高性能双压力角非对称齿轮传动啮合机理及承载能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的发展,要求齿轮的传动性能不断提高,常用的标准渐开线齿轮越来越难以满足实际生产的要求。由于渐开线齿轮的承载能力与压力角有很大关系,为了提高齿轮传动系统的综合承载能力,降低噪音和振动,设计了一种新型不同压力角的非对称渐开线齿轮。本文对非对称渐开线齿轮的承载能力和啮合特性进行了深入系统的理论分析和试验研究,主要的研究内容如下:
     (1)设计了非对称齿条刀具,推导了非对称齿轮齿廓坐标方程和齿根过渡曲线方程以及各齿形参数的几何尺寸计算公式,探讨了齿顶变尖情况,对比了对称齿轮与非对称齿轮的4种齿根过渡曲线,同时建立了非对称齿轮共轭齿形的坐标变换矩阵,研制开发了齿轮自动生成程序,并对轮齿模型进行了仿真分析,为后面的研究奠定了理论基础。
     (2)通过迭代计算和优化策略提出非对称齿轮齿根弯曲应力解析法,并推导出非对称齿轮在单、双齿啮合区上、下界点和啮合节点的综合曲率半径和齿面接触应力的解析法计算公式。建立了非对称齿轮齿根弯曲应力有限元分析模型,根据有限元非线性理论建立了非对称齿轮接触应力分析模型,通过两种方法对不同压力角组合的非对称齿轮齿根弯曲应力和齿面接触应力进行了计算与对比,分析了齿根弯曲应力和齿面接触应力在一个啮合周期中的变化规律和相关影响因素,同时给出非对称齿轮传动系统设计方法。
     (3)基于非对称齿轮啮合机理和系统时变啮合刚度以及综合传递误差的影响,建立了非对称齿轮非线性动力学模型,利用数值仿真方法对其进行了动力学研究,比较了其各种振动特性,分析了齿轮系统各参数对系统动态特性影响。
     (4)基于齿轮啮合原理、轮齿接触分析、摩擦学和传热学,以有限元分析方法和理论分析计算相结合为手段,建立了具有较高计算精度的非对称渐开线齿轮传动温度分析的稳态模型和瞬态模型,系统地分析了非对称齿轮本体温度的分布并对非对称齿轮达到热平衡前温度场变化历程进行了探讨。
     (5)对经过修形的双鼓形双压力角非对称齿轮在有误差条件下的轮齿表面与啮合过程作了全面推导,编制了轮齿接触分析(TCA)的计算机数值仿真程序,对双鼓形非对称齿轮与对称齿轮在有安装误差情况下的接触迹和传动误差进行仿真计算和对比。
     (6)提出了一套通过线切割加工非对称齿轮的自动加工方案,并用相同毛坯材料加工制造了相同参数的非对称与对称齿轮,在高频疲劳试验机上采用双齿脉动加载方法对其进行疲劳强度对比试验,试验结果验证了理论分析的正确性。
With the development of modern scientific technology, the performance of gear transmission is required to improve correspondingly. The traditional involute gear can hardly meet the practical requirements. Because the pressure angles have an effect on load capacity of involute gear, in order to increase load capacity and decrease noise and vibration of gear transmission system, a new-type unsymmetric involute spur gear was designed with double pressure angles on the driving and coast sides. A theoretical and experimental investigation on the load capacity and meshing characteristics of unsymmetric involute gear was made deeply and systematically in this paper. Detailed researches are as below:
     (1) Involute rack-cutter with unsymmetric teeth and different pressure angles was designed. The total tooth profile equations and transition curve equations of tooth root for the unsymmetric involute gear were proposed as well as the geometry formulas for tooth shape. Then the characteristics of the tooth tip were investigated and the four types of transition curve of tooth root for unsymmetric and symmetric gears were established and compared. Furthermore, the coordinates transition matrix for conjugate tooth profile of unsymmetric gear was given. By developing relevant programs, the tooth profile of unsymmetric and symmetric gear were simulated and provided a theoretical basis for the following research.
