Pulsing on Film Cooling of Gas Turbine Airfoils. (Naval Academy, Annapolis, MD.) Report: USNA-TSPR-333 (2005). 2005:72
    92 G. Wagner, P. Ott, G. Vogel, S. Naik. Leading edge film cooling and the influence of shaped holes at design and off-design conditions. Proceedings of the ASME Turbo Expo. 2007,(4):577~587
    93 M. Gritsch, A. Schulz and S. Wittig. Effect of Crossflows on Discharge of Film Cooling Holes With Varing of Inclination and Orientation. ASME Journal of Turbomachinery. 2001, 122(1): 66~72
    94 D. E. Bohn, N. Moritz. Comparison of Cooling Film Development Calculation for Transpiration Cooled Flat Plates with Different Turbulence Models. New Orleans, ASME paper 2001-GT-0132. 2001
    95 S. V. Ekkad, J. C. Han, and H. Du. Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Freestream Turbulence and Coolant Density. Orlando, ASME Paper 1997-GT-0181. 1997
    96 M. Salcudean, I. Garshore and K. Zhang. An Experimental Study of Film Cooling Effectiveness Near the Leading Edge of a Turbine Blade. ASME Journal of Turbomachinery. 1994, 116(1):71~79
    97 Yao Yu, Zhang Jing-Zhou, Guo Wen. Numerical study of cooling effectiveness of different film cooling holes on stator blade. Journal of Aerospace Power. 2008, 23(9):1666~1671
    98 Yao Yu, Zhang Jing-Zhou, Guo Wen. Numerical investigation on film cooling effectiveness of stator blade with different angles. Journal of Aerospace Power. 2009, 24(3):507~512
    99 . Film cooling from a row of holes supplemented with anti vortex holes. Proceedings of the ASME Turbo Expo. 2007,(4):375~384
    100 S. Na, T. I. P. Shih. Increasing adiabatic film-cooling effectiveness by using an upstream ramp. Proceedings of the ASME Turbo Expo, 2006,(3):931~938
    101 A. Suryanarayanan, B. Ozturk, M. T. Schobeiri, J. C. Han. Film-coolingeffectiveness on a rotating turbine platform using pressure sensitive paint technique. Proceedings of the ASME Turbo Expo. 2007,(4):169~183
    102 S.Baheri, S. P. Tabrizi, Alavi, B. A. Jubran. Film cooling effectiveness from trenched shaped and compound holes. Heat and Mass Transfer. 2008, 44(8):989~998
    103 D. M. Kercher. A Film-Cooling CFD Bibliography:1971-1996. International Journal of Rotating Machinery. 1998, 4(1): 61~72
    104 V. K. Garg, R. E. Gaugler. Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer. Houston. ASME Paper 1995-GT-275. 1995
    105 P. D. He, Licu and M. Salcudean. Leading Edge Film Cooling: Computations and Experiments Including Density Effects. Birmingham. ASME Paper 1996-GT-176. 1996
    106 C. A. Martin, K. A. Thole. A CFD Benchmark Study Leading Edge Film-Cooling With Compound Angle Injection. Orlando. ASME Paper 1997-GT-297. 1997
    107 T. M. Liou, G. Y. Dai. Pressure and Flow Characteristics in a Rotation Two-Pass Squar Duct with 45 Angled Ribs. Atlanta. ASME Paper 2003-GT-38346. 2003
    108 Chernobrovkin, B. Lakshninarayana. Numerical Simulation and Aerothermal Physics of Leading Edge Film Cooling. Stockholm. ASME Paper 1998-GT-504. 1998
    109 Womack, M. Kristofer, Volino, J. Ralph, Schultz, P. Michael. Combined effects of wakes and jet pulsing on film cooling. Journal of Turbomachinery. 2008, 130(4):24~31
    110 Womack, M. Kristofer, Volino, J. Ralph, Schultz, P. Michael. Measurements in film cooling flows with periodic wakes. Journal of Turbomachinery. 2008, 130(4):32~38
