运动帆翼空气动力性能数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以夏季奥运会级别帆船帆翼作为研究对象,利用数值模拟与试验方法对帆翼空气动力性能进行研究,对帆翼空气动力特性进行了全面分析,为运动员根据不同外界条件调帆提供科学依据。
     首先讨论了帆翼模型进行数值计算时计算区域的大小以及网格类型对于计算精度的影响,确定了帆翼远场前、左右、上取6倍帆翼底边弦长,远场后取10倍帆翼底边弦长,底部采用实际距离海平面距离;采用混合网格进行网格划分,能够得到既节省计算时间、又精度较高的模拟结果。讨论了数值计算时来流处理方式不同对于计算结果的影响,确定本论文采用来流不变而转动帆翼,重新生成网格的方法来模拟不同攻角的帆翼周围流场。讨论了不同湍流模型对于计算结果的影响,根据分析以及与试验结果比较,确定了帆翼数值模拟采用Realizableκ-ε模型。讨论了均匀风和梯度风情况下帆翼周围流场的差异,发现梯度风帆翼周围流场与均匀风差异不大,为了更加接近实际比赛情况,在数值模拟中宜采用梯度风进行数值模拟。
     本文对帆翼两种不同帆型的空气动力性能进行了全面讨论。通过比较,发现桅杆对于帆翼空气动力特性影响较大,在比赛中尽量选用可调整的流线型的桅杆。讨论了不同扣角和倾角对于帆翼空气动力特性影响。研究发现向内扣角尽管升力系数也相应减小,但是其垂直水平面向上的力会增加很大,这对于减小船体阻力,提高帆船速度有利。帆翼后倾有利于提高帆翼的升力系数,对于提高帆船速度有利。讨论了两种不同帆型的空气动力特性,发现拱度较大的帆翼其升力系数较大,对于提高帆船速度有利,但是其倾斜力矩增加了,其压力中心也增加了。所以,综合考虑帆船整体行驶性能情况下,一般大风用拱度较小的帆翼,小风中使用拱度较大的帆翼。
     本文利用风洞试验进行了帆翼空气动力性能研究,通过改变帆翼的攻角,得到在不同航向角帆翼的空气动力性能数据及曲线,其结果与实际基本吻合。
     根据计算与试验结果,比较了两种不同帆型在不同航向角下推力系数、侧向力系数,得到了不同帆型在不同航向角下帆翼的最佳攻角范围。讨论了两种不同帆翼推力系数和侧向力系数在不同航向角下随攻角变化情况。分析了不同航向角下最大推力系数以及对应的侧向力系数,得到了帆翼在所有航向角下最大的推力系数以及对应的操帆角。同时讨论了两种帆型不同航向角下第二大推力系数及对应的侧向力系数。最后,根据数值模拟和试验方法得到的帆翼空气动力性能特点,详细系统介绍了在起航航段、迎风航段、横风和侧顺风航段、尾风航段、终点线前航段和各标旁附近帆翼调整方法。运动员应该掌握各航段上调帆的基本原则并应用于实践中,最终的目的是战胜对手,取得优异的成绩。
     本论文研究成果在备战2008年北京奥运会期间应用到中国国家帆船队训练、比赛实践中,为我国帆船夺得一枚宝贵的铜牌、实现我国帆船项目奥运会奖牌零的突破做出了贡献。
By use of the numerical simulation and experimental method, the aerodynamic performance of the sail in the Olympic Games was studied and analyzed. The results of the research could supervise the athletes to trim the sails based on the condition.
     It's discussed how the district and grid of the numerical simulation could affect the precision of the results. If the district would be six times of the chord of the sail bottom on the ahead, left, right and up direction, ten times of the chord of the sail bottom and the grid would be mixed, the precision could be good and the time could be saved. It's discussed how the inlet modes affected the results. In this article, when the aerodynamic performance of the sail was studied by the numerical simulation, the inlet direction was immobile and the sail was turned, the grid of the district was constructed. The article studied how the turbulence model affected the precision of the results. Five different turbulence models were used on the sails. Based on the theoretical analysis and the compare with the experimental results, the realizable k -εmodel was the best in terms of the both accuracy and robustness, and this model was used to predict the aerodynamic performance of the sails. The difference of the flow field under the uniform and gradient wind was analyzed. It's found that there was different, but the difference was small between the uniform and gradient wind. Due to the practice condition, the gradient wind was used.
