旋转超音速凝结流动及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超音速旋流分离技术(Supersonic Gas Separation)是一种利用超音速流动条件下气体的低温凝结效应结合旋流分离技术实现多组分气体中凝点较高组分的冷凝分离的混合气体分离技术。与传统的混合气体分离技术,如溶剂吸收法、固体吸附法、膜分离法和冷凝分离法相比,该项技术具有以下优点:整个过程集制冷、冷凝和分离于一体,结构简单,占地面积小,投资费用低;过程的制冷单元无转动件,完全是利用气体在超音速旋流分离装置中的高速流动产生低温,能耗较低;气体在超音速段的最低压力低于出口压力,温度低于在同一压比下透平膨胀机所能达到的制冷温度,等熵效率高。但目前,国外关于该项技术的研究报道很少,而国内研究尚处于起步阶段。本文针对超音速旋流分离过程中的气体旋转超音速凝结流动行为进行研究,并在此基础上对超音速旋流分离装置结构及提高装置性能的方法进行探索。建立了描述气体旋转超音速凝结流动的三维数值模型;提出了超音速喷管为圆环截面形式的新型锥芯超音速旋流分离装置;探索了提高超音速旋流分离装置性能的有效策略;建立了实验平台,对锥芯超音速旋流分离装置的分离性能进行研究,并验证提高性能策略的有效性。论文的主要研究工作及所形成的结果与结论如下:
     ①建立了混合气体自发凝结流动的Eulerian双流体多维模型。采用欧拉-欧拉方法建立气液两相流动控制方程组,考虑相间速度滑移,真实地反映了液相流场;运用经典成核理论(CNT)描述水蒸汽的自发凝结,模拟了气体复杂凝结流动过程中的相变行为;建立了RNG k-ε-k_p模型封闭两相湍流,引入了气体强旋转、可压缩性及液滴对两相湍流的影响;使用C语言编制接口程序将液相控制方程及其它方程的源项嵌入到CFD软件中,实现两相凝结流动控制方程组的求解,使该模型具有广泛的通用性,尤其适用于具有三维复杂特性的凝结流动行为研究。模型计算结果比一维模拟结果更接近于真实情况,与实验数据吻合良好,并能清晰地揭示气体凝结和流动参数的多维分布及壁面边界层对凝结流动的影响。
     ②借助混合气体自发凝结流动的Eulerian双流体多维模型研究了气体旋转超音速凝结流动过程,得到:气体流动过程中,各个流动和凝结参数在喷管截面上呈现出了不对称的分布;旋转的存在及旋转强度的增强会使气体自发凝结发生位置靠近喉部,液滴成核率极值降低、凝结区域长度缩短;减小入口温度,增大入口压力、入口相对湿度和喷管出口和喉部截面积比,可使自发凝结发生位置靠近喉部,凝结区域长度缩短;增大入口温度和喷管出口与喉部截面积比、减小入口压力和入口相对湿度,可使成核率极值增大。
     ③借助混合气体自发凝结流动的Eulerian双流体多维模型预测了本文设计的4种圆形截面超音速喷管型线的可行性,并研制出一种新型的旋流器前置超音速旋流分离装置--锥芯超音速旋流分离装置。该装置中超音速喷管为圆环截面缩放喷管,通过改变锥芯的直径实现喷管截面积的缩放。与现有的圆形截面超音速喷管相比,圆环截面超音速喷管具有加工容易、压力损失小与液滴沉降距离短的优点。此外,对含湿气体在锥芯超音速旋流分离装置中的凝结和流动行为进行了分析,提出了增大凝结液滴尺寸提高装置分离性能的策略。
     ④针对增大凝结液滴尺寸提高装置分离性能的策略,提出了外加凝结核心的方法。通过理论分析,确定了凝结核心为与可凝气体组分互溶的微小惰性液滴。建立了液体喷射的简化物理模型,采用离散相模型对喷入水滴在以空气-乙醇蒸气为介质的装置中的雾化过程进行了研究。综合分析液滴雾化形态、运动状态及气体过饱和状态,确定了锥芯超音速旋流分离装置的最佳液体喷入位置为超音速喷管喉部附近的锥芯外壁处。
     ⑤建立了超音速旋流分离装置的实验平台,研究了锥芯超音速旋流分离装置的分离性能。实验结果表明:锥芯超音速旋流分离装置的性能明显优于超音速喷管为圆形截面的装置,与分离段分别为等径管和渐扩等径交替管的圆形截面超音速喷管装置相比,重组分脱除率和露点降最大值可分别提高21.8%、4.3K和13.7%、2.7K。采用增大凝结液滴方法后,锥芯超音速旋流分离装置的气体分离性能显著提高,重组分脱除率和露点降最大值可达到52.1%和29.0K左右,分别提高了约30.3%和8.1K。
In recent years,the Supersonic Gas Separation(SGS) Technology for gas mixture separation has attracted great attention.It conducts expansion,cyclone gas/liquid separation and re-compression in a compact,tubular device with no rotating part.The low temperature needed by the condensation of heavy component is generated by the supersonic gas flow state and is lower than that of turboexpander.Comparing with thetraditional gas mixture separation technology,such as solvent absorption by liquid and solid,membrane separation and condensing separation,it has advantages including simple structure,small occupied space, low energy consumption and investment cost,and high iso-entropic efficiency etc.However, at present,the foreign and domestic studies are at confidential and beginning stage respectively so that little research work on this technology has been done.This dissertation is aimed to study rotating supersonic condensing flow behavior of gas mixture during the supersonic gas separation process,deveople new structure of the SGS device,and explore effective method for the improvement of device separation performance.To accomplish these objectives,a three-Dimensional numerical model for the rotating supersonic condensing flow of gas mixture has been set up and it can be used to predict the feasibility and the factor influences of SGS device.A novel SGS device with ring-section supersonic nozzle has been proposed and two effective strategies have been put forward to improve device separation performance.Series of simulations and experiments are carried out to study the separation performance of proposed SGS device and validate the two mentioned strategies.The main research work and achievements are as following.
