生物启发下的渗透蒸发膜制备与过程强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜材料的研制是渗透蒸发技术发展的关键。目前在渗透蒸发过程中使用最为广泛的有机高分子膜材料,存在着通量低、溶剂耐受性差和使用寿命短等问题。自然界的生物体和生物组织在绿色、温和条件下,高效合成出种类繁多、结构精巧的高分子材料、无机材料和高分子-无机杂化材料。通过对材料结构、尺度、形貌和组装方式的精确控制,实现特定的功能。
     本论文以提高膜分离性能和使用稳定性为目标;受细胞膜组成、结构及形成过程以及生物矿化、生物粘合和生物膜促进传递现象启发;以成分和结构仿生、过程和制备仿生、功能和性能仿生为手段;以材料表面/界面结构调控为核心;以膜材料制备-膜结构控制-膜分离性能强化为线索;以清洁油品生产(正辛烷/噻吩二元模拟汽油脱硫过程)为研究对象,制备了多种结构精巧、性能优良的渗透蒸发膜材料。以期为渗透蒸发膜制备与过程强化开辟新的途径。
     首先,受生物膜促进传递现象启发,通过制备填充有过渡金属离子的促进传递膜材料,显著地提高了膜对汽油中有机硫组分的选择透过性。由于Ni2+Y沸石成本低廉,具有较高的稳定性,特别是与有机硫具有适宜的结合能,因此选用Ni2+Y沸石作为活性载体添加剂,制备固定载体促进传递膜。在操作温度30oC、原料液流速40L/h、原料液硫含量500ppm的条件下,所制备的促进传递膜表现出了优良的分离性能:渗透通量为3.26kg/(m2h),噻吩富集系数为4.84,促进传递因子大于2.0。对于PDMS空白膜和填充5wt% Ni2+Y沸石的杂化膜,扩散过程为控制步骤;然而对于填充量为10wt%、15wt%和20wt%的杂化膜,溶解过程为控制步骤,这主要是由于当沸石填充量较高时产生了较多的有机-无机界面缺陷。活性载体浓度和膜界面形态对膜的分离性能有显著的影响。
     随后,为了克服物理共混容易导致无机物团聚,产生界面缺陷及局部应力的问题,受海洋中硅藻类生物细胞壁生物矿化过程启发,通过w/o反相微乳,提供硅烷前躯体水解-缩合反应的微环境,通过界面调控实现硅烷前躯体的原位反应,并将硅烷前躯体水解-缩合反应和高分子低聚物交联过程耦合,一步制备高分子-无机杂化膜材料。热重结果表明,杂化膜中二氧化硅/高分子质量分数分别为6.98%、10.68%和14.88%。正电子湮没寿命谱仪测量结果表明,填入二氧化硅后膜自由体积孔穴半径分布显著变窄,并增加了杂化膜的自由体积分数值,这主要是由于二氧化硅纳米颗粒干扰PDMS高分子链排布所导致的。制备的PDMS膜材料具有更加均一的自由体积孔穴半径,更加适用于小分子混合物的精确分离。渗透蒸发实验结果表明,PDMS空白膜的渗透通量分别大约为6.6 kg/(m~2h),而填充质量分数14.88%二氧化硅的纳米复合膜通量则增加到10.8 kg/(m~2h);膜对噻吩的选择性从5.8小幅下降到4.8。另外考察了原料液温度、原料液流速对PDMS-SiO_2杂化膜渗透蒸发分离性能的影响。利用DMA测试了PDMS空白膜和PDMS-SiO_2杂化膜的机械强度,结果表明,添加二氧化硅后PDMS膜的储能模量显著提高,且膜的玻璃化转变温度也从-104.74oC升高到-99.89oC。
     接着,为了克服硅橡胶类高分子膜易于溶胀、不易超薄化等固有缺点,受生物粘合现象和生物膜结构和组成的启发,设计并制备出超薄、抗溶胀的渗透蒸发膜材料。受生物粘合现象启发,利用多巴胺自聚合成膜并牢固的粘附在多孔支撑层上的特点,制备由超薄活性分离层(<100nm)和多孔支撑层构成的复合膜材料。纳米划痕测试证明多巴胺和多孔支撑层之间具有很强的粘合力力,这主要是由于界面区大量的?-?键和氢键的相互作用导致的。XPS结果表明多巴胺在支撑层表面通过自聚合形成了一层聚合物薄膜。水接触角测量结果显示经涂覆多巴胺的支撑层表面的接触角较未涂覆的显著降低,亲水性显著提高。台阶仪测量结果表明,聚多巴胺的厚度随着涂覆时间的增加而增加。慢正电子寿命谱仪测试结果表明经过两次涂覆,膜的活性层变得更厚、更密实,并且在膜活性层-支撑层界面处发生富集。多巴胺溶液的pH值和浓度对于膜的自由体积分数有显著的影响。较高的pH值和较低的浓度会产生较大的自由体积分数,有利于小分子的扩散。当多巴胺溶液的pH值从7.5升高到9.5时,聚多巴胺/聚砜复合膜的渗透通量从6.9kg/(m2h)增加到8.0kg/(m2h),同时富集系数从2.86降低到2.32。当多巴胺溶液的浓度从1.0mg/ml升高到4.0mg/ml时,聚多巴胺/聚砜复合膜的渗透通量从7.86kg/(m2h)降低到5.95kg/(m2h),同时富集系数从2.05增加到3.21。另外考察了原料液温度、原料液流速和原料液浓度对聚多巴胺/聚砜复合膜渗透蒸发分离性能的影响以及膜长时间运行下的使用稳定性。
     最后,细胞膜是由非共价结合的脂质和蛋白质组成的超分子体系,具有亲水区、疏水区镶嵌的高度有序的不对称超级结构,以及自清洁、高抗污染、高度智能化、自修复的优异性能。受此启发,利用两亲性嵌段共聚物Pluronic F127作为表面改性剂修饰聚醚砜的表面,通过表面偏析技术制备亲水性的非对称的渗透蒸发膜。SEM照片显示出制备的膜材料具有典型的非对称结构;FTIR、XPS和接触角测量仪测试证实膜表面成功的进行了亲水改性。由于噻吩和正辛烷在水中的溶解度有着显著的差别,进而我们将制备的非对称膜用于渗透蒸发分离噻吩和正辛烷的混合物。实验结果显示制备的膜材料具有很强的抗溶胀特性。F127的含量对分离性能有着显著的影响:膜的渗透通量和噻吩的富集系数都在F127的含量约为60 wt%时达到峰值,对应的富集系数约为3.50,渗透通量约为3.10 kg/(m2h) (原料含硫量为500 mg/L,物料温度30?C)。另外系统的考察了原料液温度、原料液流速和原料液浓度等对分离性能的影响。
Membrane materials play a key role in the development of pervaporation technology. After several years of development, pervaporation membrane materials have made encouraging progress, but are still facing several problems, e.g., low flux, poor solvent resistance and short lifetime. Organisms and biological tissues can efficiently synthesize a wide range of polymeric, inorganic and polymer-inorganic hybrid materials with delicate structures under green and mild conditions. Through precise control of the material structure, size, morphology and assembly, organisms and biological tissues are able to achieve specific functions.
