微型飞行器相关气动力特性的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型飞行器(Micro Air Vehicles或Micro Aerial Vehicles,简称MAVs)是由美国DARPA(Defense Advanced Research Projects Agency)在二十世纪九十年代提出的一种新概念飞行器,它是一种融合了MEMS(Micro-electromechanical Systems)等多种高新技术于一体的集成化智能微型系统。微型飞行器在军事和民用方面具有十分广阔的应用前景和使用价值。微型飞行器的研制,必然要求其相关的空气动力学研究起到先导的作用。其低雷诺数空气动力学特性问题,如翼型低雷诺数绕流、小展弦比机翼的低雷诺数气动力特性以及扑翼的非定常气动力特性等方面都是微型飞行器研发对空气动力学领域提出的重点研究项目,这些研究将为微型飞行器的设计和发展奠定基础。本文围绕微型飞行器所涉及的上述几方面的空气动力学问题展开了相应的数值模拟研究。
     论文首先回顾了微型飞行器的提出、产生的背景以及目前国内外的研究现状,较全面阐述了微型飞行器的基本特征、应用前景和分类,对微型飞行器所蕴涵的空气动力学问题进行了系统总结和分析,并指出开展其研究对微型飞行器发展的重要意义。
     针对微型飞行器相关气动力特性的数值模拟,论文发展了与之相适应的数值模拟方法,主要包括流体力学的控制方程、空间离散、时间离散、隐式求解方法、边界条件、动网格技术的应用以及湍流模型等方面。基于数值方法本文建立了一套计算软件系统,通过对基本算例的求解,验证了该软件系统的可靠性和有效性,为数值分析微型飞行器相关气动力特性提供了数值模拟的工具。
     采用本文建立的计算软件,论文首先开展了翼型低雷诺数范围内的气动力特性研究,数值模拟了翼型低雷诺数层流流动的非定常分离现象,证实了其分离结构是一系列旋涡的非定常对并、融合、移动和脱落的复杂过程,时间平均的数值模拟结果与实验结果之间较好的一致性表明了非定常的大尺度分离结构是影响翼型低雷诺数气动力特性的一个主导因素。同时首次数值模拟了较大弯度翼型在小攻角时的非定常流场,在该条件下,得到了一种新的非定常层流分离结构,深入探讨了其非定常流动分离结构随攻角的演变规律及其对翼型气动力的影响。
     为了满足受尺寸限制的固定翼微型飞行器气动布局的设计需求,论文数值模拟了小展弦比机翼的低雷诺数流场,研究了展弦比、弯度、攻角、机翼形状等对小展弦比机翼气动性能的影响,首次重点分析了小展弦比机翼流场中翼尖涡对机翼气动力和流动分离的作用、翼尖涡的涡态结构、尾迹区翼尖涡的强度及发展变化规律。
     扑翼作为一种高效的推进方式为微型飞行器的发展提供了另外一种途径。论文对几种扑翼的非定常气动特性进行了数值模拟,系统研究了扑翼的非定常气动力和流场,考察了频率、振幅、相位差等关键因素对扑翼气动力的影响,并对各种扑翼的推进效率作了比较。为了考虑三维效应,数值计算了三维扑翼的非定常流场,较全面分析了展弦比、频率等对三维扑翼气动力、表面流态、动态压力分布的影响规律,并研究了不同情况下三维扑翼流场中的翼尖涡现象。
MAVs(Micro Air Vehicles or Micro Aerial Vehicles), a new-concept vehicle proposed by Defence Advanced Research Projects Agency(DARPA) in the United States in 1990 s, is a kind of smart integrated micro system which combines multiple high-tech technologies such as Micro-electromechanical Systems(MEMS). It owns a very broad prospect in military and civil aera. Aerodynamic research is always the preceding action for any new vehicle development, so does the MAVs. Many major projects related with low Reynolds number aerodynamic characteristics are very crucial for the development of the MAVs such as low Reynolds number flow of the airfoil, low Reynolds number aerodynamic characteristics of low-aspect-ratio wing and unsteady aerodynamic characteristics of the flapping wing. They will create very fundamental basis for the MAVs design and development. This paper presents some numerical simulation study for several above-mentioned aerodynamic phenomena related with the MAVs.
     Firstly, background and status of the MAVs development are addressed in the paper. Then, its basic characteristics, application prospect, classification and aerodynamic problem are summarized and analyzed. The significance of performing these researches is also pointed out.
     To carry out the numerical simulation of aerodynamic characteristics for the MAVs, some numerical simulation methods are developed, mainly including govering equations, spatial discretization, temporal discretization, implicit solver, numerical boundary conditions, dynamic grid technology and turbulence model. A set of computation software system is established in this paper. Its reliability and effectiveness are verified by the solution of some basic examples. So it provides a numerical simulation tool to perform the numerical analysis of the related aerodynamic characteristics for the MAVs.
     Aerodynamic characteristics research in low Reynolds number range of the airfoil is first performed utilizing the computation software established in this paper. The unsteady separation phenomenon for the low Reynolds number laminar flow of the airfoil is simulated. The simulation results validate the separation is a complex process caused by pairing, merge, motion and shedding of a series of vortex. The better agreement of the time-averaged numerical simulation results with the experimental ones shows that unsteady large-scale separation structure is the predominant factor to affect the low Reynolds number aerodynamic characteristic of the airfoil. Additionally, the unsteady flow field of the airfoil with larger camber is first simulated at smaller angle of attack. A kind of new unsteady laminar flow separation structure is obtained. The evolution relationship of the unsteady flow separation structure with the angle of attack and its effect on aerodynamic performance are deeply discussed.
     To meet with the aerodynamic configuration design requirements of the MAVs with the fixed wing, low Reynolds number flow field of low-aspect-ratio wing is also numerically simulated. The effect of aspect ratio ,camber, angle of attack and wing shape on the aerodynamic performance of low-aspect-ratio wing is studied. The emphasis on the aerodynamic and flow separation effect of the wingtip vortex, wingtip vortex structure, wingtip vortex strength in wake region and evolution tendency for low-aspect-ratio wing is first addressed.
     As a kind of high-efficiency propulsion means, the flapping wing provides another development direction for the MAVs. So this paper also carries out the unsteady aerodynamic characteristics simulation of several kinds of flapping wings. The aerodynamic force and the flow field of the flapping wing are systematically studied. The effect of some key parameters, including frequency, amplitude and phase, on the aerodynamic force of the flapping wing is surveyed. The propulsion efficiencies of various flapping wings are compared. For a 3D effect consideration, the unsteady flow field of the 3D flapping wing is numerically calculated. The relationship of aerodynamic force, surface flow state and dynamic pressure distribution for the 3D flapping wing with aspect ratio and frequency is completely analyzed. In addition, the wingtip vortex phenomenon under different conditions is also studied.
