大跨空间结构的风场和流固耦合风效应研究与精细识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间结构广泛应用于大跨度公共建筑建设中。但结构质量轻、阻尼小、风损风毁现象突出,风荷载是结构设计计算的控制荷载。特别是大跨柔性空间结构,几何非线性明显,结构风效应更加严重。如何有效开展结构抗风设计,确定结构风压体型系数和风振系数等关键参数是大跨度空间结构设计的重点。本文旨在研究大跨空间结构风场和流固耦合风效应及其精细识别。
     结合传统谐波叠加法和线性滤波器法,提出高精度高效率的风速时程混合模拟方法,克服了谐波叠加法计算速度慢和线性滤波器法计算精度低的缺点。推导了Levison-Durbin算法矩阵递推公式,利用赤池信息准则判断最佳的回归阶次。验证了混合模拟方法的计算精度、计算效率、相关性和适用性。
     基于形式代数和映射理论,构建了结构化网格生成与更新新型方法。运用形式代数在虚拟规则多边形上建立虚拟网格,通过特定函数建立一一对应的映射关系,将虚拟网格映射到真实计算域。通过二维和三维内外流场网格剖分和流固耦合网格更新计算,验证了本方法。
     提出了N-S方程基于Taylor-Hood单元的二阶Taylor-Galerkin方法,构建了相应离散格式公式,改进了三阶Taylor-Galerkin有限元法离散格式;提出了基于压力修正法的不可压缩粘性流体Taylor-Galerkin有限元求解策略。开展了平面Poissulie流动和二维方腔拖曳流的数值模拟,并通过与相关文献比较分析,验证本文方法。
     根据计算风工程理论方法,开展了大跨复杂空间结构的数值模拟,获取结构风载体型系数和结构区域体型系数,分析了存在阻挡物时目标结构周围风场和体型系数的变化规律,并与风洞实验结果进行对比验证。
     针对大跨空间结构流固耦合风效应问题,构建了流固耦合边界数据传递新方法。提出约束反力分配传递法,以解决流体域荷载向固体域的传递;提出映射传递法,以解决固体域向流体域传递响应的问题。提出分析大跨空间结构流固耦合风效应的静力动力统一方程;分别运用时域分析方法、单向耦合分析方法和双向耦合分析方法,数值计算大跨复杂空间结构的风效应,并比较上述方法的计算效率、精度和稳定性。给出复杂结构的风载体型系数和风振系数,分析考虑和不考虑流固耦合作用的大跨柔性空间结构的风效应。
     最后,基于小波理论和小波包方法,开展结构风效应的频域精细识别、时频联合分布分析,进行脉动风模拟时程的精度修正。
The long-span spatial structures (LSS) have been widely used in public buildings. But due to the light mass and the small damp, they are sensitive to wind loads. Therefore, wind loads become one of the principal loads acting on structures in the structural design. Especially for the long-span flexible spatial structures, the fluid-structure Interaction (FSI) must be considered in analysis. How to decide the relative pressure and wind-induced vibration coefficient becomes the focus of the LSS design. The wind field and FSI effects of the LSS as well as the identification of the results are researched in the present dissertation.
     Combined with the weighted amplitude wave superposition method (WAWS) and auto-regression method (AR), a new mixture simulation technique for wind velocity time history is proposed. The present method significantly reduces time cost for computation with no accuracy lost. The matrix style of Levison-durbin algorithm is put forward and the optimally regression order is judged by the AIC (Akaike information criterion).
     Based on the Formex algebra and mapping theory, a new method in which the real mesh is mapped by the virtual mesh is presented. The virtual mesh is generated on the virtual regular polygon by Formex algebra, and the real mesh is mapped by the mapping theory. Also, the increment mapping is introduced. Moreover, the quality of the initial mesh and the updated mesh are statistically analyzed. The analysis shows that the good quality mesh system can be obtained by the present method.
     Based on the traditional Taylor-Galerkin finite element method (FEM), the two-steps and three-steps Taylor-Galerkin finite element formulations are presented. An efficient iterative algorithm is presented for the numerical solution of viscous incompressible Navier-Stokes equations. In order to confirm the properties of the algorithm, the numerical simulations on both plane Poisseuille flow problem and lid-driven cavity flow problem with different Reynolds numbers are carried out. The numerical results indicate that the proposed iterative version can be effectively applied to the simulation of viscous incompressible flows.
     Based on the theory of the computational wind engineering, the wind field around typical LSS is numerically simulated, with the determination of flow field scale, boundary condition and turbulence model and so on. Comparison of the wind pressure between the numerical simulation and the results from wind tunnel tests of the structural model are mentioned in detail, which indicates wind loads acting on spatial structures obtanined by numerical simulation is feasible and reliable in structural wind-resistant design.
     In the research for FSI of LSS, A new strategy for data transferring on the FSI interface is put forward. Some concepts describing structural working states such as pre-stress loading state, stable state and coupling state are defined, while the uniform expression for both structural static and dynamic states are developed. The time-history structural dynamic analysis technique, the unilateral coupling process and the coupling interaction process are applied to a series of computation and comparison on the wind effects of some LSSs.
     Finally, based on the discrete wavelet theory, a series of computation and comparison on the wind-induced vibration responses of LSS and their joint distribution in both time and frequency domains as well as the precision modification for the simulated time history series of wind actions is carried out.