    111 F. H. Kost, A. T. Holmes. Aerodynamic Effectof Coolant Ejection in the Rear Part of Transonic RotorBlade.AGARD-CP-390, Heat Transfer and Coolingin Gas Turbines. 65th PEP Symposium. Bergen, 1991: 2136~2158
    112 D. E. Bohn, C. Tummers. Numerical 3-D Conjugate Flow and Heat Transfer Investigation of a Transonic Convection-Cooled Thermal Barrier Coated Turbine Guide Vane With Reduced Cooling Fluid Mass Flow. Atlanta. ASME Paper 2003-GT-38431. 2003
    113 C. Kapteijn, J. Amecke. Aerodynamic Permance of a Transonic Turbine Guide Vane with Trailing Edge Coolant Ejection: PartI-Experimental Approach. Hague, ASME Paper 1994-GT-288. 1994
    114后缘喷气对叶栅性能影响试验报告.中国燃气轮机研究所, 1997: 20~33
    115 J. E. Hartsel. Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils. London. AIAA Paper 72-0111. 1972
    116 S. K. Roberts, M. I. Yaras. Measurement and Prediction of Free-Stream Turbulence and Pressure-Gradient Effects on Attached-Flow Boundary-Layer Transition. Atlanta. ASME Paper 2003-GT-38261. 2003
    117 C. Kapteijn, J. Amecke and V. Michelassi. Aerodynamic Performance of a Transonic Turbine Guide Vane with Trailing Edge Coolant Ejection: Part
    1:Experimental Approach. Hague. ASME Paper 1994-GT-288. 1994
    118 P. Martini, A. Schulz. Experimental and Numerical Investigation of Trailing Edge Film Cooling by Circular Coolant Wall Jets Ejected From a Slot With Internal Rib Arrays. Atlanta. ASME Paper 2003-GT-38157. 2003
    119 C. Liess, W. L. Chow. Numerical Study of the Turbulent Flow Past and Airfoil with Trailing Edge Separation. Journal of AIAA. 1983, 21(11):1525~1532
    120 C. Liess, P. Weiss and L. Fottner. The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades. ASME Journal of Turbomachinery. 1985, 117(10):1024~1039
    121 H. Kruse. Efficient and Robust Matrix Solver for the Pressure-Correction Equations in Two-and Three Dimensional Fluid Flow Problems. Journal of Heat Transfer. 1995, 27(4):355~319
    122 S. Jenkins, K. Varadarajam and D. Bogard. The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on Dispersion of Simulated Hot Streak. Atlanta. ASME Paper 2003-GT-38575. 2003
    123 A. H. Teekaram, C. P. Forth and T. V. Jones. Film Cooling in the Presence of Mainstream Pressure Gradient.ASME of Journal of Turbomachinery. 1991, 113(3): 442~449
    124 J. P. Bons, S. T. Mclain. The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer. Atlanta. ASME Paper 2003-GT-38738. 2003
    125 A. Yamamoto, Y. Kondo. Cooling-Air Injection into Secondary Flow and Loss Fields within a Linear Turbine Cascade. ASME Journal of Trubomachinery. 1991, 113(2):375~383
    126 J. Ahn, S. Mhetras, Han Je-Chin. Film-cooling effectiveness on a gas turbine blade tip using pressure-sensitive paint. Journal of Heat Transfer. 2005, 127(5):521~530
    127 S. Mhetras, Yang Huitao, Gao Zhihong, Han Je-Chin. Film-cooling effectiveness on squealer cavity and rim walls of gas-turbine blade tip. Journal of Propulsion and Power, 2006, 22(4):889~899
    128 N. W. Harvey, N. G. Rose and J. Coupland. Measurement and Calculation of Nozzle Guide Vane End Wall Heat Transfer. Transactions of the ASME. 1999, 121(2):184~190
    129 K. Friedrich, N. Martin. Film-Cooled Turbine Endwall In a Transonic Flow Field: Part 1- Aerodynamic Measurements. New Orleans. ASME Paper 2001-GT-0145. 2001
    130 N. Martin. Film-Cooled Turbine Endwall In A Transonic Flow Field: Part II-Heat Transfer And Film-Cooling Effectiveness. New Orleans. ASME Paper 2001-GT-0163. 2001