     ①An Eulerian two-fluid model for the spontaneous condensing flow of gas mixture is put forward.In this model,the governing equations of two phase flow are established based on the Eulerian-Eulerian method,considering the velocity slip between phases and thus actually revealing the flow field of droplet phase.CNT is adopted to describe the spontaneous nucleation of vapor,simulating the phase change behavior of gas mixture during the complex condensation and flow process.A RNG k-ε-k_p model is set up to close the turbulent two phase flow,introducing the influence of tense rotation and compressibility of gas phase and the influence of droplets on the flow turbulence.CFD software is employed to solve the governing equations of two phase turbulent flow,so the model is able to conduct the simulation of condensing gas flow with complex three-dimensional characteristic.An interface program is compiled using C language to add droplet governing equations and the phase change model into CFD software.The simulation results of this model are in good accordance with the experimental data,and more closer to the reality than the one-dimensional simulation results.Furthermore,the multi-dimension distribution of gas condensation and flow parameters and the influence of boundary on the condensing flow can also be obtained.
     ②In virtue of the established Eulerian two-fluid model,the rotating supersonic condensing flow of gas mixture is simulated.It is found that in this process,the distribution of flow and condensation parameters on the nozzle cross-section is unsymmetrical.The existence and enhance of rotation make the spontaneous condensation happen closer to the nozzle throat,the maximum nucleation rate decrease and the length of condensation zone shorten.Decreasing inlet temperature and increasing inlet pressure,the area ratio of nozzle outlet to throat as well as inlet relative humidity make the spontaneous condensation happen closer to the nozzle throat and the length of condensation zone shorten.Increasing the inlet temperature and the area ratio of nozzle outlet to throat,and decreasing the inlet pressure and relative humidity can make the maximum nucleation rate increase.
     ③In virtue of the established Eulerian two-fluid model,the feasibility of four designed supersonic nozzles with circular-section is predicted,and a novel SGS device,the SGS Device with Inner Pyramid,is proposed.This device has ring-section supersonic nozzle and the convergence and divergence of cross-section area is actualized by changing outer diameter of the inner pyramid.Comparing with the existed supersonic nozzle with circular section,the supersonic nozzle with ring section has the advantages including easy to machining,low pressure loss and short settlement distance for droplets.Furthermore,the condensation and flow of moist air in the SGS Device with Inner-Pyramid is simulated,based on which,an effective strategy for the improvement of device separation performance,enlarging size of condensed droplet,is brought forward.