     In order to improve membrane separation performance and stability, a variety of novel pervaporation membranes with delicate and controllable structures were prepared in the present study. The as-prepared membranes were utilized as pervaporative desulfurization membranes and exhibited excellent separation performance.
     First, inspired by the phenomenon of facilitated transport in cell membranes, PDMS-Ni2+Y zeolite hybrid membranes were fabricated by incorporating transition metal ions that have specific interactions with organic sulfur compound into PDMS matrix. The permselectivity towards organic sulfur in gasoline was thus significantly increased. With the increase of Ni2+Y zeolite content, the permeation flux increased continuously, while the enrichment factor first increased and then decreased possibly due to the occurrence of defective voids within organic-inorganic interface region. The PDMS membrane containing 5.0 wt% Ni2+Y zeolite exhibited the highest enrichment factor (4.84) with a permeation flux of 3.26 kg/(m2 h) for 500ppm sulfur in feed at 30?C. The effects of operating conditions on the pervaporation performance were investigated in detail. It has been found that the interfacial morphology strongly influenced the separation performance of the hybrid membrane, and it was of great significance to rationally modify the interfacial region in order to improve the organic-inorganic compatibility.
     Then, physical blend of inorganic fillers with polymeric membranes was proun to generate aggregates of inorganic fillers, which brought about interfacial defects and local stress. Consequently, polymer-inorganic hybrid membrane materials (PDMS-SiO2) were in situ synthesized using w/o reverse microemulsion mimicking the diatom cell walls. Free volume properties could be readily tuned by controlling hydrolysis-condensation of the silane precursor and the oligomer crosslinking reaction. The permeation flux and mechanical strength of membranes were notably enhanced. As testified by TGA, hybrid membranes containing silica nanoparticles were clearly observed up to silica/polymer mass fraction of 6.98%, 10.68% and 14.88%. It was observed that silica incorporation considerably narrowed the free volume pore radius distribution and increased the FFV of the hybrid membranes, which was most possibly ascribed to the disrupting effect of silica nanoparticles toward the PDMS chain packing. The permeation flux of PDMS control membrane was 6.6 kg/(m2 h), while the permeation flux of PDMS-SiO2 hybrid membrane containing 14.88wt% was increased to 10.8 kg/(m2 h). The membrane selectivity towards thiophene was only slightly decreased from 5.8 to 4.8. The DMA analysis of the PDMS control and hybrid membranes containing 14.88wt% silica depicted the curves of the samples over a wide range of temperature. The storage modulus of the specimens increased with higher content of SiO2, revealing that the interactions between PDMS segmental chains and SiO2 allowed a fine load transfer and endowed improved mechanical strengths. The glass transition temperature of the hybrid membranes appeared to slightly increase from -104.74oC to -99.89oC.
     After that, in order to overcome the inherent shortcomings of silicone rubber polymer membranes, inspired by bio-adhesion and cell membrane structure, ultrathin and anti-swelling pervaporation membranes were fabricated. Inspired by the phenomenon of bio-adhesion, composite membranes were fabricated, which was composed of ultrathin polydopamine separation layer (<100nm) and porous support layer. Nanoindentation measurement revealed the tight adhesion of dopamine onto microporous substrate, which was ascribed to numerousπ-πand hydrogen-bonding interactions. XPS analysis demonstrated the self-polymerization of dopamine. The water contact angle of the dopamine coated membranes was reduced remarkably compared with that of the uncoated counterpart. Stylus profiler measurements display that the poly (dopamine) thickness increased as the coating time increased. Positron annihilation spectroscopy measurement revealed that after dopamine double-coating the active layer became thicker and more compact. Moreover, pH and concentration of the dopamine solution exert notable influence on the fractional free volume of the composite membranes. The permeation flux increased from 6.9 to 8.0 kg/(m2 h) with the pH switched from 7.5 to 9.5. Meanwhile, the enrichment factor decreased from 2.86 to 2.32. The permeation flux decreased from 7.86 to 5.95 kg/(m2 h) with the concentration switched from 1.0mg/ml to 4.0mg/ml. Meanwhile, the enrichment factor increased from 2.05 to 3.21. The effects of operating conditions on the pervaporation performance were investigated in detail.