     The aerodynamic performance of two sails was discussed. It's found that the mast affected the aerodynamic performance of the sails obviously and the streamline mast should be used on the game. The different pitch of the sail affected the aerodynamic performance. If the sail was pitched with the direction of the athlete, the lift coefficient would decrease, but the upward force coefficient would enhance awfully. So, it would be propitious to decrease the resistance of the hull and enhance the speed of the sailing. The pitch with the direction of the stern would enhance the lift coefficient of the sails and the speed of the sailing. By compare with the aerodynamic performance of two sails, it's found that the lift coefficient would be bigger and the speed of the sailing would be enhanced, but the drag coefficient of the sail would also enhance if the camber ratio of the sail was higher. So, if the whole performance of the sail would be considered, the smaller camber ratio would be used on the strong wind and the bigger camber ration should be used on the light wind.
     The aerodynamic performance of the sail was studied by the experiment method in a wind tunnel. The data of the aerodynamic performance of the sail in different angle of the sailing were gained. The results were accordant with the practice.
     Based on the results of the numerical simulation and experimental method, the thrust and side force coefficients of two sails were compared. The good attack angle of the different sails was found.
     The trimming of the sail run through the process in the match, this article analysis the methods of the trimming during the leg of the starting, windward, downwind and the front of the finish line and the side of all the mark. The athletes should keep a firm grip on the principle of the whole leg and use them to trim the sail.
     The researches of the article have applied to supervise the testing and compete of the civil national sailing team and were contributed to get the copper brand and break through the brand of the civil sailing in the Olympic Games
引文
[1]郑伟涛,李全海,马勇,石清.帆船帆板运动项目特征与制胜规律的研究[J].武汉体育学院学报2008.42(6):44-47
    [2]郑伟涛,何海峰,马勇,韩久瑞.国内外体育工程学的研究综述[J].武汉体育学院学报,2006.39(9):73-80
    [3]Ma Yong,Zheng Weitao,Han Jiurui.Sports Applications for CFD Analysis[A].23rd International Symposium on Biomechanics in Sports[C].Beijing,2005:143-146
    [4]马勇,郑伟涛.我国水上运动器材流体动力性能研究进展[J].体育学刊,2008.15(2):78-81
    [5]郑伟涛.划船桨叶水动力性能的数值模拟与试验研究[D].[武汉交通科技大学博士学位论文].武汉:武汉理工大学,2000
    [6]马勇.蹼泳板水动力性能数值模拟与试验研究[D].[武汉理工大学硕士学位论文].武汉:武汉理工大学,2004
    [7]马勇,邹早建,郑伟涛.蹼泳板水动力性能试验研究[A].第十七届全国水动力学研讨会暨第六届全国水动力学学术会议[C].北京:海洋出版社,2003(12):838-845
    [8]柏开祥.帆板流体动力性能与最佳航线的研究[D].[武汉理工大学博士学位论文].武汉:武汉理工大学,2005
    [9]易名农.皮划艇激流回旋航道数值模拟与力量测试评价体系的研究[D].[武汉理工大学博士学位论文].武汉:武汉理工大学,2007
    [10]葛新发.赛艇水动力性能和运动员机能的评定研究[D].[武汉理工大学博士学位论文].武汉:武汉理工大学,2004
    [11]Ma Yong,Zheng Weitao,He Haifeng.Evaluation of Hydrodynamic Performance of the Sailboard[A].Lisa O' Conner.The 2007 International Conference on Intelligent Pervasive Compute[C].Jeju island,Korea:2007(10):468-470
    [12]马勇,郑伟涛,韩久瑞.计算流体力学在F1赛车运动中的应用[J].武汉体育学院学报,2005.39(3):52-54
    [13]Yi Mingnong,Ma Yong,Zheng Weitao,He Haifeng.Evaluation of Hydrodynamic Performance of the Double Rowing Hull[A].Lisa O' Conner.The 2007 International Conference on Intelligent Pervasive Compute[C].Jeju island,Korea:2007(10):471-474
    [14]Yong Ma,Weitao Zheng,Haifeng He,Jiurui,Han.Development of the Computaion of the sails Aerodynamics[A].Proceeding of UK-China Sports Engineering Workshop[C].Beijing,Nov.21-23,2006:111-118
    [15]Yong Ma,Weitao Zheng,Jiurui,Han.Numerical Simulation on the Hydrodynamic Performance of the Flippers the Fin Swimming[A].Proceeding of UK-China Sports Engineering Workshop[C].Beijing,Nov.21-23,2006:183-188.