     ④Aiming at the strategy of enlarging the size of condensed droplet,the method of adding nucleation center is proposed.By the theoretical analysis,inertia micro droplets which are mutually soluble with the vapor component are determined as the nucleation centers.A simplified model for liquid injection is set up,based on which,the spray process of injected liquid in the gas flow of air-ethonal is simulated combining with the Descerate Partical Model. By synthetically analyzing the size and movement of sprayed droplets and the supersaturation state of gas phase,the liquid injection location of SGS Device with Inner-Pyramid is determined,on the outer wall of inner-pyramid near the throat of supersonic nozzle.
     ⑤The experiment apparatus and the related experiment technique of supersonic gas separation process are established to study the separation performance of SGS Device with Inner-Pyramid.The experimental results show that the separation performance of SGS Device with Inner-Pyramid is obviously better than that of the SGS Device with circular-setion supersonic nozzle.Comparing to the SGS Device with circular iso-diameter and iso-diameter diverging alternated separation tube,the separation performance of SGS Device with Inner-Pyramid is much better with the removal rate and dew point depression of about 21.8%, 4.3K and 13.7%,2.7K respectively.After the proposed droplet enlargement method is adopted,the separation performance of SGS Device with Inner-Pyramid is ulteriorly improved and the removal rate and dew point depression can reach 52.1%and 29.0K,with the improvement of 30.3%and 8.1 respectively.
引文
[1]郑德馨,刘芙蓉.多组分气体分离[J].西安:西安交通大学出版社,1988.
    [2]古共伟,陈健,魏玺群.吸附分离技术在现代工业中的应用[J].合成化学,1999,7(4):346-353.
    [3]顾嘉嘉,谷宏专.分子筛在气体分离与净化中的应用[J].能源环境保护,2005,19(1):15-18.
    [4]罗小军,刘晓天,万书华.分子筛吸附法在高酸性天然气脱水中的应用[J].石油与天然气化工,2007,36(2):118-123.
    [5]李晓光,薛继勇.变温吸附干燥技术在CO_2生产中的应用[J].河南化工,2006,23:33-34.
    [6]魏玺群,陈健.变压吸附气体分离技术的应用和发展[J].低温与特气,2002,20(3):1-4.
    [7]郜豫川,赵俊田.变压吸附气体分离技术的新应用[J].化工进展,2005,24(1):76-78.
    [8]赵桂春,刘树茂.变压吸附在气体分离单元的应用[J].煤化工,2006,4:53-54.
    [9]张明月,廖列文.新型膜分离技术及其在化工行业中的应用[J].广西化工,2002,31(2):20-23.
    [10]陈桂娥,韩玉峰,阎剑等.气体膜分离技术的进展及其应用[J].化工生产与技术,2005,12(5):23-26.
    [11]郭瑞丽,李玲.膜分离技术及其应用简介[J].新疆大学学报(自然科学版),2003,20(4):410-413.
    [12]赵素英,王良恩,郑辉东.膜法气体脱湿的工艺及应用研究进展[J].化工进展,2005,24(10):1113-1117.
    [13]沈光林.膜法气体分离技术在石化中的应用新进展[J].现代化工,2003,23(3):15-17.
    [14]魏星,黄维菊,陈文梅.国外膜分离法天然气脱水研究现状[J].过滤与分离,2007,17(4):37-42.
    [15]李文波,毛鹏生,王长英等.空气分离技术进展[J].石化技术,2000,7(3):173-175.
    [16]于海迎.油田气深冷技术在大庆油田的应用[J].油气田地面工程,2008,27(5):3-4.
    [17]Kun L C.用于气体分离和液化的透平膨胀机及制冷[J].深冷技术,2000,(4):16-20.
    [18]Betting M M,Holten V T,Van Veen M H M.Supersonic separator apparatus and method [J].US.0145724 A1.2003.
    [19]Okimoto F,BrouwerJM.Supersonic gas conditioning[J].World Oil,2002,223(8):1170-1178.
    [20]Perry A F.Subsea production systems progressing quickly[J].World Oil Magazine,2004,225(11):1-11.
    [21]涂辉,蒋洪,刘晓强.超音速分离在天然气脱水中的应用[J].管道技术与设备,2008,(3):1-3.
    [22]何策,张晓东.国内外天然气脱水设备技术现状及发展趋势[J].石油机械,2008,36(1):69-74.
    [23]Knott T,高卫东,纪常杰.新型超声波分离装置[J].国外油田工程,2001,17(2):34-35.
    [24]Okimoto F,梁书苓,范建敏.天然气超声速处理技术[J].国外油田工程,2003,19(3):32-34.