     Finally, inspired by the cell wall structure, amphiphilic copolymer Pluronic F127 was employed as a surface modifier to fabricate polyethersulfone (PES) asymmetric pervaporation membranes via surface segregation. The SEM images showed an asymmetric structure of PES/Pluronic F127 membranes. The FT-IR spectroscopy, XPS and static water contact angle measurements confirmed the hydrophilic modification of the membrane surface. Based on the distinct difference of solubility inwater between thiophene and noctane, the prepared membranes were utilized to remove thiophene from n-octane by pervaporation. The effect of Pluronic F127 content on the pervaporation performance was evaluated experimentally. It has been found that both the permeation flux and enrichment factor exhibited a peak value of approximately 60 wt% of the Pluronic F127 content. The highest enrichment factor was around 3.50 with a permeation flux of 3.10 kg/(m2 h) for 500 ppm sulfur in the feed at 30?C. The influence of various operating parameters on the pervaporation performance was extensively investigated.
引文
[1]时钧,袁权,膜技术手册,北京:化学工业出版社,2001
    [2] Wijmans J G, Smolders C A, The solution-diffusion model: a review, J. Membr. Sci., 1995, 107: 1~21
    [3] Jonquières A, Clément R, Lochon P et al, Industrial state-of-the-art of pervaporation and vapour permenation in the western countries, J. Membr. Sci., 2001, 206: 87~117
    [4] Zhang S, Drioli E, Review: Pervaporation membranes, Sep. Sci. Tech., 1995, 30: 1~31
    [5]陈镇,秦培勇,陈翠仙,渗透汽化和蒸汽渗透技术的研究、应用现状及发展,膜科学与技术,2003,23:103~107
    [6] Lipnizki P, Field R W, Ten P K, Pervaporation-based hybrid process: A review of process design, applications and economics, J. Membr. Sci., 1999, 153: 183~210
    [7] Feng X, Huang R Y M, Liquid separation by membrane pervaporation: A review, Ind. Eng. Chem. Res., 1997, 36: 1048~1066
    [8]陈翠仙,余立新,祁喜旺,渗透汽化膜分离技术的进展及在石油化工中的应用,膜科学与技术,1997,17:14~18
    [9] Hoof V V, Abeele L V, Buekenhoudt A et al, Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol, Sep. Purif. Tech., 2004, 37: 33~49
    [10] Chen H Z, Advances in desulfurization of FCC gasoline, Sci. Technol. Chem. Ind., 2004, 12: 46~51
    [11] White L S, Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes, J. Membr. Sci., 2006, 286: 26~35
    [12] Krishnaiah G, Cartwright T, S-Brane Technology Brings Flexibility To Refiners’Clean Fuel Solutions, 2004 NPRA Annual Meeting, San Antonio, TX, 2004
    [13] Ma X, Song C, A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications, Catal. Today, 2002, 77: 107~116
    [1]时钧,袁权,膜技术手册,北京:化学工业出版社,2001
    [2] Wijmans J G, Smolders C A, The solution-diffusion model: a review, J. Membr. Sci., 1995, 107: 1~21
    [3] Jonquières A, Clément R, Lochon P et al, Industrial state-of-the-art of pervaporation and vapour permenation in the western countries, J. Membr. Sci., 2001, 206: 87~117
    [4] Zhang S, Drioli E, Review: Pervaporation membranes, Sep. Sci. Tech., 1995, 30: 1~31
    [5]陈镇,秦培勇,陈翠仙,渗透汽化和蒸汽渗透技术的研究、应用现状及发展,膜科学与技术,2003,23:103~107
    [6] Lipnizki P, Field R W, Ten P K, Pervaporation-based hybrid process: A review of process design, applications and economics, J. Membr. Sci., 1999, 153: 183~210
    [7] Feng X, Huang R Y M, Liquid separation by membrane pervaporation: A review, Ind. Eng. Chem. Res., 1997, 36: 1048~1066
    [8]陈翠仙,余立新,祁喜旺,渗透汽化膜分离技术的进展及在石油化工中的应用,膜科学与技术,1997,17:14~18
    [9] Hoof V V, Abeele L V, Buekenhoudt A et al, Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol, Sep. Purif. Tech., 2004, 37: 33~49
    [10] Chen H Z, Advances in desulfurization of FCC gasoline, Sci. Technol. Chem. Ind., 2004, 12: 46~51
    [11] White L S, Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes, J. Membr. Sci., 2006, 286: 26~35
    [12] Krishnaiah G, Cartwright T, S-Brane Technology Brings Flexibility To Refiners’Clean Fuel Solutions, 2004 NPRA Annual Meeting, San Antonio, TX, 2004
    [13] Ma X, Song C, A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications, Catal. Today, 2002, 77: 107~116
    [27] Minhas B S, Chuba M R, Saxton R J, Membrane process for separating sulfur compounds from FCC light naphtha, U.S. Patent, 6649061, 2003-11-18
    [28] Saxton R J, Minhas B S, Ionic membranes for organic sulfur separation from liquid hydrocarbon solutions, U.S. Patent, 6702945, 2004-03-09
    [29] Sartori G, Ho W W, Noone R E, Ballinger B H, Fluorinated polyolefin membranes for aromatics/saturates separation, U.S. Patent, 5396019, 1995-03-07
    [30] White L S, Wormsbecher R F, Lesemann M, Membrane separation for sulfur reduction, U.S. Patent, 7048846, 2006-5-23
    [31] Qi R B, Zhao C W, Li J D et al, Removal of thiophenes from n-octane/thiophene mixtures by pervaporation, J. Membr. Sci., 2006, 269: 94~100
    [32] Qi R B, Wang Y J, Li J D et al, Pervaporation separation of alkane/thiophene mixtures with PDMS membrane, J. Membr. Sci., 2006, 280: 545~552
    [33] Qi R B, Wang Y J, Li J D et al, Sulfur removal from gasoline by pervaporation: The effect of hydrocarbon species, Sep. Purif. Tech., 2006, 51: 258~264