引文
[1]蓝天.空间结构的十年——从中国看世界,第六届空间结构学术会议论文集,广州,1992: 1-8.
    [2] Z.S.Mokowski.Space Structure——A Review of Development in Last Decade,《Space Structure IV》,London,1993.
    [3]董石麟,姚谏.网壳结构的未来与展望,空间结构,创刊号,1994年.
    [4]沈祖炎.大跨度空间结构的研究与发展,结构工程学的研究现状和趋势.上海:同济大学出版社, 1995: 22-31.
    [5]沈世钊.中国悬索结构的发展,工业建筑,1994年第6期:3-9.
    [6] Sh.Zh.Shen.The Development of Spatial Structures in China,Invited Report,IASS Asia-Pacific conference on Shell an Spatial Structures,Beijing,1996.
    [7]刘锡良,现代空间结构的新发展,天津:第一届全国现代结构工程学术报告会论文集,2001:65-72.
    [8]董石麟,钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社,2000.
    [9] Z.S.Makowski.Analysis design and construction of braced domes.New York:Nichols Pub.Co.,1984.
    [10]孟庆坪,第十一届亚运会建设科技集锦.北京:北京科学技术出版社,1990.
    [11]董石麟,赵阳,周岱.我国空间钢结构发展中的新技术、新结构.土木工程学报,1998, 31(6),3-14.
    [12]沈世钊.大跨空间结构的发展-回顾与展望.土木工程学报,1998,31(3):5-14.
    [13]沈祖炎.空间网格结构论文集.上海:同济大学出版社,1991.
    [14]董石麟.新型空间结构论文集.杭州:浙江大学出版社,1994.
    [15]尹德钰,刘善维,钱若军.网壳结构设计.北京:中国建筑工业出版社,1996.
    [16]第九届空间结构学术会议论文集.萧山:2000.
    [17]吴剑国,张其林.网壳结构稳定性研究.空间结构,2002,8(1),10-18.
    [18]沈祖炎,陈扬骥.网架与网壳.上海:同济大学出版社,1997.
    [19]范重,吴学敏,郁银泉等.国家体育场大跨度钢结构修改初步设计,空间结构,2005,11(3):3-13.
    [20]范重,范学伟.焊接薄壁箱形构件设计方法研究.第十一届空间结构学术会议,南京:2005.
    [21]杨庆山,田玉基.国家体育场风振系数的计算方法.第十一届空间结构学术会议.南京:2005.
    [22]傅学怡,顾磊,杨先桥等.国家游泳中心结构设计与研究,空间结构,2005,11(3):16-21.
    [23]金海,金新阳,陈岱林.国家游泳中心及大跨度平面屋顶的风荷载CFD初步分析.2004全国结构风工程实验技术研讨会,长沙,2004.
    [24]陈贤川,赵阳,顾磊等.新型多面体空间刚架结构的建膜方法研究.浙江大学学报(工学版),2005,39(1):92-97.
    [25]朱忠义,柯长华.首都机场T3航站楼钢结构设计介绍.第十一届空间结构学术会议,南京:2005.
    [26]朱忠义,马骏.首都国际机场大跨箱型变截面钢拱结构稳定性分析,第十一届空间结构学术会议,南京:2005.
    [27]马骏,周岱.首都国际机场交通运输中心大跨钢结构风振数值分析,第十一届空间结构学术会议,南京:2005.
    [28]刘枫,肖从真.首都机场3号航站楼多维多点输入时程地震反应分析,第十一届空间结构学术会议,南京:2005.
    [29]董石麟,罗尧治,赵阳.大跨度空间结构的工程实践与学科发展.空间结构,2005,11(4):4-10.
    [30]蓝天,刘枫.中国空间结构的20年,第十届空间结构学术会议论文集,2002:1-12.
    [31]刘锡良,董石麟.20年来中国空间结构形式创新.第十届工空间结构学术会议论文集.2002:13-37.
    [32]沈世钊.中国空间结构理论研究20年进展.第十届空间结构学术会议论文集.2002:38-52.
    [33]董石麟,赵阳.论空间结构的形式和分类.土木工程学报,2004,37(1):7-12.
    [34]林郁,卓新.开敞式叉筒网壳风场数值模拟与受力分析.浙江大学学报(工学版).2004,38,(9):1171-1174.
    [35]杨伟,顾明.高层建筑三维定常风场数值模拟,同济大学学报,2003,31(6):647-651.
    [36]马骏,李华锋,周岱.空间结构风场风载的数值模拟,上海交通大学学报,2005,已录用.
    [37]胡继军,黄金枝,李春祥,董石麟.网壳-TMD风振控制分析,建筑结构学报,2001,22(3),31-35.
    [38]胡继军,黄金枝,董石麟,陈务军.网壳风振随机响应有限元法分析.上海交通大学学报,2000,34(8):1053-1056.
    [39]胡继军,李春祥,黄金枝.网壳风振响应主要贡献模态的识别及模态相关性影响分析.振动与冲击,2001,20(1),22-25.
    [40]辛庆胜,周岱,马骏.大跨斜拉网格结构耦合风振响应分析计算的研究现状与发展前景.振动与冲击,2005,24(1),24-27.
    [41]舒新玲,大跨度单层网壳结构风载风振研究[硕士论文].上海:上海交通大学,2003.