    [16]Lighthill M J.Note on the Swimming of Slender Fish,J.Fluid Mech,1960.
    [17]Cheng J Y,Zhuang L X and Tong B G.Analysis of Swimming Three-Dimensional Waving Plates.J Fluid Mech,1991,232:341-355.
    [18]郑伟涛.现代小型风帆助航船[D].[武汉水运工程学院学士学位论文].武汉:武汉水运工程学院,1985
    [19]易名农.皮划艇桨叶的水动力性能研究[D].[武汉体育学院硕士学位论文].武汉:武汉体育学院,2000
    [20]郑伟涛,韩久瑞等.两种四人皮艇阻力性能的试验研究[J].体育科学,1997(4):64-67
    [21]郑伟涛.非定常升力面理论及在蹼泳板水动力性能研究中的应用[D].[武汉水运工程学院硕士学位论文].武汉:武汉水运工程学院,1990
    [22]徐海祥,邹早建.赛艇非线性兴波阻力数值计算[A].第十四届全国水动力学研讨会[C].
    [23]王新峰.游泳运动中的阻力研究及推进力的最优化分析[D].[清华大学硕士学位论文].北京:清华大学,2004
    [24]孙宝亭.排球球缝随机气动力辨识建模[J].空气动力学学报,1996,(1):110-116
    [25]易名龙,郑伟涛,马勇,韩久瑞.划艇桨叶水动力测试研究[J].武汉体育学院学报,2007,41(3):69-72
    [26]蔡国华.标枪的气动力特性和几何、物理参数测量[J].空气动力学学报,2004,(04):452-456
    [27]李远乐,王倩,李春雷.风对标枪飞行初始条件及远度的影响[J].中国体育科技,2002(7):19-21
    [28]陈建国,陈海昕,符松.体育场馆火灾烟气运动数值模拟中发现的2个典型现象[J].科学通报,2005,(20):2305-2308
    [29]钮珍南,杜向东等.体育场内场风环境模拟实验研究[J].空气动力学学报,1999,(3):314-320
    [30]杨婧.帆船运动的战术分析研究[D].[武汉体育学院硕士学位论文].武汉:武汉体育学院,2006
    [31]石清.激光雷迪尔级帆船船体水动力性能研究及应用[D].[武汉体育学院硕士学位论文].武汉:武汉体育学院,2007
    [32]李全海.帆船运动研究[D].[武汉体育学院硕士学位论文].武汉:武汉体育学院,2007
    [33]马勇,郑伟涛.国内外帆船运动流体力学研究进展[J].南京体育学院学报,2007.6(4):10-13
    [34]汤忠谷,王献孚,熊熬魁,一簇高升力旋转式风帆的气动特性.空气动力学学报,1987,5(4):359-365.
    [35]王献孚,何绍文.二维风帆前缘奇性的研究.力学与实践,北京:北京大学出版社,1988.
