扑翼非定常气动力实验研究及相关应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫高超的飞行本领一直是仿生研究关注的一个热点。昆虫飞行研究可分为机理研究与应用研究:机理研究通过理论分析,活体观测,模型实验和数值计算等手段来揭示扑翼运动的非定常空气动力学机理;应用研究通过设计和研制人造扑翼机构来模拟昆虫的飞行能力,进而实现扑翼微飞行器等仿生应用。目前机理与应用研究都得到了很好的发展:对扑翼飞行的高升力机理的认识在不断深入和细化,具有实用价值的扑翼微飞行器也在崭露头角。但扑翼研究的探索与实践过程也表明,关于昆虫飞行仍有不少尚未解决的问题需要探讨。本文立足于实验手段,对活体观测,模型实验和扑翼微飞行器研制等问题进行了一系列研究。
     本文针对活体观测研究中海量昆虫图像的形态学特征自动识别难题提出了一种新的“帧间差别法”。该方法通过巧妙地利用相邻三帧图像间的运算和昆虫内在特点来实现运动特征的自动提取。多组虚拟和真实昆虫运动图像的测试结果表明:这种方法能够较好的适应昆虫这种复杂变形体运动;并能够在翼面透明,昆虫身体有遮挡,高速摄影本底噪声大的环境中顺利地自动提取二值图并分析形态学特征。此方法无需人工干预,不针对特定昆虫,运算量也较小,识别结果可靠。这给昆虫图像形态学特征自动识别提供了一个切实可行的解决方法,极大的节省了昆虫扑翼运动图像的分析时间。
     研制了一种由舵机驱动的大比例鹰蛾扑翼模型。舵机控制方便,结构紧凑,成本低廉,结合所设计的控制程序使得计算机能够智能、便捷地精确控制该模型实现所需扑翼运动。此模型与鹰蛾在运动学和形态学上都较好地满足相似,能够直接在空气里进行扑翼实验,这更好的模拟了昆虫飞行环境。使用该模型进行的鹰蛾悬停飞行实验结果表明:攻角与挥拍角间的相位差显著地影响气动力的产生,适当的超前相位角有助于获得悬停飞行所需的气动力;扑翼运动曲线本身对气动力的影响也很重要:真实鹰蛾运动曲线比简化方式的运动曲线气动力特性要好,更有利于悬停飞行;鹰蛾悬停飞行中翼面的扭转变形并不显著影响其气动力;过度超前的相位对平均升力的提升很有限且会增加气动功耗。鹰蛾扑翼方式本身在所研究的情况中已经接近最优,这在一定程度上揭示了昆虫飞行的内在机制。
     针对超微型扑翼机构设计难度大、加工代价高的特点,本文提出并验证了一种新型的“电磁驱动翼面”机构。该微型扑翼机构把驱动装置与翼面合二为一,只需要对薄膜翼面线圈进行控制即可实现扑翼运动。此外,针对平面扑翼机构难实现挥拍角与攻角精确控制的问题,本文设计了“平行曲柄连杆”扑翼机构。通过对该机构进行多参数优化和气动力测量表明,这种扑翼机构能够很好地模拟昆虫扑翼运动,并能提供昆虫自重相当的升力来达到悬停飞行要求。
     此外本文还将扑翼飞行的高升力优势应用到仿生水下航行器的研制,获得了高推力性能。这拓展了扑翼飞行的研究价值,也有利于更机动灵活的水下航行器开发。
The surprising ability of insect flight is always a focus of biomechanics. Insect flight research can be divided into mechanism research and application research: the mechanism research can reveal the unsteady aerodynamics mechanism of flapping flight by theoretical analysis, insect observations, flapping model experiments and computational fluid dynamics; the purpose of the application research is to build flapping micro air vehicle (MAV) through the design and manufacture of artificial flapping mechanism which can simulate insect flight motion. Nowadays, the mechanism research and application research are both well developed: the unsteady high-lift mechanism in insect flight is proved, flapping MAV which has practical value is also developed. However, there still many problems about the insect flight have not been solved yet and need to be explored. In the present work, a series of experimental investigations were caried out for the insect observation, flapping model experiments and Flapping MAV development.