    131 L. M. Wright, Gao Zhihong, Yang Huitao, Han Je-Chin. Film cooling effectiveness distribution on a gas turbine blade platform with inclined slot leakage and discrete film hole flows Journal of Heat Transfer, 2008, 130(7):121~128
    132 S. Friendrichs, H. P. Hodson and W. N.Dawes. The Design of Improved Endwall Film-Cooling. Transactions of ASME. 1997,119(5):788~793
    133 S. Mhetras, Han Je-Chin. Heat Transfer Division, (Publication) HTD, Effect of superposition on spanwise film-cooling effectiveness distribution on a gas turbine blade. Proceedings of 2006 ASME , IMECE2006 - Heat Transfer. 2006
    134 D. E. Nikitopoulos. Active Control of Transverse Jets for Film Cooling Applications: A Limited Statement of Work. Louisiana State Univ., Baton Rouge. Dept. of Mechanical Engineering. 2006, 30
    135 P. Adami, S. Salvadori, Chana, S. Kam. Unsteady heat transfer topics in gas turbine stages simulations Proceedings of the ASME Turbo Expo. 2006, 6:1733~1744
    136 Kim Sung In, Hassan, G. Ibrahim, Zhang Xuezhi. Unsteady simulation of film cooling flow from an inclined cylindrical jet 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference– HT. 2007, 3:581~589
    137 J. R. Mason. Heat Transfer Due to Unsteady Effects as Investigated in a High-Speed, Full-Scale, Fully-Cooled Turbine Vane and Rotor Stage. (Air Force Inst. of Tech., Wright-Patterson AFB, OH. Graduate School of Engineering and Management.) Report: AFIT/GAE/ENY/08-J04, 2008:137
    138 S. Mhetras, Han Je-Chin. Effect of unsteady wake on full coverage film-cooling effectiveness for a gas turbine blade. Collection of Technical Papers - 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, 2006,(2):1382~1398
    139 Narzary, P. Diganta, Gao Zhihong, S. Mhetras, Han Je-Chin. Effect of unsteady wake on film-cooling effectiveness distribution on a gas turbine blade with compound shaped holes. Proceedings of the ASME Turbo Expo. 2007,(4):79~91
    140 W. Stefan, L. Fottner. An Experimental Investigation On The Influence of Periodic Unsteady Inflow Conditions On Leading Edge Film Cooling. Amsterdam. ASME Paper 2002-GT-30202. 2002
    141王华阁主编.航空发动机设计手册.第16册.空气系统及传热分析.航空工业出版社, 2001.
    142 A. Shapiro. The dynamics and Thermodynamics of Compressible Fluid Flow. Ronald Press. 1953, (I):219~231
    143 M. Choe, W. M. Kays, R. J. Moffat. Turbulent Boundary Layer on a Full-Coverage, Film-Cooled Surface: An Experimental Heat Transfer Study with Normal Injection. NASA CR-2542, 1976
    144 W. Tabakoff, R. Earley. Two Dimensional Flow Losses of a Turbine Cascade with Boundary Layer Injection. ASME Paper.1972-GT-235. 1972
    145 M. Gaunter. Laser-Doppler Velocimeter Measurements and Flow Visualization in a Cascade of Controlled Diffusion Compressor Blades at Stall. M. S. Thesis, Naval Postgraduate School. 1994:1~67
    146 E. Hartsel. Prediction of Effects Mass Transfer Cooling on the Blade-Row of a Turbine Bade Model Through Single and Double Row Injection: Effects of Coolant Density. ASME Paper. 1994-GT-2. 1994
    147 S. Ito, E. R. G. Eckert, R. J. Goldstein. Aerodynamic Loss in a gas Turbine Stage with Film Cooling. ASME Journal of Engineering for Power. 1980, 102: 964~970
    148 O. Kellen, W. Koschel. Effect of Film Cooling on the Aerodynamic Performance of a Turbine Cascade. AGARD-CP-390, 1986
    149 M. E. Crawford, W. M. Kays, R. J. Moffat. Turbulent Boundary Layer of a Full-Coverage, Film-Cooled Surface: An Experimental Heat Transfer Study with Normal Injection. NASA CR-2642,1976..