    [42]孙炳楠,傅国宏,陈鸣等.9417号台风对温州民房破坏的调查.第七届全国结构风效应会议论文集,重庆,1995.
    [43] J.M.Roesset,J.T.P.Yao.State of the Art of Structural Engineering.J.Structural Engineering,2002,128(8):965-975.
    [44]石井一夫.日本膜结构的发展.世界建筑,1999(3):70-73.
    [45] M.Saitoh.Recent Development of Tension Structures.Current and Emerging Technologies of Shell and Spatial Structures,1997:105-118.
    [46] J.Schlaich.On Some Recent Lightweight Structures.IASS Symposium 2001,Nagoya,SP4:1-123.
    [47] R.Bradshaw,D.Campbell,et al.Special Structures:Past,Present and Future.J.Structural Engineering.2002,128(6):691-709.
    [48]沈世钊.大跨空间结构若干关键理论问题研究.第十届空间结构学术会议论文集,浙江萧山,2000.
    [49]沈世钊,徐祟宝,赵臣.悬索结构设计,北京:中国建筑工业出版社, 1997.
    [50]程志军,楼文娟,孙炳楠等,屋面风荷载及风致破坏机理.建筑结构学报,2000,21(4):39-47.
    [51]张其林,索和膜结构,上海:同济大学出版社,2002.
    [52]杨庆山,姜忆南,张拉索-膜结构分析与设计,北京:科学出版社,2004.
    [53]沈世钊.大跨空间结构理论研究和工程实践.中国工程科学,2001,3(3): 34-41.
    [54] O.Nakamura,Y.Tamura,K.Miyashita and M.Koichi.,et al.Case of Wind Pressure and Wind-Induced Vibration of a Large Span Open-Type Roof.J.Wind Eng.Ind.Aerodyn.1994,52(1-3),237-248.
    [55]谢壮宁,倪振华,石碧青.大跨屋盖风荷载特性的风洞试验研究.建筑结构学报.2001,22(2):23-28.
    [56] E. Simiu and R.H.Scanlan.Wind Effects on Structures—An Introduction to Wind Engineering.The 3rd Edition,John Wiley & Sons,INC.1995.
    [57] H.J.Christopher.Nonlinear Dynamic Response of Membranes,State of the Art Update.Applied Mechanics Reviews.1996,49(10):41-48.
    [58] P.Mariangela and P.Spinelli.Dynamic Analysis Based Design of Cable Structures.Bulletin of IASS.1989, (30):93-107.
    [59] G.Bartoli,C.Borri,F.Mirto and G.Solari.Some Recent Advances Developments in Wind Dynamics of Large Lightweight Engineering Facilities.Proc.Int.Conf. On Lightweight Structures in Civil Engineering, Warsaw,2002:950-966.
    [60]沈世钊,武岳.大跨度张拉结构风致动力响应研究进展.同济大学学报.2002,30(5):533-538.
    [61] M.S.A.Sharekh,S.K.Pathak et al.Turbulent Boundary Layer over Symmetric Bodies with Rigid and Flexible Surface.J.Engng.Mech.2000,126(4):422-431.
    [62] A.G..Davenport.The application of statistical concepts to the wind loading of structures.Civil Eng Proc.Inst 1961,19:449-472.
    [63] A.G.Davenport.Gust Loading Factor.J.Struct.Div.ASCE.1967,93(3):11-34.
    [64]黄本才.结构抗风分析原理及应用.上海:同济大学出版社,2001.
    [65] A.G.Davenport and D.Surry.Turbulent Wind Forces on a Large Span Roof and Their Representation by Equivalent Static Loads.Can.J.Civ.Eng.1984,(11):955-966.
    [66]沈世钊.大跨空间结构理论研究若干新进展.第十一届空间结构学术会议,南京:2005.
    [67]武岳,沈世钊.单向大跨度柔性屋盖结构的流固耦合性能分析,第十一届空间结构学术会议,南京:2005.
    [68] Y.Uematsu and K.Uchiyama.Deflection and buckling behavior of thin circular cylindrical shells under wind loads.Journal of Wind Engineering and Industrial Aerodynamics.1985,18(3),245-261.
    [69] Y.Uematsu,M.Yamada,A.Sasaki.Wind-induced dynamic response and resultant load estimation for a flat long-span roof. Journal of Wind Engineering and Industrial Aerodynamics.1996,65(1-3):155-166.
    [70] Y. Uematsu,M.Yamada,A.Karasu.Design wind loads for structural frames of flat long-span roofs:gust loading factor for a structurally integrated type.Journal of Wind Engineering and Industrial Aerodynamics.1997,66(2):155-168.
    [71] Y.Uematsu,M.Yamada,A.Karasu.Design wind loads for structural frames of flat long-span roofs: Gust loading factor for the beams supporting roofs . Journal of Wind Engineering and Industrial Aerodynamics.1997,66(1):35-50.
    [72] Y.Uematsu,M.Yamada,A.Inoue,T.Hongo.Wind loads and wind-induced dynamic behavior of a single-layer latticed dome.Journal of Wind Engineering and Industrial Aerodynamics.1997,66(3):227-248.
    [73] H.Yasui,H.Marukawa,J.Katagiri,A.Katsumura,Y.Tamura and K.Watanabe. Study of wind-induced response of long-span structure.Journal of Wind Engineering and Industrial Aerodynamics.1999,83(1-3):277-288.