    [34] Qi R B, Wang Y J, Chen J et al, Removing thiophenes from n-octane using PDMS-AgY zeolite mixed matrix membranes, J. Membr. Sci., 2007, 295: 114~120
    [35] Qi R B, Wang Y J, Chen J et al, Pervaporative desulfurization of model gasoline with Ag2O-filled PDMS membranes, Sep. Purif. Tech., 2007, 57: 170~175
    [36]陈天泉,陈金勋,李继定等,正庚烷/有机硫体系渗透汽化脱硫,膜科学与技术,2007,27:87~95
    [37]赵长伟,李继定,赵之平等,PDMS有机硅膜的制备及其渗透汽化脱硫的研究,膜科学与技术,2006,26:72~75
    [38] Lin L G, Kong Y, Wang G et al, Selection and crosslinking modification of membrane material for FCC gasoline desulfurization, J. Membr. Sci., 2006, 285: 144~151
    [39] Lin L G, Wang G, Qu H M et al, Pervaporation performance of crosslinked polyethylene glycol membranes for deep desulfurization of FCC gasoline, J. Membr. Sci., 2006, 280: 651~658
    [40] Kong Y, Lin L G, Yang J R et al, FCC gasoline desulfurization by pervaporation: Effects of gasoline components, J. Membr. Sci., 2007, 293: 36~43
    [41] Lin L G, Kong Y, Yang J R et al, Scale-up of pervaporation for gasoline desulphurization part 1. simulation and design, J. Membr. Sci., 2007, 298: 1~13
    [42] Lin L G, Kong Y, Xie K K et al, Polyethylene glycol/ polyurethane blend membranes for gasoline desulphurization by pervaporation technique, Sep. Purif.Tech., 2007, 61: 293~300
    [43] Lin L G, Zhang Y Z, Li H, Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species, J. Colloid Interface Sci., 2010, 350: 355~360
    [44] Qu H M, Kong Y, Lv H L et al, Effect of crosslinking on sorption, diffusion and pervaporation of gasoline components in hydroxyethyl cellulose membranes, Chem. Eng. J., 2010, 157: 60~66
    [45]崔福斋,郑传林,仿生材料,北京:化学工业出版社,2001
    [46] Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membrane, Macromolecules, 1999, 32: 375~380
    [47] Noble R D. Kinetic efficiency factor for facilitated transport membranes, Sep. Sci. Technol., 1985, 20: 577~585
    [48] Berendsen H J C, Postma J P M, FunsterenW F. Molecular dynamics with coupling to an external bath, J.Chem. Phys., 1984, 81: 368~43690
    [49] Yu M X, Li Z, Xia Q B, Effect of different metal ions loaded onto activated carbon on adsorption of benzothiophene, Journal of Chemical Industry and Engineering (China), 2006, 57: 1944~1948
    [50]炅礼光,沈江南,陈欢林,固载促进传递膜的研究进展,膜科学与技术,2004,6:233~239
    [51]石巍,张凤宝,张国亮,固定载体促进传递研究进展,过程工程学报,2002,2:476~479
    [52] Kim J H,Min B R,Won J, Complexation mechanism of olefin with silver ions dissolved in a polymer matrix and its effect on facilitated olefin transport, Chem. Eur. J., 2002, 80: 650~654
    [53] Kim C K, Kiln H S, Won J, Density functional theory on reaction mechanism of silver ions with ethylene in facilitated transport membranes: A modeling study, J. Phys. Chem., 2001, 105: 9024~9028
    [54] Sunderrrajan S, Freeman B D, Hall C K, Propane and propylene sorption in solid polymer electrolytes based on poly (ethylene oxide) and silver salts, J. Membr. Sci., 2001, 182: 1~12
    [55] Susheela B, Sridhar S, Khan A A. Recovery of propylene from refinery off gas using mental incorporated ethylcellulose membranes, J. Membr. Sci., 2000, 174: 67~79
    [56] Shen J N, Wu L G, Chen H L, Separation cyclohexene/cyclohexane mixtures withfacilitated transport membrane of poly(vinyl alcohol)-Co2+, Sep. Sci. Technol., 2005, 45: 103~108
    [57] Elliott B J, Willis W B, Bowman C N, Pseudo-crown ethers as fixed site carriers in facilitated transport membranes, J. Membr. Sci., 2000, 168: 109~199
    [58] Thunhorst K L, Noble R D, Bowman C N, Properties of the transport of alkal metal salts through polymeric membranes containing benzo-18-crown-6 crown ether functional groups, J. Membr. Sci., 1999, 156: 293~302
    [59] Barboiu M, Guizard C, Luca C, Hybrid organic-inorganic fixed site dibenzo-l8-crown-6 complexant membranes, J. Membr. Sci., 1997, 129: 197~207
    [60] Sungpet A, Way J D, Theon P M, Reactive polymer membranes for ethylen/ethane separation, J. Membr. Sci., 1997, 136: 111~120
    [61] Munch E, Launey M E, Alsem D H et al, Tough, bio-inspired hybrid materials, Science, 2008, 322: 1516~1520
    [62] Zhu D, Paine M L, Luo W et al, Altering biomineralization by protein design, J. Biol. Chem., 2006, 281: 21173~21182
    [63] Moreau J W, Weber P K, Martin M C et al, Extracellular proteins limit the dispersal of biogenic nanoparticles, 2007, Science, 316: 1600~1603
    [64] Schr?der H C, Wang X, Tremel W et al, Biofabrication of biosilica-glass by living organisms, Nat. Prod. Rep., 2008, 25: 455~474
    [65] Weiner S, Biomineralization: A structural perspective, J. Struct. Biol., 2008, 163: 229~234
    [66] Fan T, Chow S, Zhang D, Biomorphic mineralization: From biology to materials, Prog. Mater. Sci., 2009, 54: 542~659
    [67] Belton D J, Patwardhan S V, Annenkov V V et al, From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonationof polyamines, PNAS, 2008, 105: 5963~5968