    150 W. Li. The Program Prediction the Aerodynamic losses of a Two-Dimensional Cascade due to the Coolant Injection in the Mainstream. Rolls-royes Limited.GN23773,1980
    151黄忠湖,王月奇,杨锦普.有冷气掺混的气动设计计算方法.航空动力学报. 1989, 4(2):301~304
    152杨弘,冯国泰,王仲奇.涡轮冷气掺混数学模型的研究.哈尔滨工业大学学报. 1992, 4(2):36~40
    153 E. Hartsel. Prediction of Effects Mass Transfer Cooling on the Blade-Row of a Turbine Blade Model Through Single and Double Row Injection. Indianapolis, ASME Paper 1999-GT-210. 1999
    154赵晓路.冷气掺混对高压涡轮导叶、转子流场结构影响的数值分析.中国工程热物理学会第十届年会论文集.广州. 2002:103~109
    155陈海昕,沈孟育.带冷气掺混的涡轮级流场数值模拟.航空动力学报. 2002, 17(4): 451~457
    156 T. Siddharth, W. Jeffrey and W. Shyy. Convective Film Cooling Over a Representative Turbine Blade Leading-Edge. International Journal of Heat and Mass Transfer. 1999, 42(9): 2269~2285
    157 K. V. Garg. Modeling Film-Coolant Flow Characteristics at the Exit of Shower-Head Holes. International Journal of Heat and Fluid Flow. 2001, 22(2):134~142
    158周驰,冯国泰,顾中华.涡轮叶栅气热耦合数值模拟.工程热物理学报. 2003, 24(3): 224~227
    159王强,董平,姜澎,冯国泰,王仲奇.提高气冷涡轮气热耦合计算精度的措施.工程热物理学报. 2008,(4):573~578
    160郭兆元,王强,黄家骅,董平,冯国泰.涡轮叶片气热耦合数值模拟方法.推进技术. 2009,(2):159~164
    161颜培刚,董平,周驰,冯国泰.涡轮叶栅气热耦合数值方法与验证.工程热物理学报. 2008,(2):213~216
    162董平,黄洪雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析.航空动力学报. 2008,(2):201~207
    163 D. Bohn. Numerical and Experimental Investigation of the Influence of Different Swirl Ratios on the Temperature Streak Development in a 4-Stage Turbine. Munich. ASME Paper 2000-GT-0205. 2000
    164 R. S. Nunker, T. G. Wetzel. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade: Part I-Experimental Measurements. Amsterdam. ASME Paper 2002-GT-30212. 2002
    165 Bacci, Alessandro, Facchini, Bruno. Turbulence modeling for the numerical simulation of film and effusion cooling flows Proceedings of the ASME TurboExpo. 2007,(4):247~257
    166 D. K. Demuren, W. Rodi and B. Schonung. Systematic Study of Film Cooling with a Three-Dimensional Calculation Procedure. J. of Turbomachinery. 1996, 108(1): 124~130
    167 A. O. Demuren. Characteristics of Three Dimensional Turbulent Jets in Crossflow. Int. J. Engine Sci. 1993, 31(7): 899~913
    168 R. W. Clauss, , S. P. Vanka. Multi grid Calculations of Jet in Cross flow. Orlando. AIAA Paper 1990-0444. 1990
    169 H. Reiss, A. Bolcs. The Influence of the Boundary Layer State and Reynolds Number on Film Cooling and Heat Transfer on a Cooled Nozzle Guide Vane. Munich. ASME paper 2000-GT-0205. 2000
    170温风波,王松涛,冯国泰,赵洪雷,王仲奇.考虑冷气掺混的涡轮分层次气动优化设计体系.工程热物理学报. 2008,(8):1301~1306
    171王强,颜培刚,王松涛,冯国泰,王仲奇.考虑冷气组分扩散的气冷涡轮流场的数值模拟.工程热物理学报. 2007,(S1):101~104
    172颜培刚,王松涛,冯国泰.叶片弯曲对气冷涡轮叶栅气动性能影响的数值研究.航空动力学报. 2006,(2):261~267
    173张惠,王会社,徐建中,赵晓路. 1+1/2对转涡轮高压动叶气膜冷却数值研究.工程热物理学报. 2008,(3):385~389