    [74] H.Yasui,T.Ohkuma,H.Marukawa,J.Katagiri.Study on evaluation time in typhoon simulation based on Monte Carlo method. Journal of Wind Engineering and Industrial Aerodynamics.2002,90(12-15):1529,1540.
    [75]周岱,舒新玲.单层球面网壳结构的风振及其参数分析.空间结构,2003,9(3):7-12.
    [76] D. Zhou, J. Ma, Zh.Y.Zhu.Wind vibration study of long-span steel arch structure of Beijing Capital International Airport.Journal of Shanghai Jiaotong University (Science,English version),2005,E-10(4),429-435.
    [77]楼文娟,孙炳楠.风与结构的耦合作用及风振响应分析.工程力学,2000,17(5):16-22.
    [78]陆锋,楼文娟,孙炳楠.大跨度平屋面的风振响应及风振系数.工程力学,2002,19(2):52-57.
    [79]陆锋,大跨度平屋面结构的风振响应和风振系数研究[博士论文].杭州:浙江大学,2001.
    [80]何艳丽,董石麟,龚景海.大跨空间网格结构风振系数探讨.空间结构,2001,7(2):3-10.
    [81]沈世钊,武岳,大跨度张拉结构风致动力响应进展.桂林:第十届全国结构风工程学术会议论文集,2001:10-16.
    [82]周岱,舒新玲,王泳芳.大跨空间结构的风荷载模拟分析与展望.振动与冲击,2002,21(3):6-10.
    [83]向阳,沈世钊,李君.薄膜结构的非线性风振响应分析.建筑结构学报,1999(6):38-46.
    [84]武岳.考虑流固耦合作用的索膜结构风致动力响应研究[博士论文].哈尔滨:哈尔滨工业大学,2003.
    [85]李元齐,董石麟.大跨空间结构风荷载模拟技术研究及程序编制.空间结构,2001,7(3):3-11.
    [86]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1997.
    [87] M.Shinozuka.Simulation of multivariate and multidimensional random process.Journal of the Acoustical Society of America,1971,49(1):357-367.
    [88] K.Aas-Jakobsen,E.Strφmmen.Time domain buffeting response calculations of slender structures.J.Wind Eng.Ind.Aerodyn.2001,89:341-364.
    [89] M.Shinozuka,C.M.Jan.Digital simulation of random process and its application.Journal of Sound and Vibration.1972,25(1):111-128.
    [90] M.Grigoriu.Simulation of nonstationary Gaussian process by random trigonometric polynomials.J.of Eng.Mech.,ASCE,1993,119(2):328-343.
    [91] Y.Li,A.Kareem.Simulation of multivariate random processes:hybrid DFT and digital filtering approach.J.of Eng.Mech.,ASCE,1993,119(5):1078-1098.
    [92] P.M.Mignolet,P.D.Spanos.Recursive simulation of stationary multivariate random process.Transactions of the ASME,Journal of Applied Mechanics,1987,54:674-680.
    [93] G.Deodatis,M.Shinozuka.Auto-regressive model for nonstationary stochastic process.J.of Eng.Mech.,ASCE,1988,114(11):1995-2012.
    [94] M.P.Mignolet,P.D.Spanos.Simulation of homogeneous two-dimensional random fields: part I—AR to ARMA models;part II—MA to ARMA models.Journal of Applied Mechanics,Transactions of the ASME,1992,59,part I: 260-269;part II: 270-277.
    [95] J.S.Owen,et al.The application of auto-regressive time series modeling for the time-frequency analysis of civil engineering structures.Engineering Structures,2001,23:521-536.
    [96] G.Deodatis.Simulation of ergodic multivariate stochastic process.J.of Eng.Mech.,ASCE,1996,122(8):778-787.
    [97] J.N.Yang. Simulation of random envelope processes. Journal of Sound and Vibration, 1972,21(1), 73-85.
    [98] J.N.Yang. On the normality and accuracy of simulated random processes.Journal of Sound and Vibration, 1973,26(3): 417-428.
    [99] M. Shinozuka and C.M.Jan Digital simulation of random processes and its applications.Journal of Sound and Vibration,1972,25(1):111-128.
    [100] M.Shinozuka and G.Deodatis.Stochastic process models for earthquake ground motion.Probabilistic Engineering Mechanics,1988,3(3):114-123.
    [101] F.Yamazaki,M.Shinozuka.Digital generation of non-Gaussian stochastic fields.Journal of Engineering Mechanics,1988,114(7):1183-1197.
    [102] M.Grigoriu and S.Balopoulou.A simulation method for stationary Gaussian random functions based on the sampling theorem.Probabilistic Engineering Mechanics,1993,8(3-4):239-254.
    [103] M.Shinozuka and G.Deodatis.Stochastic wave models for stationary and homogeneous seismic ground motion.Structural Safety,1991,10(1-3):235-246.
    [104] A Iannuzzi,P Spinelli.Artificial wind generation and structural response.Journal of Structural Engineering,ASCE,1987,113 (12):2382-2398.
    [105] M.Grigoriu.On the spectral representation method in simulation,Probabilistic Engineering Mechanics,1993,8(2):75-90.
    [106]王之宏.风荷载的模拟研究.建筑结构学报,1994,15(2):41-52.
    [107]贺德馨等.中国空气动力研究与发展中心风工程研究试验近况.第五届全国风工程及工业空气动力学学术会议论文集.张家界:1998,I35-I39.