引文
[1]肖永利,张琛,微型飞行器的研究现状与关键技术,宇航学报,第22卷,第5期,2001年9月.
    [2]R.O.Hundley,E.C.Gritton,Future Technology-Driven Revolutions in Military Operations,Documented Briefing of the RAND National Defence Reserch Institute,December,1992.
    [3]R.O.Hundley,E.C.Gritton,Future Technology-Driven Revolutions in Military Operation:Results of a Workshop,Rand Corporation,Santa Monica,CA,1994,Document No.DB-110-ARPA.
    [4]W.R.Davis,Micro UAV,In:23~(rd) Annual AUVSI Symposium,July 15-19,1996.
    [5]S.Ashley,Palm-size Spy Plane,Mechanical Engineering,1999,120(2),pp.74-78.
    [6]吴怀宇 等,微型飞行器的研究现状及其关键技术,武汉科技大学学报(自然科学版),2000,23(2):170-174.
    [7]朱自强 等,小型和微型无人机的气动特点和设计,航空学报,2006,27(3):353-364。
    [8]J.M.McMichael,M.S.Francis,Micro Air Vehicles-Toward a New Dimension in Flight,USAF,DARPA TTO document,August,1997.
    [9]罗均 等,国际上微型飞行器研究的进展及其关键技术,上海大学学报(自然科学版),2001,7(4)。
    [10]王立文,空中小精灵-微型飞行器挑战传统设计思维和战争模式,国际航空,2000(12):46-48.
    [11]M.A.Dornheim,Tiny drones may be soldier' s new tool,Aviation Week & Space Technology,1998,148,pp.42-43.
    [12]晓椿,晓东,公文箱里的侦察机,航空知识,1999,(9):29-30.
    [13]晓清,美国微型飞行器计划进入飞行试验阶段,国际航空,1999,(9):55-56.
    [14]Joel M.Grasmeyer and Matthew T.Keennon,Development of the Black Widow Micro Air Vehicle,AIAA 2001-0127.
    [15]幸健成,喷薄欲出的微型无人机(下),机器人技术与应用,1999,(5):23-26.
    [16]Mark Hewish,A bird in the hand-miniature and micro air vehicles challenge conventional thinking,Jane' s International Defense Review,1999,32(11):22-28.
    [17]幸健成,喷薄欲出的微型无人机(上),机器人技术与应用,1999,(4):24-25.
    [18]http://www.aero.stanford.edu/mesicopter.
    [19]I.Kroo,P.Kunz,Miniature rotocraft as aerial explorers,In:NASA/DoD Second Biomorphic Explorers Workshop,December,2000.
    [20]Keennon M T,Grasmeyer J M,Development of the Black Widow and Microbat MAVS and a Vision of the Future of MAV Design,AIAA 2003-2901.
    [21]A.Stone,Flying into the Future,Georgia Tech Research Horizons,Spring,1997.
    [22]http://www.utias.toronto.edu/test/res/fm/fda-proj,html,2002.
    [23]Jones K D,Bradshaw C J,et al,Development and Flight Testing of Flapping Wing Propelled Micro Air Vehicles,AIAA 2003-6549.
    [24]R.S.Fearing,Toward micromechanical flters,The Bridge,2001,31(4),pp.4-8.
    [25]Kubo Y,Shimoyama I,Miura H,Study of Insect-Based Flying Microrobots,Proceedings of the IEEE International Conference on Robotics and Automation,1993,(2):386-391.
    [25]Kubo Y,Shimoyama I,Kaneda T,Miura H,Study on Wings of Flying Microrobots,Proceedings of the IEEE International Conference on Robotics and Automation,1994,(2):834-839.
    [27]崔尔杰,生物运动仿生力学与智能微型飞行器,力学与实践,第26卷,第2期,2004年4月.
    [28]Thomas J.Mueller and James D.Delaurier,Aerodynamics of Small Vehicles,Annu.Rev.Fluid Mech,2003,35:89-111.
    [29]McMasters J H,Henderson M L,Low speed Single-Element Airfoil Synthesis,Tech.Soar,6:1-21,1980.
    [30]Lissaman P B S,Low-Reynolds-Number Airfoils,Annu.Rev.Fluid Mech,1983,15:223-239.
    [31]Mueller T J,Low Reynolds Number Vehicles,In Advisory Group for Aerospace Research and Development AGARD-AG-288,ed.E Reshotko,Essex:Spec,Print.Serv.Ltd.Pp.69.
    [32]Carmichael B H,Low Reynolds Number Airfoil Survey,Vol.1.NASA CR 165803,1981.
    [33]Horton,H.P.,Laminar Separation Bubbles in Two- and Three-Dimensional Inompressible Flow,Ph.D.Thesis,University of London,1968.
    [34]Thomas J.Mueller and James D.Delaurier,An overview of Micro Air Vehicle Aerodynamics,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.4, 2001.
    [35]T.J.Mueller,The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,AIAA 84-1617.
    [36]Michael S.Selig,James J.Guglielmo,Andy P.Broeren and Philippe Giguere,Experiments on Airfoils at Low Reynolds Numbers,AIAA 96-0062.
    [37]T.J.Mueller and S.M.Batill,Experimental Studies of the Laminar Separation Bubble on a Two-Dimensional Airfoil at Low Reynolds Numbers,AIAA 80-1440.
    [38]Van den Berg,B.,Reynolds Number and Mach Number Effects on the Maximum Lift and Stalling Characteristics of Wings at Low Speeds,NLR TR 69025U,1969.
    [39]Elliott,J.w.and Smith,F.T.,Dynamic Stall Unsteady Marginal Separation,J.Fluid Mech,V0l.47,pp.12-31,1987.
    [40]T.J.Mueller and B.J.Jansen,Jr.,Aerodynamic Measurements at Low Reynol ds Numbers,AIAA 82-0598.
    [41]L.J.Pohlen and T.J.Mueller,Boundary Layer Characteristics of the Mi ley Airfoi l at Low Reynolds Numbers,AIAA 83-1795.
    [42]w.G.Bastedo Jr.and T.J.Mueller,The Spanwise Variation of Laminar Separation Bubbles on Finite Wings at Low Reynolds Numbers,AIAA 85-1590.
    [43]A.A.Abtahi and J.F.Marchman Ⅲ,Aerodynamics of an Aspect Ratio 8 Wing at Low Reynolds Numbers,AIAA 85-0278.
    [44]P.E.Conigliaro,An Experimental Investigation of the Low Reynolds Number Performance of the Lissaman 7769 Airfoil,AIAA 83-0647.