     (2) Through iteration algorithm and optimization strategy, the analytic calculation formulas of tooth root bending stress for unsymmetric gear were presented. The analytic calculation formulas of general curvature radius and the tooth face contact stress for unsymmetric gear with different pressure angles were developed in the upper and lower points of single and double teeth meshing areas and meshing pitch point. The finite element model for calculating tooth root bending stress of unsymmetric gear is built. Based on nonlinear theory of finite element, the calculation model of tooth face contact stress for unsymmetric gear is established. By two types of method, the bending stress and contact stress for unsymmetric gear with different combinations of pressure angles were calculated and compared. And the change of the tooth root bending stress and tooth face contact stress were investigated in one
     engagement period as well as relevant influence factors. Furthermore, systematical design method of unsymmetric gear transmission was proposed.
     (3) The nonlinear dynamic model for unsymmetric gear was proposed on the basis of mesh characteristics, the effect of time-variant mesh stiffness and integrated transmission error of unsymmetric gear system. By applying the method of numerical simulation to the research on nonlinear dynamics, vibration characteristics were compared between standard and unsymmetric gear. And the effect of unsymmetric gear system parameters on the dynamic characteristics of transmission system was studied.
     (4) Based on the theories of gear engagement, tooth contact analysis, friction and heat transfer, the three-dimensional steady and transient models of finite element for unsymmetric gear were established to investigate temperature distributions and variations along the contact path. The transformation courses of bulk temperature for unsymmetric and symmetric gear were investigated before gear transmission system got steady conditions.
     (5) It was proposed that the process of meshing and contact for unsymmetric gear with double pressure angles in case of modified geometry and alignment errors. Computer programs of tooth contact analysis (TCA) of unsymmetric gear and conventional gear have been developed. The computer programs were applied to analyze and compare contact path and transmission errors for double-crowned pinion with unsymmetric tooth profile and standard symmetric gear where alignment errors exist.
     (6) A set of manufacture approach for unsymmetric gear was presented based on wire electrical discharge machining (WEDM). The unsymmetric gear and symmetric gear of the same parameters and rough material were manufactured and bending fatigue strength testing was carried on the HF fatigue-testing machine. And the test results demonstrated the validity of theoretical analysis.
引文
[1] C. A. Yoerkie, A. G. Chory. Acoustic Vibration Characteristics of High Contract Ration Planetary gears. 40th Annual Forum Proceedings-American Helicopter Society, 1984: 19~32
    [2] 孙庆华. 非对称渐开线外啮合齿轮泵的计算和分析. 机械传动, 1984, (8)2: 24~27
    [3] 鲁明山. 非对称渐开线齿形的圆柱齿轮. 北京航空学院科学研究报告, 1983: 47~51
    [4] 张延淼. 非对称齿形齿轮滚刀的设计. 工具技术, 1988, 8: 15~18
    [5] 吴继泽, 王统编著. 齿根过渡曲线与齿根应力. 北京: 国防工业出版社, 1989
    [6] 禇世华. 一种新型非对称齿形的齿轮泵. 化工矿山技术, 1994, 23(6): 37~39
    [7] G. Difrancesco, S. Marini. Structural analysis of teeth with asymmetrical profiles. Gear Technology, 1997, 14(4): 16~22
    [8] A. L. Kapelevich. Synthesis of unsymmetric evolute gearing. Soviet Machine Science (English Translation of Mashinovedenie), 1987, 1: 55~59