    [108]李明水,贺德馨.自然风场的数值模拟.空气动力学学报,1999,17(1):44-51.
    [109] T.Naganuma,G.Deodatis,M.Shinozuka.ARMA model for two-dimensional process.Journal of Engineering Mechanics,ASCE,1987,113(2):234-251.
    [110] E.Samaras,M.Shinozuka,A.Tsurui.ARMA representation of random process.J.of Eng.Mech.,ASCE,1985,111(3):449-461.
    [111]赵臣,张小刚,吕伟平.具有空间相关性风场的计算机模拟.空间结构,1996,2(2):21-25.
    [112] R.W.MacCormak A Perspective on A Quarter Century of CFD Research.AIAA 93-3291.
    [113] W.Rodi,D.B.Spalding.A two-parameter model of turbulence and its application to free jets.Warme-und Stroffuber-tragung.1970,3:85-90.
    [114] W.P.Jones,B.E.Launder.The prediction of laminarization with a two equation model of turblence.Int.J.Heat Mass Transfer.1972,15:301-314.
    [115] D.C.Wilcox,M.W.Rubesin.Progress in turbulence modeling for complex flow fields including effects of compressibility.NASA TP-1517,1980.
    [116] F.R.Menter.Tow-Equation Eddy Viscosity Turbulence Models for Engineering Applications.AIAA J.1994,32:1299-1310.
    [117]杨伟,基于RANS的结构风荷载和响应的数值模拟研究,[博士论文].上海:同济大学,2004.
    [118]曾凯,汪丛军,计算风工程的几个关键影响因素分析.第十二届全国结构风工程学术会议论文集,西安,2005:743-750.
    [119] D.C.Wilcox.Turbulence Modeling for CFD.USA California,DCW Industries,1994.
    [120] J.S.Smagorinsky.General Circulation Experiments with the Primitive Equations.Part 1 Basic Experiments. Mon.Weather Rev,1963(91) :99-164.
    [121] J.E.Deardorff.A three-dimensional numerical study of turbulent channel flow at large Reynolds numbers.J.Fluid Mech.1970,41 :453-480.
    [122] S.Murakami,A.Mochida and K.Hibi.Three-Dimensional Numerical Simulation of Air Flow around a Cubic Model by Means of Large Eddy Simulation . Journal of Wind Engineering and Industrial Aerodynamics,1987,25:291-305.
    [123] T.J.R.Hughes,W.K.Liu,T.K.Zimmermann.Lagrangian-Eulerian finite element formulation for incompressible viscous flow.Computer Methods in Applied Mechanics and Engineering,1981,29(3) :329-349.
    [124] A.N.Brooks,T.J.R.Hughes.Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations.Computer Methods in Applied Mechanics and Engineering,1982,32(1-3) :199-259.
    [125] A.N.Brooks,T.J.R.Hughes.Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations.Computer Methods in Applied Mechanics and Engineering,1982,32(1-3) :199-259.
    [126] J.Donea,B.Roig,A.Huerta.High-Order Accurate Time-Stepping Schemes for Convection Diffusion Problems, Comput.Meths.Appl.Mech. Engrg.,2000(182):249-275.
    [127] J.Donea,S.Giuliani,H.Laval.Finite Element Solution of the Unsteady Navier-Stokes Equations by a Fractional Step Method.Comput.Meths.Appl.Mech. Engrg.,1982,(30) :53-73.
    [128] J.Donea.A Taylor-Galerkin Method for Convective Transport Problems.Int.J.Numer. Methods Eng., 1984,(20) :101-119.
    [129] J.Donea,S.Giuliani,H.Laval.Time-Accurate Solution of Advection-Diffusion Problems by Finite Elements.Comput.Meths.Appl.Mech.Engrg.,1984,(45) :123-145.
    [130] H.Kohno,K.J.Bathe.A flow-condition-based interpolation finite element procedure for triangular girds.Int.J.Numer.Meth.Fluids,2005,49:849-875.
    [131] K.J.Bathe,H.Zhang.A flow-condition-based interpolation finite element procedure for incompressible fluid flows.Computers and Structures,2002,80(14-15) :1267-1277.
    [132] K.J.Bathe,J.P.Pontaz.A flow-condition-based interplation mixed finite element procedure for higher Reynolds number fluid flow.Methemetical Models and Methods in Applied Sciences,2002,12(4):525-539.
    [133] S.Murakami.Current status and future trends in computational wind engineering.Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68:3-34.
    [134]吕文瑚,汤广发,文继红.建筑数值风洞的基础研究.湖南大学学报,1994,21(6):114-118.
    [135]武岳,沈世钊.膜结构风振分析的数值风洞方法.空间结构,2003,9(2):38-43.
    [136]秦云,张耀春,王春刚.数值风洞模拟结构静力风荷载.哈尔滨工业大学学报,2004,36(12):1593-1597.
    [137]项海帆.我国大跨度缆索承重桥梁的空气动力性能研究.力学季刊,2000,21(4):397-400.
    [138]邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展,1997,27(1):19-38.
    [139] F.F.Felker.Direct solution of two-dimensional Navier–Stokes equations for static aeroelasticity problems.AIAA J1993,31(1):148–53.