    [36]缪国平.帆船运动的力学原理.力学与实践,1994.169(1):9-18
    [37]柏开祥,郑伟涛,王德恂,韩久瑞.基于风洞试验的帆翼空气动力性能研究[J].首都体育学院学报,2007.19(4):28-31
    [38]柏开祥,郑伟涛,王德恂,韩久瑞.基于ITTC-57对于帆板阻力成分的计算与分析[J].武汉理工大学学报,2006.28(5):98-101
    [39]Weitao Zheng,Quanhai Li,Qing Shi and Yong Ma.Research on the Hydrodynamic of the Laser Radial Class Hull and the Sea Route[A].Proceedings of First Joint International Pre-Olympic Conference of Sports Science and Sports Engineering Volume Ⅱ[C],Nanjing,BMSE 2008,pp:352-356
    [40]Mingnong Yi,Weitao Zheng,Zihua Zhang,Jingping Wu and Yong Ma.Numerical Simulation on the Current of Fluid Fields around the Groins in the Channel of Slalom Kayaking[A].Proceedings of First Joint International Pre-Olympic Conference of Sports Science and Sports Engineering Volume Ⅱ[C],Nanjing,BMSE 2008,pp:372-378
    [41]Colin Palmer,Measurements of the Comparative Performance of Sailing Rigs.Journal Of Wind Engineering And Industrial Aerodynamics,1985,19:311-333
    [42]G.W.Cowles,N.Parolini,M.L.Sawley.Numerical Simulation Using RANS-based Tools for America's Cup Design,in:Proc.16th Chesapeake Sailing Yacht Symposium,Annapolis,MD,2003.
    [43]P.J.Richards,A.Johnson and A.Stanton,America's Cup downwind sails - vertical wings or horizontal parachutes? Journal of Wind Engineering and Industrial Aerodynamics,2001.89:1565-1577.
    [44]Courser,P.and Deane,N.Use of CFD Techniques in the Preliminary Design of Upwind Sails,14th Chesapeake Sailing Yacht Symposium,SNAME,1999.
    [45]Van Oossanen P.Predicting the Speed of Sailing Yachts.The Society of Naval Architects and Marine Engineers,Transactions,1993,101:337-397.
    [46]Lan C E.A Quasi-Vortex-Lattice Method in Thin Wing Theory.Journal of Aircraft.1974,11(9):528-527.
    [47]Charvet,T.and Huberson.S..Numerical calculation of the flow around sails",Eur.J.Mech.,B/Fluids,1992.11(5),599-610.
    [48]Charvet,T.,Hauville,F.& Huberson,S.(1996),"Numerical simulation of the flow over sails in real sailing conditions",Journal of Wind Engineering and Industrial Aerodynamics - Special Issue of Sail Aerodynamics,63,111-129.
    [49]W.C.Lasher,J.R.Sonnenmeier,D.R.Forsman,J.Tomcho.The Aerodynamics of Symmetric Spinnakers,J.Wind Eng.Ind.Aerodyn.93(2005) 311-337
    [50]H.J Richter,K.C.Horrigan,J.B.Braun,Computational Fluid Dynamics for Downwind Sails,Proceedings of the Sixteenth Chesapeake Sailing Yacht Symposium,Annapolis,MD,March 21-22,2003,pp.19-28.
    [51]Korpus,R.and Jones,P.International America's Cup Class Yacht Design Using Viscous Flow CFD,15th Chesapeake Sailing Yacht Symposium,SNAME,2001.
    [52]N.Parolini and A.Quarteroni,Mathematical Models and Numerical Simulations for the America's Cup,Comp.Meth.Appl.Mech.Eng.194(2005) 1001-1026
    [53]Xiao,C.M.,and Austin,P.C.,"Yacht Modeling and Adaptive Control",IFAC Conference on Maneuvering and Control of Marine Craft,IFAC,Aalborg,Denmark,2000.
    [54]王献孚,韩久瑞.机翼理论.北京:人民交通出版社,1987.
    [55]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [56]王献孚.船用翼理论.北京:国防工业出版社,1998.
    [57]童秉纲,陈强.关于非定常空气动力学.力学进展,1984,4.
    [58]朱培华.具有脱体涡的厚度翼绕流计算.空气动力学报,1984,4.