    [9] A.L. Kapelevich. Geometry and design of involute spur gears with asymmetric teeth. Mechanism and Machine Theory, 2000, 35(1): 117~130
    [10] 杨奇顺. 新型内外啮合多齿轮泵的理论研究. 煤矿机械, 2000, 12: 8~10
    [11] 陈天旗, 高鹏, 刘元伟. 非对称齿齿轮泵非对称齿轮公法线的测量. 大连铁道学院学报, 2000, 21(2): 25~27
    [12] 徐克圣, 刘元伟, 李丽. 非对称齿形加工的计算机仿真. 大连铁道学院学报, 2000, 21(4): 13~17
    [13] F. Karpat, K. Cavdar, F. C. Fatih. Computer aided analysis of involute spur gears with asymmetric teeth. VDI Berichte, 2005, 1904 1:145~163
    [14] K. Cavdar, F. Karpat, F. C. Fatih. Computer aided analysis of bending strength of involute spur gears with asymmetric profile. Journal of Mechanical Design, Transactions of the ASME, 2005, 127(3): 477~484
    [15] 刘延军. 非对称齿轮滚刀设计及弹流润滑分析: 学位论文. 北京:北京科技大学, 2007
    [16] G. D. Bibel, S.K. Reddy, M. Savage, et al. Effects of rim thickness on spur gear bending stress. NASA Technical Memorandum, 1991, 104388:12
    [17] S. R. Daniewicz, D. H. Moore. Increasing the bending fatigue resistance of spur gear teeth using a presetting process. International Journal of Fatigue, 1998, 20(7): 537~542
    [18] J. kramberqer, M. Sraml, I. Potrc, et al. Numerical calculation of bending fatigue life of thin-rim spur gears. Engineering Fracture Mechanics, 2004, 71(4-6): 647~656
    [19] S. J. Nalluveettil, G. Muthuveerappan. Finite element modelling and analysis of a straight bevel gear tooth. Computers and Structures, 1993, 48(4): 739~744
    [20] A. Pasta, G. V. Mariotti. Finite element method analysis of a spur gear with a corrected profile. Journal of Strain Analysis for Engineering Design, 2007, 42(5): 281~292
    [21] C. Spitas, V.Spitas. A FEM study of the bending strength of circular fillet gear teeth compared to trochoidal fillets produced with enlarged cutter tip radius. Mechanics Based Design of Structures and Machines, 2007, 35(1): 59~73
    [22] J. D. Andrews. Finite element analysis of bending stresses induced in external and internal involute spur gears. Journal of Strain Analysis for Engineering Design, 1991, 26(3): 153~163
    [23] A. L. Kapelevich, Y. V. Shekhtman. Direct gear design: Bending stress minimization. Gear Technology, 2003, 20(5): 44~47
    [24] 顾守丰, 连小民, 丁能根等. 斜齿轮弯曲强度三维有限元分析模型的建立及程序实现. 机械科学与技术,1996, 15(2): 167~171
    [25] 邓家梅, 曹家麟. 小模数塑料齿轮轮齿弯曲变形的有限元分析. 机械科学与技术, 1997, 16(3): 427~430
    [26] 张力, 王军, 周彦伟. 不同齿根过渡曲线的齿轮弯曲强度的有限元分析, 矿山机械, 1997, 6:45~47
    [27] 王国军, 阎清东, 项昌乐等. 齿轮随机疲劳载荷计数方法研究. 机械强度, 2006, 28(4): 562~565
    [28] J. I. Pedrero, I. I. Vallejo. Calculation of tooth bending strength and surface durability of high transverse contact ratio spur and helical gear drives. Transactions of the ASME: Journal of Mechanical Design, 2007, 129(1): 69~74
    [29] E. Akata, M. T. Altinbalik, Y. Can. Three point load application in single tooth bending fatigue test for evaluation of gear blank manufacturing methods. International Journal of Fatigue, 2004, 26(7): 785~789
    [30] J. kramberqer, M. Sraml, S. Glodez, et al. Computational model for the analysis of bending fatigue in gears. Computers & Structures, 2004, 82(23-26): 2261~2269
    [31] W. D. Mark, C.P. Reaqor. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage. Mechanical Systems and Signal Processing, 2007, 21(2): 885~905
    [32] P. Dabnichki, A. Crocombe. Finite element modelling of local contact conditions in gear teeth. Journal of Strain Analysis for Engineering Design, 1999, 34(2): 129~142
    [33] A. Pasta, G.V. Mariotti. Finite element method analysis of a spur gear with a corrected profile. Journal of Strain Analysis for Engineering Design, 2007, 42(5): 281~292