    [140] F . J . Blom . A monolithical fluid–structure interaction algorithm applied to the piston problem.Comput.Methods Appl.Mech.Eng.,1998,167:369–91.
    [141] A.Soria,F.Casadei.Arbitrary Lagrangian-Eulerian multicomponent compressible flow with fluid-structure interaction.International Journal for Numerical Methods in Fluids,1997,25(11):1263-1284.
    [142] S.M.Rifai,J.Zdenek,W.P.Wang.Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms.Computer Methods in Applied Mechanics and Engineering,1999,174(3-4):191-417.
    [143] C.Farhat,M.Lesoinne,P.LeTallec.Load and motion transfer algorithms for fluid/structure interactionproblems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity.Computer Methods in Applied Mechanics and Engineering,1988,157(1-2):95-114.
    [144] Q.Zhang,T.Hisada.Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method.Computer methods in applied mechanics and engineering,2001,190(48):6341-6357.
    [145] M.Nakayama,T.Suzuki,K.Ishii,K.Satoh.Wind Tunnel Test on Spherical Pneumatic Structures- Shells.Membrane and Space Frames,Proceedings IASS of Symposium,Osaka,1986,(2):225-232.
    [146] S.Kawamura, T.Kiuchi.An Experimental Study of a One-Membrane Type Pneumatic Structure-Wind Load and Response.Journal of Wind Engineering and Industrial Aerodynamics,1986,(23):127-140.
    [147] S.Kawamura,T.Kiuchi.Wind Design Method of Air Supported Structures, Shells.Membrane and Space Frames, Proceedings IASS of Symposium,Osaka,1986,2:233-240
    [148] H.P.A.H.Irwin,R.L.Wardlaw.A Wind Tunnel Investigation of a Retractable Fabric Roof for the Montreal Olympic Stadium.Proc.5th Int. Conf. on Wind Eng.,Pergamon,1981:925-938.
    [149] Y.Uematsu,K.Uchiyama.Aeroelastic Behavior of an H.P. Shaped Suspended Roof, Shells.Membrane and Space Frames,Proceedings of IASS Symposium,Osaka,1986,(2):241-248.
    [150] H.Kunieda.Flutter of Hanging Roofs and Curved Membrane Roofs.Int.J.Solids Structures,1975,(11):477-492.
    [151] P.A.B.de Sampaio,H.H.Patricia,L.G..Alvaro.A stabilized finite element procedure for turbulent fluid-structure interaction using adaptive time-space refinement.Int.J.Numer.Meth.Fluid,2004,44:673-693.
    [152] M.Glǚck,M.Breuer,F.Durst.Computation of fluid-structure interaction on lightweight structures.Journal of Wind Engineering and Industrial Aerodynamics,2001,89(14-15):1351-1368.
    [153] M.Gluck,M.Breuer,F.Durst.Computation of wind-induced vibrations of flexible shells and membranous structures.Journal of Fluids and Structures,2003,17(5):739-765.
    [154] P.R.F.Teixeira,A.M.Awruch.Numerical simulation of fluid-structure interaction using the finite element method.Computers and Fluids,2005,34(2):249-273.
    [155]刘振华.膜结构流体-结构耦合作用风致动力响应数值模拟研究[博士论文] .上海:同济大学,2006.
    [156] J.F.Thompaon.A reflection on grid generation in the 90s:trend,needs,and influences[A].In: 5th International Conferences on Grid Generation in Computational Field Simulation,1996.
    [157] J.F.Thompaon,E.U.A.Warsi,C.W.Mastin.Numerical Grid Generation.Elsevier Science Publishing Co.,1985.
    [158] T . D . Blacker , M . B . Stephenson . A New Approach toAutomated Quadrilateral Mesh Generation.International Journal for Numerical Methods in Engineering,1991,32:811-847.
    [159] K.Ho-Le.Finite Element Mesh Generation Methods:a Review and Classification.Computer Aided Design,1988,20:27-38.
    [160] M.Sabin,Criteria for comparison of automatic mesh generation methods.Adv.Eng.Software,1991, 13(5/6):220-225.
    [161] S.Maza,F.Noel,J.C.Leon.Generation of quadrilateral mesh on free-form surfaces.Computer and Structures,1999,71:505-524.
    [162] D.R.White,Kinney P.Redesign of the Paving Algorithm:Robustness Enhancements through Element by Element Meshing.In:Sandia National Laboratories,Processings of 6th.
    [163] H.Blum. A transformation for extracting new descriptors of shape models foe the perception of speech and visual form.Cambridge:MIT Press,1967,362-380.
    [164] T.K.H.Tam,C.G.Armstrong,2D Finite element mesh generation by medial axis subdivision.Advances in Engineering Software,1991,13(5/6):313-324.
    [165] M.A.Price,C.G.Armstrong.Hexahedral mesh generation by medial surface subdivision:Part I[J].International Journal for Numerical Methods in Engineering,1995,38(19):3335-3359.
    [166] M.A.Price,C .G.Armstrong.Hexahedral mesh generation by medial surface subdivision:PartⅡ[J].International Journal for Numerical Methods in Engineering,1997,40(1):111-136.
    [167] W.C.Thacker,A.Gonzaliz,G.E.Putland.A method for automating the construction of irregular computional grids for strom surge forecast methods. J.of Computational physics,1980,37:371-381.