    174 T. F. Fric, A. Roshko. Structure of the Near Field of the Tranverse Jet. Proceeding of 7th symptium on Turbulent Shear Flows. 1989, 1(2): 351~376
    175 R. J. Goldstein, E. R. G. Eckert, H. D. Chiang. Effect of Surface Roughness on Film Cooling Performance. ASME of Journal of Engineering for Gas Turbine and Power. 1998, 114(10):747~755
    176 H. Cho, J. Ham. Influence of Injection Type and Feed Arrangement on Flow and Heat Transfer in an Injection Slot. Munich. ASME Paper 2000-GT-238. 2000
    177 M. D. Polanka, M. I. Ethridge and J. M. Cutbirth. Effects of Showerhead Injection on Film Cooling Effectiveness for a Downstream Row of Holes. Munich. ASME Paper 2000-GT-260. 2000
    178 D. H. Foster and J. D. Lampard. 2001 International Gas Turbine Institute Gas Turbine Scholar Lecture: Convective Heat Transfer and Aerodynamics in Axial Flow Turbines. Journal of Turbomachinery. 2001, 123(4):637~686
    179 C. Liess, P. Weiss and L. Fottner. The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades. ASME Journal of Turbomachinery. 1985, 117(3):732~756
    180 H. Kruse. Effects of Hole Geometry Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Signal Row. 1991, AD-A(16):2080~2103
    181 A. L. Brundage, M. W. Plesniak and S. Ramadhyani. Influence of Coolant Feed Direction and Hole Length on Film Cooling Jet Velocity Profiles. Munich. ASME Paper 2000-GT-350. 2000
    182 J. Kami, R. D. Goldstein. Surface Injection Effect on Mass Transfer from a Cylinder in Crossflow:A Simulation of film cooling in the Leading Edge Region of Turbine Blade. ASME Journal of Turbomachinery. 1990, 112(2): 418~427
    183 S. E Ito, R. G. Eckert and R. J. Goldstein. Aerodynamic Loss in aGas Turbine Stage with Film Cooling. ASME Journal of Engineering for Power. 1980, 102(2): 964~970
    184 N. Hasan, A. Sumanta, and E. Srinath. Film Cooling From a Single Row of Cylindrical Angled Holes With Triangular Tabs Having Different Orientations. New Orleans. ASME paper 2001-GT-0124. 2001
    185 B. H. Dennis, I. N. Egorov and S. George. Optimization of a Large Number of Coolant Passages Located Close to the Surface of a Turbine Blade. Atlanta. ASME paper 2003-GT-38051. 2003
    186 D. Polanka, I. Marcia and G. David. Effects of Showerhead Injection on Film Cooling Effectiveness for a Downstream Row of Holes. Munich. ASME Paper 2000-GT-0240. 2000
    187 T. Kumagai, K. Takeishi, Y. Oda, T. Kajiuchi. Numerical and experimental research on a mixing process of film cooling air with mainstream. Transactions of the Japan Society of Mechanical Engineers. 2008, 74(2):453~460
    188航天部高效节能发动机文集编委会,高效节能发动机文集第五分册涡轮设计与制造.航空工业出版社, 1991:109~112
    189边家亮.涡轮叶栅尾缘强化冷却方法的数值研究.哈尔滨工业大学, 2007:50~80
    190黄洪雁,陈凯,董平,冯国泰,王仲奇.气热耦合多孔气膜冷却流动的数值研究.工程热物理学报, 2007,(S1):81~84