    [34] R.G. Parker, V.K. Ambarisha. Nonlinear dynamics of planetary gears using analytical and finite element models. Journal of Sound and Vibration, 2007, 302(3,8): 577~595
    [35] A. Ural, G. Heber, P. A. Wawrzynek, et al. Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Engineering Fracture Mechanics, 2005, 72(8): 1148~1170
    [36] M. Sraml, J. Flasker. Computational approach to contact fatigue damage initiation analysis of gear teeth flanks. International Journal of Advanced Manufacturing Technology, 2007, 31(11-12): 1066~1075
    [37] 龚溎义, 陈式椿, 王永洁编著. 渐开线圆柱齿轮强度计算与结构设计. 北京: 机械工业出版社, 1986
    [38] 朱孝录, 鄂中凯主编. 齿轮承载能力分析. 北京: 高等教育出版社, 1992
    [39] J. T. Stadter, R. O. Weiss. Analysis of Contact through Finite Element Gaps. Computer and Structure, 1979,6: 867~873
    [40] A. Francavilla, O. C. Zienkiewicz. A Note on Numerical Computation of Elastic Contact Problem. Int. J. Num. Mech. Engng., 1975, 19: 913~924
    [41] N.Okamoto, M.Nakayawa. Finite Element Incremental Contact Analysis with Various Frictional Conditions. Int. J. Num. Mech. Engng., 1979, 14(3): 337~357
    [42] B. C. Lee, B. M. Kwak. A Computational Method for Elastoplastic Contact Problem. Computer and Structure, 1984, 18(5): 757-765
    [43] 李润方, 刘永成. 弹性接触有限元分析应力平滑过程和混合迭代法. 重庆大学学报, 1987, 5: 103~111
    [44] 李润方, 陈大良. 斜齿轮三维有摩擦接触应力分析及前后处理方法. 机械传动, 1990, (14)1: 37~41
    [45] 李润方, 欧恒安, 陈大良. 圆柱齿轮传动接触有限元应力变形分析方法和应用. 重庆大学学报, 1993, 1: 41~46
    [46] C. Gosselin, D. Gingras, J. Brousseau, et al. A Review of the Current Contact Stress and Deformation Formulations Compared to Finite Element Analysis. Proc. Inter Gearing’ 94, 1994: 155~160
    [47] 杨生华. 齿轮接触有限元分析. 计算力学学报, 2003, 20(2): 189~194
    [48] 王立华, 李润方, 林腾蛟. 高速重载齿轮的有限元分析. 中国机械工程, 2003, 14(20): 1773~1778
    [49] Y. Song, D, Su. Gear solid modelling and tooth contact analysis: State of the art. Proceedings of the International Conference on Mechanical Transmissions (ICMT 2001), 2001, 148~153
    [50] C. H. Li, H. S. Chiou, C. Hung, et al. Integration of finite element analysis and optimum design on gear systems. Finite Elements in Analysis and Design, 2002, 38(3): 179~192
    [51] B. Sandro, B. Leonardo, F. Paoia. Evaluation of the effect of misalignment and profile modification in face gear drive by a finite element meshing simulation. 9th International Power Transmission and Gearing Conference, 2003:279~288
    [52] I. Moriwaki, K. Watanabe, I. Nishiwaki, et al. Finite element analysis of gear tooth stress with tooth flank film elements. VDI Berichte, 2005, 1904 1: 39~53
    [53] H. Song, R. Gunda, R. Sinqh. Inclusion of sliding friction in contact dynamics model for helical gears. Transactions of the ASME. Journal of Mechanical Design, 2007, 129(1): 48~57
    [54] V. Abousleiman, P. Velex, S. Becquerelle. Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers. Transactions of the ASME. Journal of Mechanical Design, 2007, 129(1): 95~106
    [55] J. Choi, M. D. Bryant. Combining lumped parameter bond graphs with finite element shafts in a gearbox model. Computer Modeling in Engineering & Sciences, 2002, 3(4): 431~446
    [56] D.B. Dooner. Design formulas for evaluating contact stress in generalized gear pairs. Gear Technology, 2001, 18(3): 31~37
    [57] E. Buckingham. Analytical mechanics of gears. McGraw-Hill Book Company, Inc. 1949
    [58] W. A. Tuplin. Gear load capacity. Sir Isaac Pitman & Sans Ltd. 1962
    [59] B. Kishor, S.K. Gupta. On dynamic gear tooth loading due to coupled torsional-lateral vibrations in a geared rotor-hydrodynamic bearing system. Journal of Tribology, Transactions of the ASME, 1989, 111(3): 418~425