    [168] T. J. Tautges,T.Blacker,S.A.Mitchell.The Whisker Weaving Algorithm:A connectivity-based method for constructing all-hexahedral finite element meshes.International Journal for Numerical Methods in Engineering,1996,39:3327-3349.
    [169] J.O.Steven.Non-Simplical Unstructured Mesh Generation.The Department of Civil and Environmental Engineering Camegie Mellon University,1999,(4):8-33.
    [170] O . Friedrieh . A New Method for Generating Inner Points of Triangulations in Two Dimensions.Comp. Meth.Appl.Mech.Eng,1993,104:77-86.
    [171] K.R.Blake,G.S.Spragle.Unstructured 3D Delaunay Mesh Generation Applied to Planes.Trains and Automobiles,AIAA-93-0673,1993.
    [172] R.Lohner,P.Parikh.Generation of Three-Dimensional Unstructured Grids by the Advancing Front Method.AIAA-88-0515,1988.
    [173] R.Lohner.Some Useful Data structures of the Generation of Unstructured Grids.Communications in Applied Numerical Methods,1988,4:123-135.
    [174] D.Pan,M.Chao.Hybrid Octree/Advancing-front Mesh Generation and Implicit Agglomeration Multi grid Euler Solver.AIAA-99-0918,1999.
    [175] C.Farhat,C.degand,B.Koobus,M.Lesoinne.Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput.Methods Appl.Mech.Engrg,1998,163:231-245.
    [176]郭正.包含运动边界的多体非定常流场数值模拟方法研究[博士论文] .长沙:国防科技大学,2002.
    [177] T.E.Tezduyar,M.Behr,J.Liou.A new strategy for finite element computations involving Moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure : The concept and the preliminary test.ComPut.Methods.Appl.Mech.Engrg.1992,94(3) :339-351.
    [178] Baum,D.Joseph.A New ALE Adaptive Unstructured Methodology for the Simulation of Moving Bodies.AIAA-1994-414,1994.
    [179]郭正,李晓斌,翟章华,刘君.用非结构动网格方法模拟有相对运动的多体绕流.空气动力学学报,2001,19(3):310-316.
    [180]郭正,刘君,翟章华.非结构网格在三维可动边界问题中的应用.力学学报,2003,35(2):140-146.
    [181]史爱明.非结构动网格下非定常气动力计算和嗡鸣研究[硕士论文] .西安:西北工业大学,2003.
    [182]吴德红.含动边界自适应非结构化网格生成及应用研究[硕士论文] .南京:南京理工大学,2001.
    [183]张军,谭俊杰,褚江,任登凤.一种新的非结构动网格的生成方法.南京航空航天大学学报,2007,39(5):633-636.
    [184]崔锦泰.小波分析导论.西安交通大学出版社,2001.
    [185]李玲玲,蒋栋.小波理论的基本思想及其发展、应用与展望.淮北煤炭师范学院学报,2002:12-14.
    [186]徐长发,李国宽.实用小波方法,武汉:华中科技大学出版社,2004.
    [187] S.A.Neild,P.D.Mcfadden,M.S.Williams.A review of time-frequency methods for structural vibration analysis.Engineering Structures,2003,25(6):713-728.
    [188] H.Kim,H.Melhem.Damage detection of structures by wavelet analysis.Engineering,2004,26(3):347-362.
    [189] H.Melhem,H.Kim.Damage detection in concrete by Fourier and wavelet analysis.Journal of Engineering Mechanics,2003,129(5):571-577.
    [190] K.Gurley,A.Kareem,Applications of wavelet transforms in earthquake,wind and ocean engineering,Eng.Struct.,1999,21:149-167.
    [191] A.Kareem,T.Kijewski.Time-frequency analysis of wind effects on structures.Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):1435-1452.
    [192] D.Valeria,M.Sterling,C.J.Baker.An analysis of extreme non-synoptic winds.Journal of WindEngineering and Industrial Aerodynamics,2007,95(9-11):1007-1027.
    [193]蒋建国,周绪红,邹银生,段绍伟.小波分析在单自由度动力分析中的应用.湖南大学学报(自然科学版),2002,29(5):104-109.
    [194]胡子谷,宓为建,石来德.故障振动信号的小波包分解与诊断.振动与冲击,1998,2:57-62.
    [195]李宏男,孙鸿敏.小波分析在土木工程领域中的应用.世界地震工程,2003,19(2):16-22.
    [196]吴筑海.大跨度空间网格结构的风模拟与及其小波分析[硕士论文] .上海:上海交通大学,2004.
    [197]朱忠义,马骏,李华锋,周岱.唐海国际专家服务中心屋盖风压与体型系数的数值模拟及群体互扰分析.第十二届空间结构学术会议,北京:2008.
    [198]中华人民共和国国家标准.建筑结构荷载规范GB50009-2001条文说明,中国,建筑工业出版社,2002,25.
    [199] Y.Tamura, T.Ohkuma, H.Okada, etc.,Wind loading standards and design criteriain Japan.Journal of Wind Engineeringand Industrial Aerodynamics,1999,83:555-566.
    [200]王修琼,崔剑峰.Davenport谱中系数K的计算公式及其工程应用.同济大学学报,2002,30(7):849-852.
    [201]星谷胜著,常宝琦译.随机振动过程.地震出版社,1977.
    [202]胡广书.数字信号处理——理论、算法与实现.北京:清华大学出版社,1997.