    [45]J.F.Marchman Ⅲ and T.D.Werme,Clark-Y Airfoil Performance at Low Reynolds Numbers,AIAA 84-0052.
    [46]J.C.M.Lin and L.L.Pauley,Unsteady Laminar Separation on Low-Reynolds-Number Airfoils,AIAA 93-0209.
    [47]J.C.Muti Lin and Laura L.Pauley,Low-Reynolds_Number Separation on an Airfoil,AIM Journal V0l.34.No.8,August 1996,pp.1570-1577.
    [48]E.A.Mayda and C.P.van Dam,Earl P.N.Duque,Bubble Induced Unsteadiness on Wind Turbine Airfoil,AIAA 2002-0033.
    [49]白鹏,微型飞行器低雷诺数若干空气动力学问题研究[博士学位论文],航天空气动力技术研究院,2005年10月.
    [50]Mahidhar Tatineni and Xiaolin Zhong,Numerical and Theoretical Studies of the Instability of Low-Reynolds-Number Separation Bubbles, AIAA 2000-2308.
    [51] Mahidhar Tatineni and Xiaolin Zhong, Numerical Study of Unsteady Low-Reynolds-Number Separation Bubbles Using a New High Order Scheme, AIAA 2001-2712.
    [52] Mahidhar Tatineni and Xiaolin Zhong, Numerical Simulations of Unsteady Low-Reynolds-Number Flows Over the APEX Airfoil, AIAA 98-0412.
    [53] Mahidhar Tatineni and Xiaolin Zhong, A Numerical Study of Low-Reynolds-Number Separation Bubbles, AIAA 99-0523.
    [54] Laura L. Pauley, Parviz Moin and William C. Reynolds, The Structure of Two-Dimensional Separation, J. Fluid Mech, Vol. 220, pp. 397-411, 1990.
    [55] V. N. Vatsa and J. E. Carter, Analysis of Airfoil Leading-Edge Separation Bubbles, AIAA Journal, Vol.22, No.12, December 1984.
    [56] Gaster, M., The Structure and Behavior of Laminar Separation Bubbles, AGARD CP-4, pp. 813-854,1966.
    [57] Gruber, K., Bestek, H. and Fasel, H., Interaction Between a Tollmien-Schlichting Wave and a Laminar Separation Bubble, AIAA Paper 87-1256.
    [58] W. Roger. Briley, A Numerical Study of Laminar Separation Bubbles Using the Navier-Stokes Equations, J. Fluid Mech, Vol.47, Part 4, pp. 713-736,1971.
    [59] J. McGhee, B. S. Walker, and B. F. Mi Hard, Experimental Results for the Eppler 387 Airfoilat Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel, NASA TM4062, Oct. 1988.
    [60] Torres G E, Aerodynamics of low aspect ratio wings at low reynolds numbers with applications to micro air vehicle design and optimization, Phd thesis, Univ. Notre Dame, Notre Dame, IN, 2002.
    [61] http://www. nd. edu/%7Emav/images/flowvis.
    [62] Gabriel E. Torres and Thomas J. Mueller, Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Reynolds Number, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Edited by Thomas J.Mueller, pp.115-141, 2001.
    [63] Zimmerman C.H., Characteristics of Clark Y airfoils of small aspect ratios, NACA Tech Rep TR, No. 431,1932.
    [64] Zimmerman C. H., Characteristics of Several Airfoils of Low Aspect Ratio, NACA Tech. Note 539, 1935.
    [65]Bartlett G E,Vidal R J,Experimental Investigation of Influence of Edge Shape on the Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Speed,J.Aeronaut.Sci.22:517-533,1944.
    [65]Wadlin K Let al,The Hydrodynamic Characteristics of Modified Rectangular Flat Plates Having Aspect Ratio of 1.00,0.25,andO.125 and Operating near a Free Water Surface,NACA Tech.Rep.TR 1246.
    [67]Bollay W,A non-linear wing-theory and its application to rectangular wings of small aspect ratio,Math.Mech,19:21-35,1939.
    [58]Weinig F,Lift and drag of wings with small span,NACA Tech.Rep.TM-1151,1947.
    [69]Beta R K,Suresh G,Comments on the Lawrence equation for low-aspect-ratio wings,J.Aircr.26:883-885,1989.
    [70]Polhamnus E C,A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy,NASA Tech.Rep.TND-3767,1966.
    [71]Polhamnus E C,Predications of vortex lift characteristics by a leading-edge-suction analogy,J.Aircr.8:193-199,1971.
    [72]Hoerner,S.F.,Fluid-Dynamic Drag,Hoerner Fluid Dynamics,Brick Town,NJ,1965,pp.7-16-7-21.
    [73]Hoerner,S.F.,and Borst,H.V.,Fluid-Dynamic Lift,Hoerner Fluid Dynamics,Brick Town,NJ,1975,pp.17-1-17-15.
    [74]Alain Pelletier and Thomas J.Mueller,Low Reynolds Number Aerodynamics of Low-Aspect-Ratio,Thin/Flat/Cambered-Plate Wings,Journal of Aircraft,Vol.37,No.5,2000.
    [75]Alain Pelletier and Thomas J.Mueller,Low Reynolds Number Aerodynamics of Low Aspect-Ratio Wings,AIAA 99-3182.
    [76]李志国,朱鹏程,李锋,小展弦比机翼低雷诺数升阻特性试验研究,流体力学实验与测量,第18卷第4期,2004.
    [77]杨爱明,翁培奋,微型飞行器小展弦比机翼的低雷诺数气动力特性分析,空气动力学学报,第23卷第1期,2005.
    [78]唐剑,朱克勤,小展弦比机翼流场中的涡运动现象,2003空气动力学前沿研究论文集,pp.415-420.
    [79]Dragos Viieru,Roberto Albertani,Wei Shyy and Peter G.Ifju,Effect of Tip Vortex on Wing Aerodynamics of Micro Air Vehicles,AIAA 2004-4971.
    [80]John g.Anders,Biomimetic Flow Control,AIAA 2000-2543.
    [81]胡宇群,微型飞行器中的若干动力学问题研究[博士学位论文],南京航空航天大学,2002年10月.
    [82]K.D.Jones,S.J.Duggan and M.F.Platzer,Flapping-Wing Propusion for a Micor Air Vehicle,AIAA 2001-0126.
    [83]童秉纲,陆夕云,杨基明,尹协振,关于生物运动力学的研究,2003空气动力学前沿研究论文集.
    [84]M.Sato,A.Azuma,The Flight Performance of a Damselfly Ceriagrion Melanurum,Journal of Experimental Biology,1996,199(2),pp.281-294.
    [85]A.Azuma,The Biokinetics of Flying and Swimming,Tokyo:Springer-Verlag,1992.