     A novel method called‘Frame Difference’is proposed to solve the problem that the massive works of extraction from enormous amount of insect images can be treated in an acceptable period of time to obtain the morphological characteristics of insect flight. A noise-suppress operation between three adjacent frames and the internal characteristics of insects are fully used to realize the motion characteristics automatic extraction. The tests on some virtual and real insect image sequences indicated that: this method can well adapt the complex deformable contour of insect flight; and moreover, it still can provide good results even when the insect wings are partly transparency, or the body covers the wings or the high-speed camera has significant noise. The method can work without manual interference, and with no limitation for certain species of insects. Only relatively simple calculation is needed and in most cases it can give robust extraction results. The method is proved to be a feasible solution of massive insect images’morphological characteristics automatic extraction problem, and it can significantly reduce the time cost of the insect images sequence analysis.
     Considering the normal flapping models’problems that transmission complexity, huge size, lack of mobility and high cost, here a large-scale Hawkmoth flapping model driven by Servos is developed. Servos are very cheap, easy to control and they have compact structure. Using the intelligent software designed for the model control through personal computer, the Hawkmoth model can perform accurate flapping motion as real Hawkmoth. The model has similarity not only on the aerodynamics but also on the morphology. Furthermore, it can directly simulate the real Hawkmoth in the air, which is much closer to the real condition. The results of aerodynamics experiments for hovering Hawkmoth simulation with this model reveal that: the phase lag between stroke angle and angle of attack would have significant influence on the lift generation, and a suitable advance phase angle should be beneficial to obtain hovering lift; the motion curves are also important: real Hawkmoth motion mode can produce more lift than the simplified motion mode, so it is better for hovering flight; the wings’twist deformation along the wingspan wise during the hovering flight can’t result to the remarkable increase of lift; the lift increase from excessive advance phase angle is very limited and it would increase aerodynamic power requirement. All the results show that: real Hawkmoth motion mode has the best aerodynamics performance among our experimental data, and This may explain the miraculous flight ability of Hawkmoth that derived from evolution.
     In view of the ultra small flapping mechanism research difficulty that hard to design and high cost of manufacture. Here a novel flapping mechanism named‘electromagnetic drive wing’is proposed and justified. The mechanism integrates drive part and wing part into one film coil, and it is very easy to obtain flapping motion when the coil is controlled by current. In order to overcome the shortcoming of plane flapping mechanism that it can’t control the stroke angle and angle of attack all together, a novel flapping mechanism called‘Parallel Crank-Rocker’was successful developed. By the multi-parameters optimization and force measurement experiments, it was shown that the novel mechanism can perfectly simulate the insect flapping motion and can provide sufficient lift for the hovering flight requirement.
     In addition, some developments of flapping propulsion devices were challenged, in which flapping wing’s high lift capability was referenced for the bionic underwater vehicle design to obtain high thrust. It was demonstrated that the great potential of flapping wing will be beneficial to the development of high performance bionic underwater vehicle.
引文
余永亮. 2004.昆虫前飞拍翼非定常空气动力学的理论模化研究[D]:[博士]北京:中国科学院力学所, 9-31
    胡劲松,程鹏,续伯钦. 2007.昆虫自由飞行参数的双棱镜虚拟双目测量[J].实验力学: 05:63-70
    童秉纲,陆夕云. 2004.关于飞行和游动的生物力学研究[J].力学进展: 01:03-10
    孙茂. 2002.昆虫飞行的高升力机理[J].力学进展: 03:107-116
    赵攀峰,刘春阳,梁宗宪,杨向龙,杨基明. 2006.二维平板翼悬停拍翼运动中俯仰旋转速度对流场特性的影响[J].空气动力学学报: 02:19-24
    赵创新,徐进良,张永立. 2006.基于单摄像机的昆虫自由飞行参量三维重构[J].光学学报: 01:64-69
    鲍麟,胡劲松,余永亮. 2006.昆虫翼拍动中受载变形的粘弹性本构模型[J].应用数学和力学: 06:29-36
    Altshuler D. L., Dickson W. B., Vance J. T., et al. 2005. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight [J]. Proceedings of the National Academy of Sciences of the United States of America, 102: 18213-18218.