    [59]王献孚等.计算船舶流体力学.上海:上海交通大学出版社,1991.
    [60]马乾初,王家楣.流体力学.大连:大连海事大学出版社.1994.
    [61]Cury,M.,Yacht Racing:The Aerodynamics of Sails and Racing Tactics,New York,Holt,1925.
    [62]Davidson,K.Some Experimental Studies of the Sailing Yacht,SNAME Transactions,1936.
    [63]Milgram,J.H..The Analytical Design of Yacht Sails.Transactions of the Society of Naval Architects and Marine Engineers.1968:118-60
    [64]Milgram,J.H..The Design and Construction of Yacht Sails.S.M.Thesis,MIT,1962.
    [65]Curtiss,H.C.,"On the Stability and Control of Sailing Yachts",Ancient Interface 2,AIAA Svmposium on the Aero/Hydronautics of Sailing,AIAA,1970.
    [66]Hammitt,A.G "Sailboat Rudders",Ancient Interface 3.AIAA Symposium on the Aero/Hydronautics of Sailing,AIAA,1971.
    [67]Letcher,J.S.,"Steering Qualities off the Wind",Ancient Interface 3.AIAA Svmposium on the Aero/Hydronautics of Sailing,AIAA,1971.
    [68]Gerritsma,J.,Course Keeping Quadities and Motions in Waves of a Sailing Yacht,Ancient Interface3,AIAA Symposium on the Aero/hydrodynautics of sailing,AIAA,1971.
    [69]Scott,W.H."Directional Stability and Control of Sailing Yachts",First Chesapeake sailing Yacht Symposium,SNAME,1974.
    [70]Titlow,J.D.,"A Dynamic Model for Downwind Sailing",Ancient Interface 8,AIAA Svmposium on the Aero/Hydronautics of Sailing,AIAA,1977.
    [71]Nomoto,K.,Tatano,H.,balance of helm of sailing yachts,Symposium yachtarchitecture'79,HISWA,1979.
    [72]Copps,E.M.,"How to Sail a Pencil Boat Upon a Paper Sea",Ancient Interface 14,AIAA Symposium on the Aero/Hydronautics s of Sailing,AIAA,1984
    [73]Oliver,J.C.,Letcher,J.S.,and Salvesen,N.,"Performance Predictions for Stars and Stripes",SNAME Transactions,1987.
    [74]Masayuma,Y.,Fukasawa,T.,and Sasagawa,H.,"Tacking Simulation of a Sailing Yacht-Numerical Integration of Equations of Motion and Application of Neural Network Technique",12th Chesapeake Sailing Yacht Svmposium,SNAME,1995.
    [75]Thrasher,D.F.,Mook,D.T.,Nayfeh,A.H..A Computer-Based Method for Analyzing the Flow over Sails.Proceedings of the Fourth AIAA Symposium on the Aero/Hydronautics of Sailing,January,1979.
    [76]Register,D.S..A Computer Based Analysis of steady Flow over Interacting Yacht Sails.Ph.D.Dissertation,University of Florida,1981.
    [77]Greeley,D.S.et.al..Scientific Sail Shape Design.The Ninth Chesapeake Sailing Yacht Symposium,March 1989.
    [78]Barlow,J.B.,Rae,W.H.,Pope,A..Low-Speed Wind Tunnel Testing.Wiley,1999.
    [79]Marchaj,C.A..Aero-hydrodynamics of Sailing.New York,Dodd,Mead,1980.
    [80]Marchaj,C.A..Sailing Theory and Practice.New York,Dodd,Mead,1980.
    [81]Milgram J.H.Fluid mechanics for sailing vessel design,Annual Review of Fluid Mechanics, 1998.30,613-653.
    [82]Milgram, J.H., Section Data for Thin, Highly Cambered Airfoils in Incompressible Flow.NASA CR-1767, 1971.
    [83]Etkin, B., Dynamics of Atmospheric Flight, iley, 1972
    [84]Akimoto, H., "Finite Volume Simulation of the Flow around a Sailing Boat with Unsteady Motion", Journal of the Society of Naval Architects of Japan, 1997.