    [86]M.F.Neef and D.Hummel,Euler Solutions for a Finite-Span Flapping Wing,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Muel ler,pp.429-451,2001.
    [87]Knoller,R,Die Gesetze des luftwiderstandes,Flug und Motortechnik(Wien),Vol.3,No.21,1909,pp1-7.
    [88]Betz,A.,Ein Beitrag zur Erklarung des Segefluges,Zeitschrift fur Flugtechnik und Motorluftschiffahrt,Vol.3,Jan.1912,pp.269-272.
    [89]Katzmayr,R.,Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils,NACA Report No.147,Oct.,1922.
    [90]Von Karman,T.and Burgers,J.M.,General Aerodynamic Theory-Perfect Fluids,Division E,Vol.Ⅱ,Aerodynamic Theory,Ed.Durand,W.F.,1943,pp.308.
    [91]Garrick,I.E.,Propulsion of a Flapping and Oscillating Airfoil,NACA Report No.567,1936.
    [92]Theodorsen,T.,General Theory of Aerodynamic Instability and the Mechanism of Flutter,NACA Report No.496,1935.
    [93]Silverstein,A.and Joyner,U.T.,Experimental Verification of the Theory of Oscillating Airfoils,NACA Report No.673,1939.
    [94]Bratt,J.B.,Flow Patterns in the Wake of an Oscillating Airfoil,Aeronautical Research Council,R&M2773,1953.
    [95]J.C.S.Lai and M.F.Platzer,The Jet Characteristics of a Plunging Airfoil,AIAA 98-0101.
    [96]Michael S.Vest and Joseph Katz,Aerodynamic Study of a Flapping-Wing Micro-UAV,AIAA 99-0994.
    [97]王肇,宋红军,尹协振,二维机翼非定常运动的涡流场显示-沉浮运动,流体力学实验与测量,第18卷,第2期,2004年.
    [98]王肇,宋红军,尹协振,二维翼型非定常运动的涡流场显示-2俯仰运动和沉浮/俯仰联合运动,流体力学实验与测量,第18卷,第4期,2004年.
    [99]K.D.Jones,C.M.Dohring and M.F.Platzer,Wake Structures Behind Plunging Airfoils:A comparison of Numerical and Experimental Results,AIAA 96-0078.
    [100]K.D.Jones and M.F.Platzer,Flapping-Wing Propulsion for a Micro Air Vehicle,AIAA 2000-0897.
    [101]K.D.Jones,B.M.Castro,O.Mahmoud andM.F.Platzer,aNumerical and Experimental Investigation of Flapping-Wing Propulsion in Ground Effect,AIAA 2002-0866.
    [102]K.D.Jones,B.M.Castro,O.Mahmoud,S.J.Pollard and M.F.Platzer,a Collaborative Numerical and Experimental Investigation of Flapping-Wing Propulsion,AIAA 2002-0706.
    [103]Max F.Platzer and Kerrin S.Neace,Chung-Kiang Pang,Aerodynamic Analysis of Flapping Wing Propulsion,AIAA 93-0484.
    [104]I.H.Tuncer,M.F.Platzer,A Computational Study of Flow Separation Characteristics and Wake Profiles Behind a Flapping Airfoil,AIAA 99-0648.
    [105]Ismail H.Tuncer,Ralf Walz,Max F.Platzer,a Computational Study on the Dynamic Stall of a Flapping Airfoil,AIAA 98-2519.
    [106]K.Isogai and Y.Shinmoto,Y.Watanabe,Effects of Dynamic Stall Phenomena on Propulsive Efficiency and Thrust of a Flapping Airfoil,AIAA 97-1926.
    [107]Ravi Ramamurti and William Sandberg,Rainald Lohner,Simulation of Flow about Flapping Airfoils Using a Finite Element Incompressible Flow Solver,AIAA 99-0652.
    [108]R.Mittal,Y.Utturkar andS.S.Udaykumar,Computational Modeling and Analysis of Biomimetic Flight Mechanisms,AIAA 2002-0865.
    [109]J.Young and J.C.S.Lai,Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil,AIAA Journal,Vol.42,No.10,October 2004.
    [110]Ellington C P,et al,Leading-edge Vortices in Insect Flight,Nature,1996,384:626-630
    [111]Liu H,Ellington C P,Kawachi K,et al,A CFD Study of Hawk Moth Hovering,J.Exp.Biol.,1998,201(4):461-477.
    [112]Hao Liu and Keiji Kawachi,Leading-Edge Vortices of Flapping and Rotary Wings at Low Reynolds Number,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.275-285,2001.
    [113]Mao Sun and Jian Tang,Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion,J.Exp.Biol.,2002,205:55-70.
    [114]余永亮,童秉纲,马晖扬,陆夕云,昆虫悬停飞行的气动性能分析,2003空气动力学前沿研究论文集.
    [115]Ravi Ramamurti and William C.Sandberg,Computational Study of 3-D Flapping Foil Flows,AIAA 2001-0605.
    [116]Dickinson M H,et al,Wing Rotation and the Aerodynamic Basis of Insect Flight,Science,1999,284:1954-1960.
    [117]Fumiya Togashi,Yasushi Ito,Mitsuhiro Murayama,Kazuhiro Nakahashi and Takuma Kato,Flow Simulation of Flapping Wings of an Insect Using Overset Unstructured Grid,AIAA 2001-2619.
    [118]Koji Isogai and Yasuhisa Shinmoto,Study on Aerodynamic Mechanism of Hovering Insects,AIAA 2001-2470.
    [119]Koji Isogai,et al,Unsteady Three-Dimensional Viscous Flow Simulation of a Dragonfly Hovering,AIAA Journal,Vol.42,No.10,October 2004.
    [1]Thomas J.Mueller and James D.Delaurier,An overview of Micro Air Vehicle Aerodynamics,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.4,2001.
    [2]J.C.M.Lin and L.L.Pauley,Unsteady Laminar Separation on Low-Reynolds-Number Airfoils,AIAA 93-0209.
    [3]K.D.Jones,S.J.Duggan and M.F.Platzer,Flapping-Wing Propusion for a Micor Air Vehicle,AIAA 2001-0126.
    [4]M.F.Neef and D.Hummel,Euler Solutions for a Finite-Span Flapping Wing,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.429-451,2001.
    [5]K.D.Jones,B.M.Castro,O.Mahmoud,S.J.Pollard and M.F.Platzer,a Collaborative Numerical and Experimental Investigation of Flapping-Wing Propulsion,AIAA 2002-0706.
    [6]E.rurkel,V.N.Vatsa,R.Radespiel,Preconditioning Methods for Low-speed Flows,NASA Contract No.NASI-19480,1996.