    Aono H., Shyy W., Liu H. 2009. Near wake vortex dynamics of a hovering hawkmoth[J]. Acta Mechanica Sinica, 25: 23-36.
    Azuma Akira, Watanabe Tadaaki 1988. Flight Performance of a Dragonfly [J]. Journal of Experimental Biology, 137: 221-252.
    Bai P., Cui E., Li F., et al. 2007. A new bionic MAV's flapping motion based on fruit fly hovering at low Reynolds number[J]. Acta Mechanica Sinica, 23: 485-493.
    Bao L., Hu J. S., Yu Y. L., et al. 2006. Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion[J]. Applied Mathematics and Mechanics-English Edition, 27: 741-748.
    Barrett D. S. 1998. Propulsive efficiency of RoboTuna[D]:[Ph.D.]. U.S. :Massa- chusetts Institute of Technology, 11-25.
    Barron J. L., Fleet D.J., Beauchemin S.S. 1994. Performance of Optical-Flow Techniques[J]. International Journal of Computer Vision, 12: 43-77.
    Bastian Joseph, Esch Harald 1970. The Nervous Control of the Indirect Flight Muscles of the Honey Bee[J]. Physiologie, 67: 307-324.
    Berman G. J., Wang Z. J. 2007. Energy-minimizing kinematics in hovering insect flight[J]. Journal of Fluid Mechanics, 582: 153-168.
    Birch J. M., Dickinson M. H. 2001. Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 412: 729-733.
    Birch J. M., Dickson W. B., Dickinson M. H. 2004. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers[J]. Journal of Experimental Biology, 207: 1063-1072.
    Carpenter F. M. 1930. A Review of Our Present Knowledge of the Geological History of the Insects[J]. Psyche, vol. 37: pp. 15-34.
    Cheng P., Hu J. S., Zhang G. F., et al. 2008. Deformation measurements of dragonfly's wings in free flight by using Windowed Fourier Transform[J]. Optics and Lasers in Engineering, 46: 157-161.
    Co. AeroVironment 2009. DARPA Awards AeroVironment Phase II Contract Extension for Nano Air Vehicle Development Program[N]. http://www.avinc.com/uas/adc/nano/.
    Combes S. A., Daniel T. L. 2003. Flexural stiffness in insect wings I. Scaling and the influence of wing venation[J]. Journal of Experimental Biology, 206: 2979-2987.
    Conn A. T., Burgess S. C., Ling C. S. 2007. Design of a parallel crank-rocker flapping mechanism for insect-inspired micro air vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 221: 1211-1222.
    Croon de, G.C.H.E., Clerq de, et al. 2009. Design, aerodynamics, and vision-based control of the DelFly[J]. International Journal on Micro Air Vehicles.
    David C.T. 1978. The relationship between body angle and flight speed in free-flying Drosophila[J]. Physiological Entomology, 3: 191-195.
    Deng X. Y., Schenato L., Sastry S. S. 2006a. Flapping flight for biomimetic robotic insects: Part II - Flight control design[J]. Ieee Transactions on Robotics, 22: 789-803.
    Deng X. Y., Schenato L., Wu W. C., et al. 2006b. Flapping flight for biomimetic robotic insects: Part I - System modeling[J]. Ieee Transactions on Robotics, 22: 776-788.
    Dickinson M. H., Gotz K. G. 1993. Unsteady Aerodynamic Performance of Model Wings at Low Reynolds-Numbers[J]. Journal of Experimental Biology, 174: 45-64.
    Dickinson M. H., Lehmann F. O., Sane S. P. 1999. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 284: 1954-1960.
    Dickson W. B., Dickinson M. H. 2004. The effect of advance ratio on the aerodynamics of revolving wings[J]. Journal of Experimental Biology, 207: 4269-4281.
    Du, G. , Sun, M. 2010. Effects of wing deformation on aerodynamic forces in hovering hoverflies[J]. Journal of Experimental Biology, 213: 2273-2283.
    Dudley R. 1991. Biomechanics of Flight in Neotropical Butterflies - Aerodynamics and Mechanical Power Requirements[J]. Journal of Experimental Biology, 159: 335-357.
    Dudley R., Ellington C.P. 1990a. Mechanics of forward flight in bumblebees. II. Quasi-steady lift and power requirements[J]. Journal of Experimental Biology, 148: 53-88.