    [25]史殿义,姚凤英.超音速旋流分液器应用研究[J].油气田地面工程,2004,23(7):24-25.
    [26]王协琴,罗小米,孙玉梅.超音速分离器:天然气脱水脱烃的新型高效设备[J].天然气技术,2007,1(5):63-68.
    [27]康勇.新型天然气低温制冷脱水装置[J].油气储运,2007,26(3):32-34.
    [28]何策,程雁,额日其太.天然气超音速脱水技术评析[J].石油机械,2006,34(5):70-72.
    [29]杨志毅.油气超音速旋流分离技术研究[D].南充:西南石油学院,2005.
    [30]曹学文,陈丽,林宗虎等.用于超声速旋流分离器中的超声速喷管研究[J].天然气工业,2007,27(9):112-116.
    [31]刘恒伟,刘中良,冯永训.新型湿空气除湿装置工作性能的实验研究[J].热科学与技术,2005,3(2):143-146.
    [32]Liu B W,Liu Z L,Zhang Jet al.A new type of dehydration unit of natural gas and its design considerations[J].Porgress in Natural Science,2005,15(12):1148-1152.
    [33]刘恒伟.超音速分离管的研发及其流动与传热传质特性的研究[D].北京:北京工业大学,2006.
    [34]Liu HW,Liu Z L,Feng Y X et al.Characteristics of a supersonic swirling dehydration system of natural gas[J]Chinese Journal of Chemical Engineering,2005,13(1):9-12.
    [35]曹学文,陈丽,林宗虎等.超声速旋流天然气分离器研究[J].天然气工业,2007,27(7):143-146.
    [36]Brouwer J M,Epsom H D.Twister supersonic gas conditioning for unmanned platforms and subsea gas processing[C].Offshore Europe,Aberdeen,UK,2003.
    [37]钱翼稷.空气动力学[M].北京:航空工业出版社,2004.
    [38]蔡颐年,王乃宁.湿蒸汽两相流[M].西安:西安交通大学出版社,1985.
    [39]Laaksonen A,Talanquer V,Oxtoby D W.Nucleation:measurements,theory,and atmospheric application[J]s.Annual Review of Physical Chemistry,1995,46:489-524.
    [40]Lothe J,Pound G M.Reconsiderations of nucleation theory[J].Journal of Chemical Physics,1962,36(8):2080-2085.
    [41]Reiss H,Katz J L,Cohen E R.Translation - Rotation paradox in the theory of nucleation [J].Journal of Chemical Physics,1968,48(12):5553-5560.
    [42]Reiss H.Treatment of droplike clusters by means of the classical phase integral in nucleation theory[J].Journal of Statistical Physics,1970,2(1):83-104.
    [43]Ruth V,Hirth J P,Pound G M.Reiss H.On the theory of homogeneous nucleation and spinodal decomposition in condensation from the vapor phase[J].Journal of Chemical Physics,1988,88(11):7079-7087.
    [44]Courtney WG.Remarks on homogeneous nucleation[J].Journal of Chemical Physics,1961,35(6):2249- 2250.
    [45]Blander M,Katz J L.The thermodynamics of cluster formation in nucleation theory[J].Journal of Statistical Physics,1972,4(1):55-59.
    [46]Girshick S L,Chiu C P.Kinetic nucleation theory:A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor[J].Journal of Chemical Physics,1990,93(2):1273-1277.
    [47]Girshick S L.Comment on "Self-consistency correction to homogeneous nucleation theory"[J].Journal of Chemical Physics,1991,94(1):826-827.
    [48]Dillmann A,Meier G E A.Homogeneous nucleation of supersaturated vapors[J].Chemical Physics Letter,1989,160(1):71-74.
    [49]Dillmann A,Meier G E A.A refined droplet approach to the problem of homogeneous nucleation from the vapor phase[J].Journal of Chemical Physics,1991,94(5):3872-3874.
    [50]Ford I J,Laaksonen A,Kulmala M.Modification of the Dillmann - Meier theory of homogeneous nucleation[J].Journal of Chemical Physics,1993,99(1):764-765.
    [51]Delale C F,Meier G E A.A semiphenomenological droplet model of homogeneous nucleation from the vapor phase[J].Journal of Chemical Physics,1993,98(12):9850-9858.
    [52]Laaksonen A,Ford I J,Kulmala.Revised parametrization of the Dillmann - Meier theory of homogeneous nucleation[J].Physics Review E,1994,49(6):5517-5524.