    [7]Deng X G,Zhuang F G and Mao M L,On Low Mach Number Perfect Gas Flow Calculations,AIAA 99-3317.
    [8]Chorin A J,A Numerical Method for Solving Incompressible Viscous Flow Problems,J.Comput.Phys.,1968,2:12-26.
    [9]Patankar S V,Numerical Heat Transfer and Fluid Flow,New York:McGraw-Hill,1980.
    [10]朱国林等,低速 N-S 方程求解方法技术总结,CARDC报告,CARDC-19980124.
    [11]Rogers S E.and Kwak D,Upwind Differencing Scheme for the Time-accurate Incompressible Navier-Stokes Equations,AIAA J.,1990,28:253-262.
    [12]Rogers S E.and Kwak D and Kiris C,Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations,AIAA J.,1991,29:603-610.
    [13]张涵信,无波动、无自由参数的耗散差分格式,空气动力学报,第6卷,第2期,1988年6月,pp.143-165.
    [14]袁先旭,非定常流动数值模拟及飞行器动态特性分析研究[博士学位论文],中国空气动力研究与发展中心,2002年4月.
    [15]邓小刚,粘性超声速发展气动干扰的数值模拟[博士学位论文],中国空气动力研究与发展中心,1991.
    [16]沈清,三维复杂高超声速粘性流场的数值模拟[博士学位论文],中国空气动力研究与发展中心,1991.
    [17]Shen Qing,Zhang Hanxin,A New Upwind NND Scheme for Euler Equations and Its Application to the Supersonic Flow,Proceedings of Asia Workshop on CFD,Sep 12-12,1994,Sichuan,China.
    [18]邓小兵,不可压缩流动的计算研究[硕士学位论文],中国空气动力研究与发展中心,2001.
    [19]朱自强等,应用计算流体力学,北京航空航天大学出版社,1998.
    [20]Yoon S,Jameson A,Lower-upper Symmetric-Gauss-Seidel Method for the Euler and Naviers-Stokes Equations,AIAApaper 87-0600,1987.
    [21]Jameson A.J.,Time Dependent Calculations Using Multigrid with Applications to Unsteady Flows past Airfoils and Wings,AIAA paper 91-1596,1991.
    [22]A.L.Gaitonde,A Dual-Time Method for the Solution of the Unsteady Euler Euler Equation,Aeronautical Journal,October,1994.
    [23]江雄,直升机旋翼/机身干扰流场数值模拟方法研究[博士学位论文],中国空气动力研究与发展中心,2001年9月.
    [24]赫新,尖锥超声速大攻角绕流的数值模拟与定性分析研究[博士学位论文],中国空气动力研究与发展中心研究生部,2002.
    [25]Stanley Osher,Sukumar Chakravarthy,Upwind Schemes and Boundary Conditions with Application to Euler Equation in General Geometries,Journal of Computational Physics,Vol.50,1983,pp.447-481.
    [26]Alvin Bayliss,Eli Turkel,Far Field Boundary Conditions for Compressible Flows,Journal of Computational Physics,Vol.48,1982,pp.182-199.
    [27]Pulliam,T.H.and Steger,J.L.,On Implicit Finite-difference Simulation of Three-Dimensional Flow,AIAA 78-10.
    [28]Roger Peyret,Handbook of Computational Fluid Mechanics,Academic Press Limi ted,1996.
    [29]Shigeru Obayashi and Guru P.Guruswamy,Convergence Acceleration 0f a Navier-Stokes Solver for Efficient Static Aeroel.astic Computations,AIAA Journal,Vol.33,No.6,June 1995.
    [30]Merkle C L.and Athavale M,Time-accurate Unsteady Incompressible Algorithms Based on Artifical Compressiblity.AIAA 87-1137.
    [31]Stuart E.Rogers,Numerical Solution of the Incompressible Navier-Stokes Equations,NASA Technical Memorandum 102199,Nnvemher 1990.
    [32]Yoon S.and Kwak D,Three-dimensional Incompressible Navier-Stokes Solver Using Lower-Upper Symmetric Gauss-Seidel Algorithm,AIAA J.,1991,29:874-875.
    [33]OK Honam and Eberhardt D S,Development of an Unstrady Incompressible Navier-Stokes Solver and Application to the Computations of Separated Flows,AIAA 91-3266CP,1991.
    [34]袁礼,傅德薰,拟压缩性方法在非定常球形Couette-Taylor流模拟中的应用,水动力学研究与进展,A辑第10卷第2期,1995.
    [35]Chang J L C and Kwak D,On the Method of Pseudo Compressibility for Numerically Solving Incompressible Flows,AIAA 84-0252.
    [36]Choi D and Merkle C L,Application of time-iterative schemes to incompressible flow,AIAA Journal 1985,23(10):1518-1524.
    [37]张涵信,邓小刚,内点、边界、网格与物理分析相结合的非定常模拟,中国第一届近代空气动力学与气动热力学会议论文集,国防工业出版社,2006年8月.
    [38]Christopher L.Rumsey and W.Kyle Anderson,Some Numerical and Physical Aspects of Unsteady Navier-Stokes Computations over Airfoils Using Dynamic Meshs,AIAA 88-0329.
    [39]柳森,动翼型跨音速非定常粘性绕流的数值计算[博士学位论文],西北工业大学,1993年12月.
    [40]B.S.Baldwin and H.Lomax,Thin Layer Approximation and Algebraic Model for Seperated Turbulent Flows,AIAA 78-0257.
    [41]李炜,黏性流体的混合有限分析解法,科学出版社,2000.
    [42]Lecointe,Y.and Piquet,J.,On the Use of Several Compact Methods for the Study of Unsteady Incompressible Viscous Flow Round a Circular Cylinder,Computers and Fluids,12(4):255-280,1984.
    [43]Wille,R.,Rarman Vortex Streets,Adv.Appl.Mech.,Vol.6,1960,pp.273.
    [44]Rovasznay,L.S.G.,Hot-wire Investigation of the Wake Behind the Cylinders at Low Reynolds Numbers,Proc.Roy.Sue.A,Vol.198,1949,pp.174-190.
    [45]Roshko,A.On the Development of Turbulent Wakes From Vortex Streets,NACA Rep.1191,1954.
    [46]Peter J.Kunz and Ilan Rroo,Analysis and Design of Airfoils for Use at Ultra-Low Reynolds Numbers,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.35-60,2001.
    [47]Chen Y N,Yang S C and Yang J Y,Implicit Weighted Essentially Non-Oscillatory Schemes for the Incompressible Navier-Stokes Equations,Int J Numer Meth Fluids,1999,31.