    Dudley R., Ellington C.P. 1990b. Mechanics of forward flight in bumblebees. I. Kinematics and morphology. Journal of Experimental Biology [J], 148: 19-52.
    Ellington C. P. 1984a. The Aerodynamics of Hovering Insect Flight .I. The Quasi-Steady Analysis[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 305: 1-15.
    Ellington C. P. 1984b. The Aerodynamics of Hovering Insect Flight .II. Morphological Parameters[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 305: 17-40.
    Ellington C. P. 1984c. The Aerodynamics of Hovering Insect Flight .III. Kinematics[J].Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 305: 41-&.
    Ellington C. P. 1984d. The Aerodynamics of Hovering Insect Flight .IV. Aerodynamic Mechanisms[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 305: 79-&.
    Ellington C. P., Machin K. E., Casey T. M. 1990. Oxygen-Consumption of Bumblebees in Forward Flight[J]. Nature, 347: 472-473.
    Fontaine E. I., Zabala F., Dickinson M. H., et al. 2009. Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking[J]. Journal of Experimental Biology, 212: 1307-1323.
    Fry S. N., Sayaman R., Dickinson M. H. 2003. The aerodynamics of free-flight maneuvers in Drosophila[J]. Science, 300: 495-498.
    Gao T., Lu X. Y. 2008. Insect normal hovering flight in ground effect[J]. Physics of Fluids, 20: -. Gopalakrishnan P., Tafti D. K. 2010. Effect of Wing Flexibility on Lift and Thrust Production in Flapping Flight[J]. Aiaa Journal, 48: 865-877.
    Gordon S., Dickinson M. H. 2006. Role of calcium in the regulation of mechanical power in insect flight[J]. Proceedings of the National Academy of Sciences of the United States of America, 103: 4311-4315.
    Graetzel C. F., Fry S. N., Beyeler F., et al. 2008. Real-time microforce sensors and high speed vision system for insect flight control analysis[J]. Experimental Robotics, 39: 451-460 563.
    Grasmeyer J. M., Keennon M. T. 2002. Development of the Black Widow micro air vehicle[J]. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, 195: 519-535.
    Hedrick T. L., Daniel T. L. 2006. Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering[J]. Journal of Experimental Biology, 209: 3114-3130.
    Hesselberg T., Lehmann F. O. 2007. Turning behaviour depends on frictional damping in the fruit fly Drosophila[J]. Journal of Experimental Biology, 210: 4319-4334.
    Hu Z., Schaeffer S., McCauley R., et al. 2009. Dragonfly aerodynamics and robot design[C].Proceedings of 2009 IEEE International Conference on Robotics and Automation (ICRA'09).
    Kawamura Y., Souda S., Nishimoto S., et al. 2008. Clapping-wing micro air vehicle of insect size[J]. Bio-Mechanisms of Swimming and Flying: Fluid Dynamics, Biomimetic Robots, and Sports Science: 319-330 403.
    Kingston A., Svalbe I. 2007. Generalised finite radon transform for NxN images[J]. Image and Vision Computing, 25: 1620-1630.
    Kitagawa K., Sakakibara M., Yasuhara M. 2009. Visualization of Flapping Wing of the Drone Beetle[J]. Journal of Visualization, 12: 393-400.
    Lehmann F. O. 2004. The mechanisms of lift enhancement in insect flight[J]. Naturwissenschaften, 91: 101-122.
    Liang J., Wang T., Wei H., et al. 2002. Researchful Development of Underwater Robofish II- Development of a Small Experimental Robofish[J]. Robot, 24.
    Licht S., Polidoro V., Flores M., et al. 2004. Design and projected performance of a flapping foil AUV[J]. IEEE Journal of Oceanic Engineering, 29: 786-794.
    Lighthill M.J. 1969. Hydromechanics of aquatic animal propulsion[J]. Annual Review of Fluid Mechanics, 1: 413-447.
    Liu H., Aono H. 2009. Size effects on insect hovering aerodynamics: an integrated computational study[J]. Bioinspiration & Biomimetics, 4: -.
    Liu H., Ellington C. P., Kawachi K., et al. 1998. A computational fluid dynamic study of hawkmoth hovering[J]. Journal of Experimental Biology, 201: 461-477.