    [53]Kalikmanov V I,van Dongen M E H.Cluster approach to the kinetic theory of homogeneous nucleation[J].Europhysics Letters,1993,21(6):645-650.
    [54]Hale B N.Application of a scaled homogenous nucleation-rate formalism to experimental data at T>>Tc[J].Physics Review A,1986,33(6):4156-4163.
    [55]Young J B.Spontaneous Condensation of Steam in Supersonic Nozzles[J].Physico Chemical Hydrodynamics,1982,3(2):57-82.
    [56]Kashchiev D.Effect of carrier-gas pressure on nucleation[J].Journal of Chemical Physics,1996,104(21):8671-8677.
    [57]Kane D,Fisenko S P,Rusyniak Met al.The effect of carrier gas pressure on vapor phase nucleation experiments using a thermal diffusion cloud chamber[J].Journal of Chemical Physics,1999,111(18):8496 -8502.
    [58]Oh K J,Zeng X C.Effect of carrier-gas pressure on barrier to nucleation:Monte Carlo simulation of water/nitrogen system[J].Journal of Chemical Physics,2001,114(6):2681-2686.
    [59]Oxtoby D W.Homogeneous nucleation:theory and experiment[J].Journal of Physics:Condensed Matter,1992,4:7627-7650.
    [60]Moore M J,Sieverding C H.Two-phase steam flow in turbines and separators[M].Washington:Hemisphere Publishing Corporation,1976.
    [61]Hill P G.Condensation of water vapor during supersonic expansion in nozzles[J].Journal of Fluid Mechanics,1966,25(3):593-620.
    [62]Wegener P P.Gas dynamics of expansion flows with condensation and homogeneous nucleation of water vapour[C].Nonequilibriom Flows,1966.
    [63]Bakhtar F,Ghoneim Z,Young J B.Condensation of water vapor during supersonic expansion in nozzles[J].Journal of Fluid Mechanics,1966,25(3):593-620.
    [64]Puzyrewski R,Kr(?)l T.Numerical analysis of the Hertz-Knudsen model of condensation upon small droplets in water vapor[J].Prace Instytutu Maszyn Przeplywowych,1976,70-72:273-307.
    [65]Moses C A,Stein G D.On the growth of steam droplets formed in a laval nozzle using both static pressure and light scattering measurements[J].Journal of Fluid Engineering,ASME100,1978,311-322.
    [66]Moore M J,Walters P T,Crane R I.Predicting the fog-drop size in wet steam turbines [C].Proceedings of IMechE Conference on heat and fluid flow in turbine plant,London,1973.
    [67]Turner J R,Kodas T T,Friedlander S K.Monodisperse particle production by vapor condensation in nozzles[J].Journal of Chemical Physics,1988,88(1):457-465.
    [68]Gyarmathy G,Burkhard H P,Lesch F.Spontaneous condensation of steam at high pressure:first experimental results[C].Institute Mechanical Engineering Conference,London,1973.
    [69]Bakhtar F,Ryley D J,Tubman K A et al.Nucleation studies in flowing high-pressure steam[J].Proceeding of the Institution of Mechanical Engineers,1975,189(41/75):427-436.
    [70]Bakhtar F,Zidi K.Nucleation phenomena in flowing high pressure steam part 2:theoretical analysis[J].Proceeding of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,1990,204:233-242.
    [71]Mccallum M,Bunt R.The flow of wet steam in a one-dimensional nozzle[J].International Journal for Numerical Engineering,1999,44:1807-1821.
    [72]黄跃,蔡颐年.考虑流动摩擦和状态方程virial修正的Laval喷管湿蒸汽膨胀流动的理论解[J].工程热物理学报,1987,8(4):317-322.
    [73]李亮,丰镇平,李国君.一维喷管中存在自发凝结的跨音速湿蒸汽两相流动数值模拟[J].工程热物理学报,2001,22(6):703-705.
    [74]李亮,丰镇平,李国君.湿蒸汽中超临界加热引起的非定常凝结流动一维数值分析[J].自然科学进展,2003,13(2):210-213.
    [75]韩中合,王智,杨昆等.膨胀率对湿蒸汽自发凝结流动影响的数值分析[J].华北电力大学学报,2004,31(2):36-39.
    [76]Bakhtar F,Mohammadi Tochai M T.An investigation of two-dimensional flows of nucleating and wet steam by the time-marching method[J].International Journal of Heat and Fluid Flow,1980,2(1):5-18.