    [48]Ghia U,Ghia K N and Shin C T,High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,J.Comput.Phys.,Vol.48,1982.pp.387-411.
    [49]M.D.Deshpande and S.George Milton,Kolmogorov Scales in a Driven Cavity,Flow,Fluid Dynamics Research,Vol.22,1998,pp.359-381.
    [50]White F M,Viscous Fluid Flow,McGraw-Hill,New York,1974.
    [51]李树民,低速粘流计算方法和应用研究[博士学位论文],中国空气动力研究与发展中心,2004.
    [52]Harris,C.D.,Two-Dimensional Aerodynamic Characteristics of the NACA0012 Airfoil in the Langley 8-foot Transonic Pressure Tunnel,NASA TM81927.
    [53]Landon,R.H.,NACA0012.Oscillating and Transient Pitching,AGARD-R-702,1982.
    [54]Davis,S.,NACA64A010(NASA AMES Model) Oscillatory Pitching,AGARD Compendium of Unsteady Aerodynamic Measurements AGARD-R-702,1982.
    [1] Horton, H. P., Laminar Separation Bubbles in Two- and Three-Dimensional incompressible Flow, Ph. D. Thesis, University of London, 1968.
    
    [2] Gaster, M., The Structure and Behavior of Laminar Separation Bubbles, AGARD CP-4, pp. 813-854,1966.
    [3] M. Brendel and T.J. Mueller, Boundary-Layer Measurements on an Airfoil at Low Reynolds Numbers, Journal of Aircraft, Vol. 25, No. 7 July 1988, pp. 612-617.
    [4] J. C. M. Lin and L. L. Pauley, Unsteady Laminar Separation on Low-Reynolds-Number Airfoils, AIAA 93-0209.
    [5] Gruber, K., Bestek, H. and Fasel, H., Interaction Between a Tollmien-Schlichting Wave and a Laminar Separation Bubble, AIAA Paper 87-1256.
    [6] Elliott, J. W. and Smith , F. T., Dynamic Stall Unsteady Marginal Separation, J. Fluid Mech, Vol. 47, pp. 12-31, 1987.
    [7] MeGregor, I., Regions of Localised Boundary Layer Separation and Their Role in the Nose-Stalling of Aerofoils, Ph. D. Thesis, Queens Mary College, University of London, 1954.
    [8] Michael S. Selig, James J. Guglielmo, Andy P. Broeren and Philippe Giguere, Experiments on Airfoils at Low Reynolds Numbers, AIAA 96-0062.
    [9] J. McGhee, B. S. Walker, and B. F. Millard, Experimental Results for the Eppler 387 Airfoilat Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel, NASA TM4062, Oct. 1988.
    [10] T.J. Mueller, The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis, AIAA 84-1617.
    
    [11] T. J. Mueller and S. M. Batill, Experimental Studies of the Laminar Separation Bubble on a Two-Dimensional Airfoil at Low Reynolds Numbers, AIAA 80-1440.
    
    [12] Van den Berg, B., Reynolds Number and Mach Number Effects on the Maximum Lift and Stalling Characteristics of Wings at Low Speeds, NLR TR 69025U,1969.
    [13] T. J. Mueller and B. J. Jansen, Jr., Aerodynamic Measurements at Low Reynolds Numbers, AIAA 82-0598.
    [14] L. J. Pohlen and T. J. Mueller, Boundary Layer Characteristics of the Miley Airfoil at Low Reynolds Numbers, AIAA 83-1795.
    [15]W.G.Bastedo Jr.and T.J.Mueller,The Spanwise Variation of Laminar Separation Bubbles on Finite Wings at Low Reynolds Numbers,AIAA 85-1590.
    [16]A.A.Abtahi and J.F.Marchman Ⅲ,Aerodynamics of an Aspect Ratio 8 Wing at Low Reynolds Numbers,AIAA 85-0278.
    [17]P.K Conigliaro,An Experimental Investigation of the Low Reynolds Number Performance of the Lissaman 7769 Airfoil,AIAA 83-0647.
    [18]J.F.Marchman Ⅲ and T.D.Werme,Clark-Y Airfoil Performance at Low Reynolds Numbers,AIAA 84-0052.
    [19]Jones,B.M.,“Stalling,” Journal of Royal Aeronautical Society,Vol.38,1938,pp.747-770.
    [20]W.Roger.Briley,A Numerical Study of Laminar Separation Bubbles Using the Navier-Stokes Equations,J.Fluid Mech,Vol.47,Part 4,pp.713-736,1971.
    [21]J.C.Muti Lin and Laura L.Pauley,Low-Reynolds_Number Separation on an Airfoil,AIAA Journal Vol.34.No.8,August 1996,pp.1570-1577.
    [22]E.A.Mayda and C.P.van Dam,Earl P.N.Duque,Bubble Induced Unsteadiness on Wind Turbine Airfoil,AIAA 2002-0033.
    [23]白鹏,微型飞行器低雷诺数若干空气动力学问题研究[博士学位论文],航天空气动力技术研究院,2005年10月.
    [24]Mahidhar Tatineni and Xiaolin Zhong,Numerical and Theoretical Studies of the Instability of Low-Reynolds-Number Separation Bubbles,AIAA 2000-2308.
    [25]Mahidhar Tatineni and Xiaolin Zhong,Numerical Study of Unsteady Low-Reynolds-Number Separation Bubbles Using a New High Order Scheme,AIAA 2001-2712.
    [26]Mahidhar Tatineni and Xiaolin Zhong,Numerical Simulations of Unsteady Low-Reynolds-Number Flows Over the APEX Airfoil,AIAA 98-0412.
    [27]Mahidhar Tatineni and Xiaolin Zhong,A Numerical Study of Low-Reynolds-Number Separation Bubbles,AIAA 99-0523.
    [28]Laura L.Pauley,Parviz Moin and William C.Reynolds,The Structure of Two-Dimensional Separation,J.Fluid Mech,Vol.220,pp.397-411,1990.
    [29]V.N.Vatsa and J.E.Carter,Analysis of Airfoil Leading-Edge Separation Bubbles,AIAA Journal,Vol.22,No.12,December 1984.
    [30]Rogers S E.and Kwak D,Upwind Differencing Scheme for the Time-accurate Incompressible Navier-Stokes Equations,AIAA J.,1990,28:253-262.
    [31]Yoon S.and Rwak D,Three-dimensional Incompressible Navier-Stokes Solver Using Lower-Upper Symmetric 6auss-Seidel Algorithm,AIAA J.,1991,29:874-875.
    [32]OK Honam and Eberhardt D S,Development of an Unstrady Incompressible Navier-Stokes Solver and Application to the Computations of Separated Flows,AIAA 91-3266CP,1991.