    [68] Kharlampieva E, Slocik J M, Singamaneni S et al, Protein-enabled synthesis of monodisperse titania nanoparticles on and within polyelectrolyte matrices, Adv. Funct. Mater., 2009, 19: 2303~2311
    [69] Pouget E, Dujardin E, Cavalier A et al, Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization, Nat. Mater., 2007, 6: 434~439
    [70] Kisailus D, Schwenzer B, Gomm J et al, Kinetically controlled catalytic formation of zinc oxide thin films at low temperature, J. Am. Chem. Soc., 2006, 128:10276~10280
    [71] Kharlampieva E, Tsukruk T, Slocik J M et al, Bioenabled surface-mediated growth of titania nanoparticles, Adv. Mater., 2008, 20: 3274~3279
    [72] Brutchey R L, Yoo E S, Morse D E, Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature, J. Am. Chem. Soc., 2006, 128: 10288~10294
    [73] Cha J N, Stucky G D, Morse D E et al, Biomimetic synthesis of ordered silica structures mediated by block copolypeptides, Nature, 2002, 403: 289~292
    [74] Leng B, Chen X, Shao Z et al, Biomimetic synthesis of silica with chitosan-mediated morphology, Small, 2008, 4: 755~758
    [75] Sanchez C, Arribart H, Guille M M G, Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nat. Mater., 2005, 4: 277~288
    [76] Jiang Y J, Yang D, Zhang L et al, Preparation of protamine-titania microcapsules through synergy between layer-by-layer assembly and biomimetic mineralization, Adv. Funct. Mater., 2009, 19: 150~156
    [77] Zhang Y F, Wu H, Li J et al, Protamine-templated biomimetic hybrid capsules: efficient and stable carrier for enzyme encapsulation, Chem. Mater., 2008, 20: 1041~1048
    [78] Zou H, Wu S, Shen J, Polymer/silica nanocomposites: preparation, characterization, properties, and applications, Chem. Rev., 2008, 108: 3893~3957
    [79] Kazes M, Saraidarov T, Reisfeld R et al, Organic-inorganic sol-gel composites incorporating semiconductor nanocrystals for optical gain applications, Adv. Mater., 2009, 21: 1716~1720
    [80] Snyder M A, Tsapatsis M, Hierarchical nanomanufacturing: from shaped zeolite nanoparticles to high performance separation membranes, Angew. Chem. Int. Ed., 2007, 46: 7560~7573
    [81] Valle K, Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer, Nat. Mater., 2006, 5: 107~111
    [82] Gautier C, Abdoul-Aribi N, Roux C et al, Coradin T, Biomimetic dual templating of silica by polysaccharide/protein assemblies, Colloids Surf., B: Biointerf., 2008, 65: 140~145.
    [83] Coradin T, Bah S, Livage J, Gelatine/silicate interactions: from nanoparticles to composite gels, Colloids Surf., B: Biointerf., 2004, 35: 53~58.
    [84] Coradin T, Marchal A, Abdoul-Aribi N et al, Gelatine thin films as biomimeticsurfaces for silica particles formation, Colloids Surf., B: Biointerf., 2005, 44: 191~196
    [85] Pan F S, Cheng Q L, Jia H P et al, Facile approach to polymer-inorganic nanocomposite membrane through a biomineralization inspired process, J. Membr. Sci., 2010, 357: 171~177
    [86] Cheng Q L, Pan F S, Chen B et al, Preparation and dehumidification performance of composite membrane with PVA/gelatin-silica hybrid skin layer, J. Membr. Sci., 2010, 363: 316~325
    [87] Pan F S, Jia H P, Cheng Q L et al, Bio-inspired fabrication of composite membranes with ultrathin polymer-silica nanohybrid skin layer, J. Membr. Sci., 2010, 362: 119~126
    [88] Patwardhan S V, Taori V P, Hassan M, An investigation of the properties of poly(dimethylsiloxane)-bioinspired silica hybrids, Eur. Polym. J., 2006, 42: 167~178
    [89]贺宏彬,王晓光,宋阳等,天然海洋生物胶粘剂的研究进展,中国胶粘剂,2006,15:42~45
    [90] Lin Q, Gourdon D, Sun C J et al, Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3, PNAS, 2007, 104: 3782~3786
    [91] Dalsin J L, Messersmith P B, Bioinspired antifouling polymers, Mater. Today, 2005, 8: 38~46
    [92] Deacon M P, Davis S S, Waite J H et al, Structure and mucoadhesion of mussel glue protein in dilute solution, Biochemistry, 1998, 37: 14108~14112
    [93] Stevens M, Steren R E, Hlady V et al, Multiscale structure of the underwater adhesive of phragmatopoma californica: a nanostructured latex with a steep microporosity gradient, Langmuir, 2007, 23: 5045~5049
    [94] Endrizzi B J, Stewart R J, Glueomics: an expression survey of the adhesive gland of the sandcastle worm, J. Adhes., 2009, 85: 546~559
    [95] Lee H, Dellatore SM, Miller WM et al, Mussel-inspired surface chemistry for multifunctional coatings, Science, 2007, 318: 426~430
    [96] Lee H, Lee BP, Messersmith PB, A reversible wet/dry adhesive inspired by mussels and geckos, Nature, 2007, 448: 338~341
    [97] Lee H, Rho J, Messersmith PB, Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings, Adv. Mater., 2008, 20: 1-4
    [98] Lee H, Lee Y, Statz AR et al, Messersmith PB, Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers, Adv. Mater., 2008, 20: 1619~1623
    [99] Fan X, Lin L, Dalsin J L et al, Biomimetic anchor for surface-initiated polymerization from metal substrates, J. Am. Chem. Soc., 2005, 127: 15843~15847
    [100] Dalsin J L, Messersmith P B, Bioinspired antifouling polymers, Mater. Today, 2005, 8: 38~46