    [85]Jackson, P.S..Modeling the aerodynamics of upwind sails.Journal of Wind.Engineering and Industrial Aerodynamics, 1996.63(1-3): 17-34
    [86]K.L.Hedges, P.J.Richards and G.D.Mallinson..Computer modeling of downwind sails.Journal of Wind Engineering and Industrial Aerodynamics, 1996.63(1-3):95-110
    [87]Jackson P S.Two-Dimensional Sails In Inviscid Flow, Journal of Ship Research, 1984, 28(1):11-17.
    [88]Jackson, P.S..The effect of wind profile and twist on downwind sail performance.Journal of Wind Engineering and Industrial Aerodynamics, 1997.67-68: 313-321
    [89]Mantzaris, Demetrios A., A Rankine Panel Method as a Tool for the Hydrodynamic Design of Complex Marine Vehicles, (Ph.D., MIT 1998).
    [90]Milewski, W.M., Ramsey, W.D, and Milgram, J.S2KVU Users Manual, MIT, 1997.
    [91]Mains, CM.PhD Dissertation, University of Maryland, 2002.
    [92]Nicola Parolini, Alfio Quarteroni.Mathematical models and numerical simulations for the America's Cup.Computer Methods in Applied Mechanics and Engineering, 2005.194(9-11): 1001-1026
    [93]William C.Lasher, James R.Sonnenmeier, David R.Foreman and Jason Tomcho..The aerodynamics of symmetric spinnakers Journal of Wind Engineering and Industrial Aerodynamics, 2005.93(4): 311-337
    [94]William C.Lasher and James R.Sonnenmeier..An analysis of practical RANS simulations for spinnaker aerodynamics Journal of Wind Engineering and Industrial Aerodynamics, In Press, Corrected Proof, Available online 18 May2007.
    [95]Jaehoon Yoo and Hyoung Tae Kim..Computational and experimental study on performance of sails of a yacht, Ocean Engineering, 2006.33(10): 1322-1342
    [96]Curry, M..Yacht Racing Aerodynamics of Sails and Racing Tactics.7th ed., Charles Scribner's Sons, New York, 1953.
    [97]Marchaj, C.A..Aero-Hydrodynamics of Sailing.Adlard Coles, London, 2nd ed., 1988.
    [98]Marchaj, C.A.The Aerodynamic Characteristics of a 2/5 Scale "FINN" Sail and its Efficiency When Sailing to Windward.SUYR Paper, Southampton University, England,January, 1964.
    [99]Marchaj, C.A..Wind Tunnel Test of a 1/4-Scale Dragon Rig.SUYR Paper No.14,Southampton University, England, June 1968.
    [100]Herreshoff, H.C..12 Mete Yacht Mainsail Variations: Comparative Wind Tunnel Tests M21-M25.Department of Naval Architecture and Marine Engineering, MIT, Report 66-11,1966.
    [101]Van Dusen, E.S..Yacht Sail Test in Three-Dimensional Flow.S.M.Thesis, Department of Naval Architecture and Marine Engineering, MIT, Cambridge, 1967.
    [102]Milgram, J.H..Section Data for Thin, Highly Cambered Airfoil in Incompressible Flow.NASA Contractors Report CR-1767, 1971.
    [103]Milgram, J.H..Effects of Masts on the Aerodynamics of Sail Sections.Marine Technology, 1978.15(1):35-42.
    [104]Milgram J.Hydrodynamics in Advanced Sailing Design.21st Symposium Naval Hydrodynamics, 1996.
    [105]Ladesic, J.G, Irey, R.K..An Experimental Investigation of Yacht Sail Aerodynamics.Proceedings of the Thirteen AIAA Symposium on the Aero/Hydronautics of Sailing,October 1983.
    [106]Milgram, J.H., Peters, D.B., Eckhouse, D.N..Modeling LACC Sail Forces by Combining Measurements with CFD.11~(th) Chesapeake Sailing Yacht Symposium, SNAME, 1993.