    [33]张涵信,分离流与旋涡运动的结构分析,国防工业出版社,2002.
    [34]J.F.Marchman,Aerodynamic Testing at Low Reynolds Numbers,J.Aircraft,Vol.24,No.2,1987,pp.107-114.
    [1]Mueller,T.J.,Low Reynolds Number Vehicles,AGARDograph No.288,1985.
    [2]罗均,蒋蓁等,国际上微型飞行器研究的进展及其关键技术,上海大学学报(自然科学版)第七卷第四期,2001.
    [3]Woods,M.I.,Henderson,J.F.and Lock,G.D.,Energy Requirements for the Flight of Micro Air Vehicles,The Aeronautical Journal,March 2001,pp.135-149.
    [4]晓清,美国微型飞行器计划进入飞行试验阶段,国际航空,1999,(9),pp.55-56.
    [5]Joel M.Grasmeyer and Matthew T.Keennon,Dvelopment of the Black Widow Micro Air Vehicle.AIAA 2001-0127.
    [6]Alain Pelletier and Thomas J.Mueller,Low Reynolds Number Aerodynamics of Low-Aspect-Ratio,Thin/Flat/Cambered-Plate Wings,Journal of Aircraft,Vol.37,No.5,2000.
    [7]杨爱明,翁培奋,微型飞行器小展弦比机翼的低雷诺数气动力特性分析,空气动力学学报,第23卷第1期,2005.
    [8]Ifju,G.P.,Jenkins,D.,Ettinger,S.,Lian,Y.,Shyy,W.,and Waszak,R.M.,Flexible-Wing-Based Micro Air Vehicles,AIAA 2002-0705.
    [9]Dragos Viieru,Roberto Albertani,Wei Shyy and Peter G.Ifju,Effect of Tip Vortex on Wing Aerodynamics of Micro Air Vehicles,AIAA 2004-4971.
    [10]Thomas J.Mueller and James D.Delaurier,An overview of Micro Air Vehicle Aerodynamics,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.4,2001.
    [11]Zimmerman C.H.,Characteristics of Clark Y airfoils of small aspect ratios,NACA Tech Rep TR,No.431,1932.
    [12]Alain Pelletier and Thomas J.Mueller,Low Reynolds Number Aerodynamics of Low Aspect-Ratio Wings,AIAA 99-3182.
    [13]Gabriel E.Torres and Thomas J.Mueller,Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Reynolds Number,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.115-141,2001.
    [14]李志国,朱鹏程,李锋,小展弦比机翼低雷诺数升阻特性试验研究,流体力学实验与测量,第18卷第4期,2004.
    [15]I.Gursul,G.Taylor,and C.L.Wooding,Vortex Flows over Fixed-Wing Micro Air Vehicles(Invited),AIAA 2002-0698.
    [16]Mohamed Gad-el-Hak,Micro Air Vehicles:Can They be Controlled Better?,Journal of Aircraft,2001,Vol.38,pp.419-429.
    [17]唐剑,朱克勤,小展弦比机翼流场中的涡运动现象,2003空气动力学前沿研究论文集,pp.415-420.
    [18]S.Oh and S.Jung,Experimental Study on the Near Field Structure of Wing-Tip Vortex,AIAA 2000-0792.
    [19]Lavi Zuhal and Morteza Gharib,Near Field Dynamics of Wing Tip Vortices,AIAA 2001-2710.
    [20]B.S.Baldwin and H.Lomax,Thin Layer Approximation and Algebraic Model for Seperated Turbulent Flows,AIAA 78-0257.
    [21]Stuart E.Rogers,Numerical Solution of the Incompressible Navier-Stokes Equations,NASA Technical Memorandum 102199,1990.
    [22]邓小兵,不可压缩流动的计算研究[硕士学位论文],中国空气动力研究与发展中心,2001.
    [23]Thomas J.Mueller and James D.Delaurier,Aerodynamics of Small Vehicles,Annu.Rev.Fluid Mech,2003,35:89-111.
    [24]Hoerner,S.F.,Fluid-Dynamic Drag,Hoerner Fluid Dynamics,Brick Town,NJ,1965,pp.7-16-7-21.
    [25]Hoerner,S.F.,and Borst,H.V.,Fluid-Dynamic Lift,Hoerner Fluid Dynamics,Brick Town,NJ,1975,pp.17-1-17-15.
    [26]Hui Li,O.R.Burggraf,and A.T Conlisk,On the Format:ion of a Tip-Vortex,AIAA 2000-0282.
    [27]Nilay Sezer-Uzol,Lyle N.Long,High-Accuracy Wake and Vortex Simulations Using a Hybrid Euler/Discrete Vortex Method,AIAA 2000-2029.
    [28]E.A.Anderson,C.T.Wright,and T.A.Lawton,Experimental Study of the Structure of the Wingtip Vortex,AIAA 2000-0269.
    [29]Yu Zhou,Hong J.Zhang,and James H.Whitelaw,Wing-Tip Vortex Measurement With Particle Image Velocimetry,AIAA 2004-2433.
    [30]Prandtl,L.,Tietjens,O.G.,Fundamentals of Hydro and Aeromechanics,Dover Publications,Inc.,New York,1957,pp.212-215.
    [31]李锋,石文,欧忠明,周伟江,微型飞行器气动特性和飞行控制,空气动力学学报,第23卷第1期,2005.
    [1]童秉纲,陆夕云,杨基明,尹协振,关于生物运动力学的研究,2003空气动力学前沿研究论文集.
    [2]Thomas J.Mueller and James D.Delaurier,Aerodynamics of Small Vehicles,Annu.Rev.Fluid Mech.2003.35:89-111.
    [3]K.D.Jones,S.J.Duggan and M.F.Platzer,Flapping-Wing Propusion for a Micor Air Vehicle,AIAA 2001-0126.
    [4]M.F.Neef and D.Hummel,Euler Solutions for a Finite-Span Flapping Wing,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.429-451,2001.
    [5]I.H.Tuncer,M.F.Platzer,A Computational Study of Flow Separation Characteristics and Wake Profiles Behind a Flapping Airfoil,AIAA 99-0648.
    [6]Knoller,R,Die Gesetze des luftwiderstandes,Flug und Motortechnik(Wien),Vol.3,No.21,1909,pp1-7.
    [7]Betz,A.,Ein Beitrag zur Erklarung des Segefluges,Zeitschrift fur Flugtechnik und Motorluftschiffahrt,Vol.3,Jan.1912,pp.269-272.
    [8]Katzmayr,R.,Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils,NACA Report No.147,Oct.,1922.
    [9]Birnbaum,W.,Das ebene Problem des schlagenden Fluels,Zeitschrift fur Angewandte Mathematik und Mechanik,Vol.4,No.4,Aug,,1924,pp.277-292.