    [203]舒新玲,周岱.风速时程AR模型及其快速实现.2003,9(4):27-32.
    [204] J.T.Batina.Unsteady Euler airfoil solutions using unstructured dynamic meshes.AIAA Journal,1990,28(8):1381-1388.
    [205] H.Nooshin, P.Disney.Formex Configuration Processing I.International Journal of Space Structures, 2000,15(1):1-52.
    [206] H.Nooshin, P.Disney.Formex Configuration Processing II.International Journal of Space Structures, 2000,15(1):1-56.
    [207] Z.S.Makowski.Analysis,design and construction of braced domes.New York:Nichols Pub.Co.,1984.
    [208]马骏,周岱,李华锋,董石麟.网格结构生成的代数映射改进技术.上海交通大学学报,2006,40(12),2106-2111.
    [209]王勖成.有限单元法,清华大学出版社,2003.
    [210]丁祖荣.流体力学.高等教育出版社,2003.
    [211]王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2005.
    [212] T.Belytschko,Y.Krongauz,D.Organ.Meshless methods:an overview and recent development.Computer Methods in Applied Mechanics and Engineering,1996,139(1-2):3-47.
    [213] J . M . Melenk , I . Babuska . The partition of unity finite element method : basic theory and applications.Computer Methods in Applied Mechanics and Engineering,1996,139:289-314.
    [214]普朗特等.流体力学概述.郭永怀、陆士嘉译.北京:科学出版社,1981.
    [215]恽起麟.风洞实验.北京:国防工业出版社,2000.
    [216]张兆顺.湍流.北京,国防工业出版社,2002.
    [217]是勋刚.湍流.天津,天津大学出版社,1994.
    [218] B.E.Launder,D.B.palding.The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [219] T.S.Smagorinsky.General circulation experiment with primitive equations:Part I,Basic experiments, Monthly Weather Rev.1963,91:99-164.
    [220] J.W.Deardorff.A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.J.Fluid Mech.,1970,41:453-480.
    [221]李华锋.空间结构数值风洞模拟与流固耦合风致响应[硕士论文].上海:上海交通大学,2008.
    [222]章本照,印建安,张宏基.流体力学数值方法.北京:机械工程出版社,2003.
    [223] F.Brezzi.On the existence,uniqueness and approximation of saddle point problems arising from Lagrangian multiplier.RAIRO,ser.Rouge Analy.Numer,1974,8(R-2):129-151.
    [224] C.Taylor,P.Hood.A numerical solution of the Navier-Stokes equations using the finite elementtechnique. Comput.Fluids,1973,1(1):73-100.
    [225] S.V.Patankar.Numerical Heat Transfer and Fluid Flow.Washington,Hemisphere,1980.
    [226] J.Donea,T.Belytschko,T.Hughes.Arbitrary Lagrangian-Eulerian finite element methods.Computational Methods for Transient Analysis,1983:474-516.
    [227] T.J.Chung.Computational fluid dynamics.Cambridge, Cambridge University Press, 2002:106-107.
    [228] C.F.Robust method for fluid-structure interaction with stabilized finite elements.Germany,Institute of Architecture and technology of Stuttgart University,2007.
    [229]龙驭球,包世华.结构力学教程北京,高等教育出版社, 2001.
    [230] N.M.Newmark.A method for structure dynamics.Journal of Engineering Mechanics,ASCE 1959,85(3):67-94.
    [231]周颖.双层网壳屋盖的风振响应和风振系数研究[硕士论文].天津:天津大学,2005.
    [232]刘庆云,李志舜,刘朝晖.时频分析技术及研究现状.计算机工程,2004,30(1):171-173.
    [233]邹红星,周小波,李衍达.时频分析:回溯与前瞻.电子学报,2000,9:78-84.
    [234]徐佩侠,孙功宪.小波分析与应用实例.中国科技技术大学出版社,2001.
    [235] W.J.Staszewski.Wavelet based compression and feature selection for vibration analysis.Journal of sound and vibration,1998,211(5):735-760.
    [236]柳杰,周岱,黄剑伟,马骏.大跨空间结构风模拟的改进方法及其小波识别.振动与冲击,2006,25(4), 21-24.
    [237]黄志勤,金波,周岱.基于连续小波的风速时程特性识别与分析.力学季刊,2005,26(4):643-646.
    [238] O.C.Zienkiewicz,R.Codina.A general algorithm for compressible and incompressible flow-part I:The split,characteristic-based scheme.International Journal for Numerical Methods in Fluids,1995,20: 869-885.
    [239] O.C.Zienkiewicz,R.L.Taylor.The Finite Element Method (5th edn).Stoneham,Butterworth Heinemann, 2000.
    [240] D.M.Hawken,H.R.Amaddon-Jahromi.A Taylor-Galerkin-based algorithm for viscous incompressible flow.International Journal for Numerical Methods in Fluids,1990,10:327-351.
    [241] U.Ghia,K.N.Chia,C.T.Shin.High-resolutions for incompressible flows using Navier-Stokes equations and multigrid method.J.Comput.Phys.,1982,48:387-411.
    [242] Charles-Henri, Bruneau, Mazen, Saad.The 2D lid-driven cavity problem revisited.Computers & Fluids,2006,35:326-348.
    [243]张丽梅.非完全对称Geiger索穹顶结构特征与分析理论研究[博士论文].上海:上海交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700