    [107]Friedes, D.S..An Image processing Based System for Three Dimensional Sail Shape Analysis.MS Thesis, MIT, 1991.
    [108]Heman, J.S..A Sail Force Dynamometer: Design, Implementation and Data Handling.MS Thesis, MIT, 1988.
    [109]Peters, D.B..Determination of Force Coefficients for Racing Yacht Sails Using Actual Force Measurements.MS Thesis, MIT, 1992.
    [110]Klein, A.H..A Comparison of Experimental and Theoretical Sail Forces.MS Thesis, MIT,1990.
    [111]Masayuma, Y, Fukasawa, T..Full Scale Measurement of Sail Force and the Validation of Numerical Calculation Method.13th Chesapeake Sailing Yacht Symposium, SNAME,1997.
    [112]Hochkirch, K., Brandt, H..Fullscale Hydrodynamic Force Measurement on the Berlin Sailing Dynamometer.14~(th) Chesapeake Sailing Yacht Symposium,SNAME,1999.
    [113]Flay,R.G.J.,Vuletich,I.J..Development of a Wind Tunnel Test Facility for Yacht Aerodynamic Studies.Journal of Wind Engineering and industrial Aerodynamics,1995.58:231-258
    [114]Flay,R.G.J.A Twisted flow wind tunnel for Testing Yacht Sails.Journal of Wind Engineering and Industrial Aerodynamics,1996.63:171-182
    [115]Ranzenbach,R.,Maris,C..Wind Tunnel Testing of Offwind Sails.The 14th Chesapeake Sailing Symposium,1999:171-179.
    [116]Ranzenbach,R.,Marls,C..Experimental Determination of Sail Performance and Blockage Corrections,the Thirteenth Chesapeake Sailing Symposium,1997:245-259.
    [117]葛艳,孟庆春,魏振钢,等.帆船直线航行比赛最优路径动态规划方法研究,控制与决策,2005.12:1360-1364
    [118]汤跃,吴秀恒.风帆助航船操纵性研究,中国造船,1986.3
    [119]王树杰,李 冬,刘文霞.基于扑翼原理的帆板摇帆推进模型研究[J],中国海洋大学学报,2007.37(5):847-850
    [120]胡文蓉,祖洪彪,丁祖荣等.风帆在梯度风中空气动力性能的数值研究[J],上海交通大学学报,2008.42(42):1900-1903
    [121]丁祖荣,胡文蓉.帆船运动及受力分析[J],医用生物力学,2008.23(3):248-251
    [122]邹早建.穿透自由面平板横荡和首摇水动力计算[J].武汉理工大学学报(交通科学与工程版),1996.20(6):641-648
    [123]张楚华,谷传纲,苗永淼.利用非结构化网格方法对翼型绕流的数值研究[J].应用力学学报,2000.17(3):35-41
    [124]张军,赵峰,周连第等.大攻角翼型绕流的流场测试及数值计算[J],中国造船,2000.41(2):22-27
    [125]钱炜祺,蔡金狮.绕翼型低速湍流的数值模拟[J],航空学报,1999.20(3):261-264
    [126]张晓军,刘祖源,鲁子鉴.平板有升力绕流的Lattice Boltzman模拟[J].武汉理工大学学报,2002.24(7):41-43
    [127]杨俊,潘卫明.小展弦比舵翼三维绕流场的数值模拟计算[J],武汉交通科技大学学报,1999.23(2):119-122
    [128]邱辽原,石仲堃,侯国祥,魏菲菲.带附体潜艇绕流场数值计算与验证(英文)[J].船舶力学,2007.11(3):341-350
    [129]苏彬,王大海.基于泊松方程的二元翼型网格生成技术[J],中国民航飞行学院学报,2002.13(4):31-33
    [130]杨立芝,高正红.绕三角翼纵向俯仰大迎角气动特性计算研究[J],航空学报,2003.24(5):414-416
    [131]焦予秦,乔志德.翼型风洞侧壁干扰的数值模拟研究[J],空气动力学学报,2001.19(14):471-477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700