    [10]K.D.Jones,B.M.Castro,O.Mahmoud,S.J.Pollard and M.F.Platzer,a Collaborative Numerical and Experimental Investigation of Flapping-Wing Propulsion,AIAA 2002-0706.
    [11]Birnbaum,W.,Der Schlagflugelpropeller und die kleinen Schwingungen elastisch befestigter Tragflugel,Zeitschrift fur Flugtechnik und Motorluftschiffahrt,Vol.15,1924,pp.128-134.
    [12]Yon Karman,T.and Burgers,J.M.,General Aerodynamic Theory-Perfect Fluids,Division E,Vol.Ⅱ,Aerodynamic Theory,Ed.Durand,W.F.,1943,pp.308.
    [13]Garrick,I.E.,Propulsion of a Flapping and Oscillating Airfoil,NACA Report No.567,1936.
    [14]Theodorsen,T.,General Theory of Aerodynamic Instability and the Mechanism of Flutter,NACA Report No.496,1935.
    [15]Silverstein,A.andJoyner,U.T.,Experimental Verification of the Theory of Oscillating Airfoils,NACA Report No.673,1939.
    [16]Bratt,J.B.,Flow Patterns in the Wake of an Oscillating Airfoil, Aeronautical Research Council,R&M2773,1953.
    [17]Jones,K.D.,Dohring,C.M.and Platzer,M.F.,Experimental and Computational Investigation of the Knoller-Betz Effect,AIAA Journal,Vol.36,No.7,May 1998.
    [18]Schmidt,W.,Der Wellpropeller,ein neuer Antrieb fuer Wasser-,Land-,und Luftfahrzeuge,Z.Flugwiss.Yol.13,1965,pp.472-479.
    [19]J.C.S.Lai and M.F.Platzer,The Jet Characteristics of a Plunging Airfoil,AIAA 98-0101.
    [20]王肇,宋红军,尹协振,二维机翼非定常运动的涡流场显示-沉浮运动,流体力学实验与测量,第18卷,第2期,2004年.
    [21]王肇,宋红军,尹协振,二维翼型非定常运动的涡流场显示-2俯仰运动和沉浮/俯仰联合运动,流体力学实验与测量,第18卷,第4期,2004年.
    [22]Michael S.Vest and Joseph Katz,Aerodynamic Study of a Flapping-Wing Micro-UAV,AIAA 99-0994.
    [23]K.D.Jones,C.M.Dohring and M.F.Platzer,Wake Structures Behind Plunging Airfoils:A comparison of Numerical and Experimental Results,AIAA 96-0078.
    [24]K.D.Jones and M.F.Platzer,Flapping-Wing Propulsion for a Micro Air Vehicle,AIAA 2000-0897.
    [25]K.D.Jones,B.M.Castro,O.Mahmoud and M.F.Platzer,a Numerical and Experimental Investigation of Flapping-Wing Propulsion in Ground Effect,AIAA 2002-0866.
    [26]Max F.Platzer and Kerrin S.Neace,Chung-Kiang Pang,Aerodynamic Analysis of Flapping Wing Propulsion,AIAA 93-0484.
    [27]Ismail H.Tuncer,Ralf Walz,Max F.Platzer,a Computational Study on the Dynamic Stall of a Flapping Airfoil,AIAA 98-2519.
    [28]K.Isogai and Y.Shinmoto,Y.Watanabe,Effects of Dynamic Stall Phenomena on Propulsive Efficiency and Thrust of a Flapping Airfoil,AIAA 97-1926.
    [29]Ravi Ramamurti and William Sandberg,Rainald Lohner,Simulation of Flow about Flapping Airfoils Using a Finite Element Incompressible Flow Solver,AIAA 99-0652.
    [30]R.Mittal,Y.Utturkar and H.S.Udaykumar,Computational Modeling and Analysis of Biomimetic Flight Mechanisms,AIAA 2002-0865.
    [31]J.Young and J.C.S.Lai,Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil,AIAA Journal,Vol.42,No.10,October 2004.
    [32]Ellington C P,et al,Leading-edge Vortices in Insect Flight,Nature,1996,384:626-630
    [33]Liu H,Ellington C P,Kawachi K,et al,A CFD Study of Hawk Moth Hovering,J.Exp.Biol.,1998,201(4):461-477.
    [34]Hao Liu and Keiji Kawachi,Leading-Edge Vortices of Flapping and Rotary Wings at Low Reynolds Number,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited byThomas J.Mueller,pp.275-285,2001.
    [35]Dickinson M H,et al,Wing Rotation and the Aerodynamic Basis of Insect Flight,Science,1999,284:1954-1960.
    [36]Mao Sun and Jian Tang,Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion,J.Exp.Biol.,2002,205:55-70.
    [37]Ravi Ramamurti and William C.Sandberg,Computational Study of 3-D Flapping Foil Flows,AIAA 2001-0605.
    [38]余永亮,童秉纲,马晖扬,陆夕云,昆虫悬停飞行的气动性能分析,2003空气动力学前沿研究论文集.
    [39]Fumiya Togashi,Yasushi Ito,Mitsuhiro Murayama,Kazuhiro Nakahashi and Takuma Kato,Flow Simulation of Flapping Wings of an Insect Using Overset Unstructured Grid,AIAA 2001-2619.
    [40]Koji Isogai and Yasuhisa Shinmoto,Study on Aerodynamic Mechanism of Hovering Insects,AIAA 2001-2470.
    [41]Koji Isogai,et al,Unsteady Three-Dimensional Viscous Flow Simulation of a Dragonfly Hovering,AIAA Journal,Vol.42,No.10,October 2004.
    [42]Gaitonde,A.L.,A Dual-time Method for the Solution of the Unsteady Euler Equations,Aeronautical Journal,October,1994.
    [43]朱自强等,应用计算流体力学,北京航空航天大学出版社,1998.
    [44]B.S.Baldwin and H.Lomax,Thin Layer Approximation and Algebraic Model for Seperated Turbulent Flows,AIAA 78-0257.
    [45]J.Alonso,L.Martinelli,A.Jameson,Multigrid Unsteady Navier-Stokes Equations Calculations with Aeroelastic Applications,AIAA 95-0048.
    [46]K.D.Jones,T.C.Lund and M.F.Platzer,Experimental and Computational Investigation of Flapping Wing Propulsion for Micro Air Vehicles,Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications,Edited by Thomas J.Mueller,pp.307-339,2001.
    [47]Lai,J.C.S.and Platzer,M.F.,Jet Characteristics of aPlunging Airfoil,AIAA Journal,Vol.37,No.12,1999,pp.1529-1537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700