    191 A. Yamamoto, Y. Kondo and R. Murao. Cooling-Air Injection into Secondary Flow and Loss Fields within a Linear Turbine Cascade. ASME Journal of Turbomachinery. 1991, 113(1):375~383
    192 V. Nirmalan and L. D. Hilton. An Experimental Study of Turbine Vane Heat Transfer with Leading Edge and Downstream Film Cooling. ASME Journal of Turbomachinery. 1990, 112(3):477~487
    193 H. J. Gladden and J. W. Gauntner. An Adverse Effect of Film Cooling on the Suction Surface of a Turbine Vane. NASA TN-D-7618. 1974
    194 H. J. Gladden and J. W. Gauntner. Experimental Verification of Film-Cooling Concepts on a Turbine Vane. ASME Paper 1975-GT-21. 1975
    195 T. P. Moffitt, S. M. Nosek and R. J. Roelke. Turbine Aerodynamic Considerations for Advanced Turbines. NASA, SP259. 1971
    196林公舒,杨道刚.现代大功率发电用燃气轮机.机械工业出版社. 2007, 04:228~229
    197 Wang, Z. Q., Lai, S. K., Xu. W. Y. Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results. India. Symposium paper of 5-ty ISABE, 1981
    198 W. J. Han, Z. Q. Wang. Experimental Studies on the Mechanism and Control of Secondary Flow Losses in Turbine Cascades. Journal of Thermal Science. 1992,4(1):218~231
    199季路成,王延荣,邵卫卫,王宝臣.缘线匹配主导下的叶轮机非定常设计.工程热物理学报. 2008, (10):1667~1672
    200綦蕾,邹正平,刘火星,李维.高负荷涡轮端区非定常流动相互作用研究.航空学报. 2009,(4):584~596
    201 J Schlienger, A I Kalfas, R S Abhari. Vortex-wake-blade interaction in a shrouded axial turbine. ASME 2004-GT-53915. 2004
    202 P. Graham. Secondary flows and loss caused by blade row interaction in a turbine stage. ASME 2004-GT-53743. 2004
    203 G. Pullan. Secondary flows in a turbine stage. ASME 2004-GT-53778, 2004
    204彭荣强.燃气涡轮机导片与转子叶片交互作用的非定常流场数值模拟.汽轮机技术. 2008,(1):26~28
    205邹正平,叶建,张永新.非定常流动对叶片表面负荷分布影响的数值模拟研究.燃气涡轮试验与研究. 2006, 19(1):21~26
    206 R. J. Miller, R. W. Moss, R. W. Ainsworth. The development of turbine exit flow in a swan-necked inter-stage diffuser. ASME GT 2003-38174, 2003: 863-875
    207綦蕾,郑贇,邹正平,刘火星,李维,周颖,许如琦.上游尾迹与涡轮叶栅通道涡相互作用研究.航空动力学报. 2008,(5):895~903
    208 D. E. Bohn, J. Ren, C. Tümmers. Unsteady 3D-numerical of the influence of the blading design on the stator-rotor interaction in a 2-stage turbine. ASME GT 2005-68115, 2005:1285~1294
    209凌代军,姜正礼,仲永兴.平面叶栅非定常流动试验方法研究.燃气涡轮试验与研究. 2006,(3):24~29
    210刘火星,周琨,邹正平.涡轮叶栅尾迹对二次流影响的试验研究.工程热物理学报. 2009,(3):397~401
    211袁锋,竺晓程,杜朝辉,.尾迹对气膜冷却影响的三维非定常数值模拟.动力工程. 2006,(6):818~821
    212蒋雪辉,赵晓路.非定常尾迹对气膜冷却影响的数值研究.工程热物理学报. 2005, 26(2):322~324
    213周勇,赵晓路,徐建中,.非定常激波对气膜冷却影响的数值模拟.工程热物理学报. 2007,(6):933~935
    214孟越,李琳,李其汉.气动非谐对叶片非定常气动激振力影响.航空动力学报. 2007,(7):1060~1064
    215张伟昊,刘火星,李维,邹正平,.尾迹与涡轮叶栅边界层的相互作用.航空动力学报. 2009,(4):843~850
    216黄秀全,周新海.振动叶栅中尾迹/激波相干的数值研究.航空动力学报. 2009, 24(1):132~136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700