    [87]Denton J D.An improved Time-Marching method for turbomachinery flow calculations[J].ASME paper 82-GT-239,1982.
    [78]Yeoh C C,Young J B.Non-equilibrium throughflow analysis of low-pressure wet steam turbines.Trans[J].ASME J.Engng.For Gas Turbine and Power,1984,106:716-724.
    [79]Young J B.Two-dimensional,nonequilibrium,wet steam calculations for nozzles and turbine cascades[J].ASME J.Turbomach.,1992,114:569-579.
    [80]Bakhtar F,Mahpeykar M R,Abbas K K.An investigation of nucleating flows of steam in a cascade of turbine binding-theoretical treatment[J].ASME Journal of Fluids and Engineering,1995,117:138-144.
    [81]Setoguchi T,Matsuo S.Effect of non equilibrium homogeneous condensation on flow fields in a supersonic nozzle[J].Journal of Thermal Science,1997,6(2):90-96.
    [82J Matsuo S,Setoguchi T.Effect of nonequilibrium condensation of moist air on the boundary layer in a supersonic nozzle[J].Journal of Thermal Science,1997,6(4):260-272.
    [83]Simpson D A,White A J.Viscous and unsteady flow calculations of condensing steam in nozzles[J].International Journal of Heat and Fluid Flow,2005,26:71-79.
    [84]Vassberg J C.Expectations for computational fluid dynamics[J].International Journal of Computational Fluid Dynamics,2005,19(8):549-558.
    [85]Roe P L.Computational fluid dynamics-retrospective and prospective[J].International Journal of Computational Fluid Dynamics,2005,19(8):581-594.
    [86]Mallinson G.CFD visualization:challenges of complex 3D and 4D data fields[J].International Journal of Computational Fluid Dynamics,2008,22(1-2):49-59.
    [87]Gerber A G.Two-phase Eulerian/Lagrangian model for nucleating steam flow[J].Journal of Fluids Engineering,2002,124:464-475.
    [88]Gerber A G,Kermani M J.A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow[J].International Journal of Heat and Mass Transfer,2004,47:2217-2231.
    [89]Gerber A G,Mousavi A.Application of quadrature method of moments to the polydispersed droplet spectrum in transonic steam flows with primary and secondary nucleation[J].Applied Mathematical Modelling,2007,31:1518-1533.
    [90]Zori L,Kelecy F.Wet steam flow modeling in a general CFD flow solver[C].35th AIAA Fluid Dynamics Conference and Exhibit,Toronto,Ontario Canada,2005.
    [91]Fakhari K.Development of a two-phase Eulerian/Lagrangian algorithm for condensing steam flow[C].35th AIAA Aerospace Sciences Meeting and Exhhibit,Reno,Nevada,2006.
    [92]BakhtarF,White A J,Mashmoushy H.Theoretical treatments of two-dimensional two-phase flows of steam and comparison with cascade measurements[JJ.Proceeding of the Institution of Mechanical Engineers-Part C-Journal of Mechanical Engineering Science,2005,219:1335-1355.
    [93]马泽山.透平叶栅湿蒸汽两相非平衡流动的数值计算与分析[D].北京:清华大学,1987.
    [94]区国惟.跨音速湿蒸汽两相非平衡态流动的数值模拟[D].北京:清华大学,1985.
    [95]李亮,丰镇平,李国君.平面叶栅中的湿蒸汽两相凝结流动数值模拟[J].工程热物理学报,2002,23(3):309-311.
    [96]张峰,谭欣星,鞠霞.平面叶栅中湿蒸汽两相凝结与流动问题的数值分析[J].汽轮机技术,2007,49(4):309-311.
    [97]吴晓明,李国君,丰镇平等.SST κ-ω-κ p两相湍流模型及其在湿蒸汽凝结流动数值模拟中的应用[J].西安交通大学学报,2007,41(5):526-530.
    [98]Bohn D E,S(u|¨)rken N,Kreitmeier F.Nucleation phenomena in a multi-stage low pressure steam turbine[J].Proceeding of Institution of Mechanical Engineers-Part A-Journal of Power and Energy,2003,217:453-460.
    [99]Kermani M 5,Gerber A G.A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow[J].International Journal of Heat and Mass Transfer,2003,46:3265-3278.