    Liu J. D., Hu H. S. 2007. A methodology of modelling fish-like swim patterns for robotic fish[C]. 2007 Ieee International Conference on Mechatronics and Automation, Vols I-V, Conference Proceedings: 1316-1321 3959.
    Nagai H., Isogai K., Fujimoto T., et al. 2009. Experimental and Numerical Study of Forward Flight Aerodynamics of Insect Flapping Wing[J]. AIAA Journal, 47: 730-742.
    Nakata T. 2009. Aerodynamic performance of flapping flexible wing in insect flight[J]. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 153A:S120-S121.
    Platzer M. F., Jones K. D., Young J., et al. 2008. Flapping-wing aerodynamics: Progress and challenges[J]. Aiaa Journal, 46: 2136-2149.
    Pornsin-Sirirak T. Nick, Tai Yu-Chong, Ho Chih-Ming, et al. 2000. Microbat: A Palm-Sized Electrically Powered Ornithopter[J]. Proceedings of IS3M2000 International Symposium on Smart Structures and Microsystems.
    Rakotomamonjy T., Ouladsine M., Le Moing T. 2007. Modelization and kinematics optimization for a flapping-wing microair vehicle[J]. Journal of Aircraft, 44: 217-231.
    Ristroph L., Berman G. J., Bergou A. J., et al. 2009. Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects[J]. Journal of Experimental Biology, 212: 1324-1335.
    Sane S. P. 2003. The aerodynamics of insect flight[J]. Journal of Experimental Biology, 206: 4191-4208.
    Sane S. P., Dickinson M. H. 2001. The control of flight force by a flapping wing: Lift and drag production[J]. Journal of Experimental Biology, 204: 2607-2626.
    Sane S. P., Dickinson M. H. 2002. The aerodynamic effects of wing rotation and a revised quasi- steady model of flapping flight[J]. Journal of Experimental Biology, 205: 1087-1096.
    Schilstra C., Van Hateren J. H. 1999. Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics[J]. Journal of Experimental Biology, 202: 1481-1490.
    Sfakiotakis M., Lane D. M., Davies J. B. C. 1999. Review of fish swimming modes for aquatic locomotion[J]. Ieee Journal of Oceanic Engineering, 24: 237-252.
    Shang J. K., Combes S. A., Finio B. M., et al. 2009. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles[J]. Bioinspiration & Biomimetics, 4: -.
    Shields Oakley 1989. World numbers of butterflies[J]. Journal of the Lepidopterists' Society, 43.
    Steltz E., Avadhanula S., Fearing R. S. 2007. High lift force with 275 Hz wing beat in MFI[C]. 2007 Ieee/Rsj International Conference on Intelligent Robots and Systems, Vols 1-9: 3993-3998 4294.Stepneiwski W.Z., Keys C.N. 1984. Rotary-Wing Aerodynamics[M]. Dover; New York.
    Sudo S., Tsuyuki K., Kanno K. 2005. Wing characteristics and flapping behavior of flying insects[J]. Experimental Mechanics, 45: 550-555.
    Sun M., Du G. 2003. Lift and power requirements of hovering insect flight[J]. Acta Mechanica Sinica, 19: 458-469.
    Sun Y., Potasek D. P., Fry S. N., et al. 2004. Characterizing fruit fly flight behavior using a micro force sensor with a new comb drive configuration[C]. Mems 2004: 17th Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest: 837-840 868.
    Thomas A. L. R., Taylor G. K., Srygley R. B., et al. 2004. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms[J], controlled primarily via angle of attack. Journal of Experimental Biology, 207: 4299-4323.
    Usherwood J. R., Ellington C. P. 2002. The aerodynamics of revolving wings - I. Model hawkmoth wings[J]. Journal of Experimental Biology, 205: 1547-1564.
    Usherwood J. R., Lehmann F. O. 2008. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl[J]. Journal of the Royal Society Interface, 5: 1303-1307.
    VandenBerg C., Ellington C. P. 1997a. The three-dimensional leading-edge vortex of a 'hovering' model hawkmoth[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 352: 329-340.
    VandenBerg C., Ellington C. P. 1997b. The vortex wake of a 'hovering' model hawkmoth[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 352: 317-328.