    [101] Kouketsu T, Duan S, Kai T et al, PAMAM dendrimer composite membrane for CO2 separation: Formation of a chitosan gutter layer, J. Membr. Sci., 2007, 287: 51~59
    [102] Chen J, Chen X, Yin X et al, Bioinspired fabrication of composite pervaporation membranes with high permeation flux and structural stability, J. Membr. Sci., 2007, 287: 51~59
    [103] Ma J, Zhang M H, Wu H et al, Mussel-inspired fabrication of structurally stable chitosan/polyacrylonitrile composite membrane for pervaporation dehydration, J. Membr. Sci., 20103, 48: 150~159
    [104] Pan F S, Jia H P, Qiao S Z et al, Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer, J. Membr. Sci., 2009, 341: 279~285
    [105] Ma J, Zhang M H, Jiang Z Y, Facile fabrication of structurally stable hyaluronic acid-based composite membranes inspired by bioadhesion, J. Membr. Sci., in press
    [106] Wang J T, Xiao L L, Zhao Y N et al, A facile surface modification of Nafion membrane by the formation of self-polymerized dopamine nano-layer to enhance the methanol barrier property, J. Power Sources, 2009, 192: 336~343
    [107] Xi Z Y, Xu Y Y, Zhu L P et al, A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine), J. Membr. Sci., 2009, 327: 244~253
    [108] Jiang J H, Zhu L P, Li X L, Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin, J. Membr. Sci., in press
    [109] McCloskey B D, Park H B, Ju H et al, Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes, Polymer, 2010, 51: 3472~3485
    [110] Wang Y Q, Wang T, Su Y L et al, Remarkable reduction of irreversible fouling and improvement of permeation properties of polyethersulfone ultrafiltration membrane by blending with F127, Langmuir, 2005, 21: 11856~11862
    [111] Suk D E, Chowdhury G, Matsuura T, Study on the kinetics of surface migrationof surface modifying macromolecules in membrane preparation, Macromolecules, 2002, 35: 3017~3021
    [112] Richard R T, Douglas R A, William F G et al., Preparation and surface properties of acrylic polymers containing fluorinated monomers, Macromolecules, 1997, 30: 2883~2890
    [113] Chen W, McCarthy T J, Adsorption/migration of a perfluorohexylated fullerene from the bulk to the polymer/air interface, Macromolecules, 1999, 32: 2342~2347
    [114] Ebbens S J, Badyal J P S, Surface enrichment of fluorochemical-doped polypropylene films, Langmuir, 2001, 17: 4050~4055
    [115] Yasuhiko I, Kazunari A, Highly wettable polyethylene films generated by spontaneous surface enrichment of perfluoroalkylated phosphorylcholines, J. Appl. Polym. Sci., 2006, 102: 2868~2874
    [116] Schultz P J, Lynn K G, Interaction of positron beams with surfaces, thin films and interfaces, Rev. Mod. Phys., 1988, 60: 701~780
    [117] Wang L H, Zhao Z P, Li J D et al, Synthesis and characterization of fluorinated polyimides for pervaporation of n-heptane/thiophene mixtures, Eur. Polym. J., 2006, 42: 1266~1272
    [118] Matuschewshi H, Schedler U, MSE-modified membranes in organophilic pervaporation for aromatics/aliphatics separation, Desalination, 2008, 224: 124~131
    [119] Wang Y H, Yang F H, Yang R T, Desulfurization of high-sulfur jet fuel byπ-complexation with copper and palladium halide sorbents, Ind. Eng. Chem. Res., 2006, 45: 7649~7655
    [120] Yu M X, Li Z, Xia Q B et al, Effect of different metal ions loaded onto activated carbon on adsorption of benzothiophene, J. Chem. Indus. Eng., 2006, 57: 1943~1948
    [121] Andrea T A, Swope W C, Andersen H C, The Role of Long Ranged Forces in Determining the Structure and Properties of Liquid Water, J. Chem. Phys., 1983, 79: 4576~4584
    [122] Berendsen H J C, Postma J P M, Funsteren W F, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, 81: 3684~3690
    [123] Peng F B, Lu L Y, Hu C L et al, Significant increase of permeation flux and selectivity of poly(vinyl alcohol) membranes by incorporation of crystalline flake graphite, J. Membr. Sci., 2005, 259: 65~73
    [124] Peng F B, Lu L Y, Sun H L et al, Hybrid organic- inorganic membrane: solving the tradeoff between permeability and selectivity, Chem. Mater., 2005, 17: 6790~6796
    [125] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford: Oxford University Press, 2001
    [126] Kr?ger N, Lorenz S, Brunner E et al, Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis, Science, 2002, 298: 584~586
    [127] Brutchey R L, Morse D E, Silicattein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis, Chem. Rev., 2008, 108: 4915~4934
    [128] Li J, Jiang Z Y, Wu H et al, Constructing inorganic shell onto LBL microcapsule through biomimetic mineralization: A novel and facile method for fabrication of microbioreactors, Soft Matter, 2010, 6: 542~550
    [129] Shiomi T, Tsunoda T, Kawai A et al, Biomimetic synthesis of lysozyme - silica hybrid hollow particles using sonochemical treatment: Influence of ph and lysozyme a concentration on morphology, Chem. Mater., 2007, 19: 4486~4493