    [100]Fakhari K.Development of a two-phase Eulerian/Lagrangian algorithm for condensing steam flow.A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow[C].44th AIAA Aerospace Sciences Meeting and Exhhibit,Reno,Nevada,2006.
    [101]张冬阳,刘建军,蒋洪德.三维湿蒸汽流动快速准确数值模拟方法及应用[J].工程热物理学报,2003,24(2):262-264.
    [102]Yan X,Lin Z R,Tanuma T.Development of high-order accurate computational fluid dynamic method for steam flow analysis in steam turbines[C].14th International Conference on the Properties of Water and Steam,Kyoto,2004.
    [103]林智荣,袁新.自发凝结流动数值模拟方法及其在Laval喷管中的应用[J].工程热物理学报,2006,27(1):42-44.
    [104]巫志华,李亮,丰镇平.三维湿蒸汽自发凝结流动的数值模拟[J].动力工程,2006,26(6):814-817.
    [105]李亮,程代京,丰镇平等.汽轮机湿蒸汽级中凝结流动的三维数值分析[J].工程热物理学报,2006,27(4):571-573.
    [106]吴晓明,李亮,李国君等.基于双流体模型的湿蒸汽凝结流动三维数值模拟[J].热能动力工程,2007,22(4):367-371.
    [107]张涵信,沈孟育.计算流体力学差分方法的原理和应用[M].北京:国防工业出版社,2003.
    [108]马铁犹.计算流体动力学[M].北京:北京航空学院出版社,1986.
    [109]Wyslouzil B E,Heath C H,Cheung J L.Binary condensation in a supersonic nozzle[J].Journal of Chemical Physics,2000,113(17):7317-7329.
    [110]Zhou L X,Li L,Li R X et al.Simulation of 3-D gas-particle flows and coal combustion in a tangentially fired furnace using a two-fluid-trajectory model[J].Powder Technology,2002,125:226-233.
    [111]Heinz S A.A model for the reduction of the turbulent energy redistribution by compressibility[J].Physics of Fluids,2003,15(11):3580-3583.
    [112]Zhou L X.Theory and numerical modeling of turbulent gas-particle flows and combustion [M].Beijing:Science Press and Florida,CRC Press,1993.
    [113]Versteeg H K,Malalasekera W.An introduction to computational fluid dynamics:the finite volume method[M].Pearson Education Ltd,2007.
    [114]Blasco J A,Fueyo N.Relaxation control in the solution of CFD probulems[J].International Journal of Computational Fluid Dynamics,1999,13(1):43-63.
    [115]陈红梅,李亮,丰镇平等.透平级中自发凝结及叶栅中非均质凝结流动的初步研究[J].工程热物理学报,2005,26(增刊):65-68.
    [116]Heidenreich S,Vogt U,B(u|¨)ttner H et al.Pound G M.A novel process to separate submicron particles from gases-a cascade of packed columns[J].Chemical Engineering Science,2000,55:2895-2905.
    [117]Fisenko S P,Wang W N,Shimada Met al.Vapor condensation on nanoparticles in the mixer of a particle size magnifier[J].International Journal of Heat and Mass Transfer,2007,50:2333-2338.
    [118]杨林军,张霞,孙露娟等.湿法脱硫中应用蒸汽相变原理协同脱除PM2.5的技术分析[J].现代化工,2007,27(11):23-26.
    [119]张霞,杨林军,孙露娟等.应用蒸汽相变机理脱除燃烧源PM2.5试验研究[J].东南大学学报(自然科学版),2008,38(1):81-85.
    [120]Gorbunov B,Hamilton R.Water nucleation on aerosol particles containing both soluble and insoluble substances[J].Journal of Aerosol Science,1997,28:239-248.
    [121]Petersen D,Ortner R,Vrtala A et al.Soluble-insoluble transition in binary hetergeneous nucleation[J].Physical Review Letters,2001,87(22),225703:1-4.
    [122]Jurski K,G(?)hin E.Heterogeneous condensation process in an air water vapour expansion through a nozzle-experimental aspect[J].International Journal of Multiphase flow,2003,29:1137-1152.
    [123]Reitz R D.Mechanisms of atomization processes in High-Pressure vaporizing sprays [J].Atomization and Spray Technology,1987,3:309-337.
    [124]童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982.
    [125]程能林.溶剂手册[M].北京:化学工业出版社,2002.
    [126]严家禄.工程热力学[M].北京:高等教育出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700