    Wakeling J. M., Ellington C. P. 1997. Dragonfly flight .2. Velocities, accelerations and kinematics of flapping flight[J]. Journal of Experimental Biology, 200: 557-582.
    Walker J. A. 2002. Rotational lift: something different or more of the same? [J] Journal of Experimental Biology, 205: 3783-3792.
    Walker S. M., Thomas A. L. R., Taylor G. K. 2009. Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts andfree-flying hoverflies[J]. Journal of the Royal Society Interface, 6: 351-366.
    Walker S. M., Thomas A. L. R., Taylor G. K. 2010. Deformable wing kinematics in free-flying hoverflies[J]. Journal of the Royal Society Interface, 7: 131-142.
    Wang Z. J., Birch J. M., Dickinson M. H. 2004. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J]. Journal of Experimental Biology, 207: 449-460.
    Wasserthal L. T. 2001. Flight-motor-driven respiratory air flow in the hawkmoth Manduca sexta[J]. Journal of Experimental Biology, 204: 2209-2220.
    Weis-Fogh T. 1956a. Biology and physics of locust flight. II. Flight performance of the desert locuct (Schistocerca gregaria) [J]. Philosophical Transactions of the Royal Society of London., 239: 459-510.
    Weis-Fogh T. 1956b. Biology and physics of locust flight. III. The aerodynamics of locust flight[J]. Philosophical Transactions of the Royal Society of London., 239: 511-552.
    Weis-Fogh T. 1956c. The flight of locusts[J]. Scientific American: 116-124.
    Willmott A. P., Ellington C. P. 1997a. Measuring the angle of attack of beating insect wings: Robust three-dimensional reconstruction from two-dimensional images[J]. Journal of Experimental Biology, 200: 2693-2704.
    Willmott A. P., Ellington C. P. 1997b. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight[J]. J Exp Biol, 200 ( Pt 21): 2705-2722.
    Willmott A. P., Ellington C. P. 1997c. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation[J]. J Exp Biol, 200 ( Pt 21): 2723-2745.
    Willmott A. P., Ellington C. P., Thomas A. L. R. 1997. Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 352: 303-316.
    Wood R. J. 2007. Liftoff of a 60mg flapping-wing MAV[C]. 2007 Ieee/Rsj International Conference on Intelligent Robots and Systems, Vols 1-9: 1895-19004294.
    Wootton R. J. 1992. Functional-Morphology of Insect Wings[J]. Annual Review of Entomology, 37: 113-140.
    Wu G. H., Zeng L. J. 2010. Measuring the kinematics of a free-flying hawk-moth (Macroglossum stellatarum) by a comb-fringe projection method[J]. Acta Mechanica Sinica, 26: 67-71.
    Wu J. H., Sun M. 2004. Unsteady aerodynamic forces of a flapping wing[J]. Journal of Experimental Biology, 207: 1137-1150.
    Xingyao Yan, Hongjun Zhang, Zhongdi Su, et al. 2009. A Review of Insect Inspired Aircraft [C] //; City. 1-3.
    Yamamoto I., Terada Y. 2003. Robotic fish and its technology[J]. Sice 2003 Annual Conference, Vols 1-3: 342-345 3419.
    Young J., Walker S. M., Bomphrey R. J., et al. 2009. Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency[J]. Science, 325: 1549-1552.
    Yu D. G., Dong H. Z., Lai W., et al. 2003. Projection filling based on contour structural points[J]. Computational Science and Its Applications - Icca 2003, Pt 3, Proceedings, 2669: 376-386.
    Zhang Y.L., Sun M. 2010 Wing kinematics measurement and aerodynamics of free-flight maneuvers in drone-flies[J]. Acta Mech Sinica-Prc 26: 371-382
    Zhao L., Deng X. Y. 2009. Power distribution in the hovering flight of the hawk moth Manduca sexta[J]. Bioinspiration & Biomimetics, 4: -.
    Zhao S. G., Zhao J., Wang Y., et al. 2006. Moving object detecting using gradient information, three-frame-differencing and connectivity testing[J]. AI 2006: Advances in Artificial Intelligence, Proceedings, 4304: 510-518 1303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700