    [130] Ramanathan M, Luckarift H R, Sarsenovad A et al, Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications, Colloids Surf., B 2009, 73: 58~64
    [131] Cardoso M B, Luckarift H R, Urban V S et al, Protein localization in silica nanospheres derived via biomimetic mineralization, Adv. Funct. Mater., 2010, 20: 3031~3038
    [132] Hawkins K M, Wang S, Ford D M et al, Poly-L-lysine templated silicas: Using polypeptide secondary structure to control oxide pore architectures, J. Am. Chem. Soc., 2004, 126: 9112~9119
    [133] Tomczak M M, Glawe D D, Drummy L F et al, Polypeptide-templated synthesis of hexagonal silica platelets, J. Am. Chem. Soc., 2005, 127: 12577~12582
    [134] Altunbas A, Sharma N, Lamm M S et al, Peptide-silica hybrid networks: Biomimetic control of network mechanical behavior, ACS Nano, 2010, 4: 181~188
    [135] Kr?ger N, Deutzmann R, Sumper M, Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science, 1999, 286: 1129~1132
    [136] Leng B, Shao Z, Bomans P H et al, Cryogenic electron tomography reveals the template effect of chitosan in biomimetic silicification, Chem. Comm., 2010, 46: 1703~1705
    [137] Lutz K, Gr?ger C, Sumper M et al, Biomimetic silica formation: Analysis of the phosphate-induced self-assembly of polyamines, Phys. Chem. Chem. Phys., 2005, 7: 2812~2815
    [138] Begum G, Rana R K, Singh S et al, Bioinspired silicification of functional materials: Fluorescent monodisperse mesostructure silica nanospheres, Chem. Mater., 2010, 22: 551~556
    [139] Bernecker A, Wieneke R, Riedel R et al, Tailored synthetic polyamines for controlled biomimetic silica formation, J. Am. Chem. Soc., 2010, 132: 1023~1031
    [140] Belton D J, Patwardhan S V, Perry C C et al, Spermine, spermidine and their analogues generate tailored silicas, J. Mater. Chem., 2005, 15: 4629~4638
    [141] Yokoi T, Sakamoto Y, Terasaki O et al, Periodic arrangement of silica nanospheres assisted by amino acids, J. Am. Chem. Soc., 2006, 128: 13664~13665
    [142] Yokoi T, Wakabayashi J, Otsuka Y et al, Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids, Chem. Mater., 2009, 21: 3719~3729
    [143] Davis T M, Snyder M A, Krohn J E et al, Nanoparticles in lysine-silica sols, Chem. Mater., 2006, 18: 5814~5816
    [144] Gautier C, Lopez P J, Livage J et al, Influence of poly-l-lysine on the biomimetic growth of silica tubes in confined media, J. Colloid Interf. Sci., 2007, 309: 44~48
    [145] Gautier C, Lopez P J, Hemadi M et al, Biomimetic growth of silica tubes in confined media, Langmuir, 2006, 22: 9092~9095
    [146] EI Rassy H, Belamie E, Livage J et al, Onion phases as biomimetic confined media for silica nanoparticle growth, Langmuir, 2005, 21: 8584~8587
    [147] Lai J, Chuang T, Jan J et al, Efficient and stable enzyme immobilization in a block copolypeptide vesicle-templated biomimetic silica support, Colloids Surf., B, 2010, 80: 51~58
    [148] Brunner E, Richthammer P, Ehrlich H et al, Chitin-based organic networks: An integral part of cell wall biosilica in the diatom thalassiosira pseudonana, Angew. Chem. Int. Ed., 2009, 48: 9724~9724
    [149] Simpson T L, Volcani B E, Silicon and siliceous structures in biological systems, New York: Springer-Verlag, 1981
    [150] Pileni M, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals, Nat. Mater., 2003, 2: 145~150
    [151] Mann S, Molecular recognition in biomineralization, Nature, 1988, 332: 119~124
    [152] Sumerel J L, Yang W, Kisailus D et al, Biocatalytically templated synthesis oftitanium dioxide, Chem. Mater., 2003, 15: 4804~4809
    [153] Pohl E R, Osterholtz F D, Molecular characterization of composite interfaces, New York: Plenum, 1985
    [154] Mark J E, Acc. Some interesting things about polysiloxanes, Chem. Res., 2004, 37: 946~953
    [155] Balazs A C, Emrick T, Russell T P, Nanoparticle polymer composites: Where two small worlds meet, Science, 2006, 314: 1107~1110
    [156] Sever M J, Weisser J T, Monahan J et al, Metal-mediated cross-linking in the generation of a marine-mussel adhesive, Angew. Chem. Int. Ed., 2004, 43: 448~450
    [157] Waite J H, Qin X X, Polyphosphoprotein from the adhesive pads of Mytilus edulis, Biochemistry, 2001, 40: 2887~2893
    [158] Yu M, Hwang J, Deming T J, Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins, J. Am. Chem. Soc., 1999, 121: 5825~5826
    [159] Papov V V, Diamond T V, Biemann K et al, Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel mytilus-edulis, J. Biol. Chem., 1995, 270: 20183~20192
    [160] Yu M, Deming T J, Synthetic polypeptide mimics of marine adhesives, Macromolecules, 1998, 31: 4739~4745
    [161] Haemers S, Koper G J M, Frens G, Effect of oxidation rate on cross-linking of mussel adhesive proteins, Biomacromolecules, 2003, 4: 632~640
    [162] Burzio L A, Waite J H, Cross-linking in adhesive quinoproteins: Studies with model decapeptides, Biochemistry, 2000, 39: 11147~11153
    [163] Monahan J, Wilker J J, Cross-linking the protein precursor of marine mussel adhesives: Bulk measurements and reagents for curing, Langmuir, 2004, 20: 3724~3729
    [164] Lee H, Dellatore S M, Miller W M et al, Mussel-inspired surface chemistry for multifunctional coatings, Science, 2007, 318: 426~430
    [165] Waite J H, Surface chemistry-Mussel power, Nat. Mater., 2008, 7: 8~9
    [166] Lee H, Rho J, Messersmith P B, Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings, Adv. Mater., 2009, 21: 431~434
    [167] Koros W J, Mahajan R, Pushing the limits on possibilities for large scale gas separation: which strategies?, J. Membr. Sci., 2000, 175: 181~196
    [168] Hyder M N, Huang R Y M, Chen P, Effect of selective layer thickness onpervaporation of composite poly(vinyl alcohol)-poly(sulfone) membranes, J. Membr. Sci., 2008, 318: 387~396
    [169] Yeom C K, Lee K H, Characterization of sodium alginate and poly(vinyl alcohol) blend membranes in pervaporation separation, J. Appl. Polym. Sci., 1998, 67: 949~959
    [170] Yeom C K, Lee K H, Vapor permeation of ethanol-water mixtures using sodium alginate membranes with crosslinking gradient structure, J. Membr. Sci., 1997, 135: 225~235
    [171] Huang R Y M, Pal R, Moon G Y, Crosslinked chitosan composite membrane for the pervaporation dehydration of alcohol mixtures and enhancement of structural stability of chitosan polysulfone composite membranes, J. Membr. Sci., 1999, 160: 17~30
    [172] Hu C L, Guo R L, Li B et al, Development of novel mordenite-filled chitosan-poly(acrylic acid) polyelectrolyte complex membranes for pervaporation dehydration of ethylene glycol aqueous solution, J. Membr. Sci., 2007, 293: 142~150
    [173] Li Y, Liu M, Xiang C et al, Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions, Thin Solid Films, 2006, 497, 270~278
    [174] Bernsmann F, Richert L, Senger B et al, Use of dopamine polymerisation to produce free-standing membranes from (PLL-HA)(n) exponentially growing multilayer films, Soft Matter, 2008, 4: 1621~1624
    [175] van der Leeden M C, Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins?, Langmuir, 2005, 21: 11373~11379
    [176] Schultz P J, Lynn K G, Interaction of positron beams with surfaces, thin-films, and interfaces, Rev. Mod. Phys. 1988, 60: 701~779
    [177] Lee H, Scherer N F, Messersmith P B, Single-molecule mechanics of mussel adhesion, PNAS, 2006, 103: 12999~13003
    [178] Zou X, Chan Y C, Webb D P, Photoinduced dehydrogenation of defects in undoped a-Si : H using positron annihilation spectroscopy, Phys. Rev. Lett., 2000, 84: 769~772
    [179] Wynn N, Pervaporation comes of age, Chem. Eng. Prog., 2001, 97: 66~72
    [180] George S C, Ninan K N, Thomas S, Pervaporation separation of chlorinated hydrocarbon and acetone mixtures with cross-linked styrene-butadiene rubber andnatural rubber blend membranes, J. Membr. Sci., 2000, 176: 131~142
    [181] Niang M, Luo G, Schaetzel P, Pervaporation separation of methyl tert-butyl ether/methanol mixtures using a high performance blended membrane, J. Appl. Polym. Sci., 1997, 64: 875~882
    [182] Huang R Y M, Pal R, Moon G Y, Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two-ply composite membranes supported by poly(vinylidene fluoride) porous membrane, J. Membr. Sci., 2000, 167: 275~289
    [183] Bhatt A A, Pangarkar V G, Methanol-selective membranes for the pervaporation separation of methanol–toluene mixtures, J. Membr. Sci., 2000, 167: 187~201
    [184] Neel J, Aptel P, Clement R, Basic aspects of pervaporation, Desalination, 1985, 53: 297~326
    [185] Inui K, Tsukamato K, Miyata T et al, Permeation and separation of benzene cyclohexane mixture through benzoylchitosan membranes, J. Membr. Sci., 1998, 138: 67~75
    [186] Tsai H A, Li L D, Lee K R et al, Effect of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes, J. Membr. Sci., 2000, 176: 97~103
    [187] Wang D M, Lin F C, Wu T T et al, Pervaporation of water-ethanol mixtures through symmetric and asymmetric TPX membranes, J. Membr. Sci., 1997, 123: 35~46
    [188] Machado P S T, Habert A C, Borges C P, Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes, J. Membr. Sci., 1999, 155: 171~183
    [189] Mosqueda-Jimenez D B, Narbaitz R M, Matsuura T et al, Influence of processing conditions on the properties of ultrafiltration membranes, J. Membr. Sci., 2004, 231: 209~224
    [190] Zhao W, Su Y L, Li C et al, Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent, J. Membr. Sci., 2008, 378: 405~412
    [191] Jie X M, Cao Y M, Qin J J et al, Influence of drying method on morphology and properties of asymmetric cellulose hollow fiber membrane, J. Membr. Sci., 2005, 246: 157~165
    [192] Wang Y J, Kim D, PEGDA/PVdF/F127 gel type polymer electrolyte membranesfor lithium secondary batteries, J. Power Sources, 2007, 166: 202~210
    [193] Zhang R, Weng W J, Du P Y et al, Effect of Pluronic F127 on the pore structure of macrocellular biodegradable polylactide foams, Polym. Adv. Technol., 2004, 15: 425~430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700