    [60] F. L. Litvin, J. C. Wang, J. D. Chen, et al. Application of face-gear drives in helicopter transmissions. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, v 43 pt 1, Advancing Power Transmission Into the 21st Century, 1992: 267~274
    [61] S. Honda. Rotational vibration of a helical gear pair with modified tooth surfaces (verification of the new theory by experiment and a new design method for dynamic performance). JSME International Journal, Series C, 1995, 38(1): 112~121
    [62] L. Vedmar, A. Andersson. A method to determine dynamic loads on spur gear teeth and on bearings. Journal of Sound and Vibration, 2003, 267(5,6): 1065~1084
    [63] T. Fakhfakh, L. Walha, J. Louati, et al. Effect of manufacturing and assembly defects on two-stage gear systems vibration. International Journal of Advanced Manufacturing Technology, 2006, 29(9-10):1008~1018
    [64] D. Suzuki, S. Horiuchu, C. Jinhwan, et al. Dynamic analysis of contacting spur gear pair for fast system simulation. Diffusion and Defect Data Part B (Solid State Phenomena), 2006, 110: 151~161
    [65] C. J. Li, H. Lee. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mechanical Systems and Signal Processing, 2005, 19(4): 836~846
    [66] H. Vinayak, R. Singh. Linear dynamic analysis of multi-mesh transmissions containing external, compliant gears. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 1996, 88:535~542
    [67] H. Vinayak, R. Singh. Multi-body dynamics and modal analysis of compliant gear bodies. Journal of Sound and Vibration, 1998, 210(2): 171~212
    [68] S. F. Wang, K. Umezawa, H. Houjoh, et al. Analytical investigation of the dynamic behavior of a helical gear system. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 1996, 88: 169~176
    [69] K. Umezawa, H. Houjoh, S. Matsumura, S. F. Wang, et al. Experimental investigation on modal behavior of helical gear units with various ratio. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 1996, 88: 509~517
    [70] P. Velex, M. Maatar, J. P. Raclot. Some numerical methods for the simulation of geared transmission dynamic behavior formulation and assessment. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 1996, 88:29~38
    [71] P. Velex, M. Maatar. Mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour. Journal of Sound and Vibration, 1996, 191(5): 629~660
    [72] C. Bard, D. Remond, D. Play. Dynamic transmission error of cylindrical gears comparison of experimental measurement and numerical calculation. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, 1996, 88: 519~526
    [73] 李润方, 王建军. 齿轮系统动力学. 北京: 科学出版社, 1995
    [74] 汤和, 赵振英, 汪元辉等. 理想齿轮噪声与振动谱的计算机仿真. 机械传动, 1990, 14(4): 36~39
    [75] R. Singh, D. R. Houser, A. Kahraman. Non-linear dynamic analysis of geared systems. NASA Contractor Reports, 1990, 4338:248
    [76] S. Honda. Rotational vibration of a helical gear pair with modified tooth surfaces (rotational motion of a gear pair and its dynamics increment of tooth load). JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1993, 36(3): 375~385
    [77] 王建军, 李润方. 齿轮系统的转子耦合型振动. 机械科学与技术, 1996, 15(2): 231~234
    [78] 沈允文, 李树庭, 蔺天存. 齿轮系统减振设计的结构灵敏度分析. 机械工程学报, 1996, 32(5): 38~42
    [79] 李润方, 韩西, 林腾蛟等. 齿轮系统耦合振动的理论分析与试验研究. 机械工程学报, 2000, 36(6): 25~28
    [80] 李润方, 林腾蛟, 陶泽光. 齿轮系统耦合振动响应的预估. 机械设计与研究, 2003, 19(2): 27~29
    [81] 郜志英, 沈允文, 李索有等. 间隙非线性齿轮系统周期解结构及其稳定性研究. 机械工程学报, 2004, 40(5): 17~22
    [82] G. Bonori, A. O. Andrisano, F. Pellicano. Dynamics of gear meshing: Stiffness evaluation and vibration. Proceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA, 2004: 933~947
    [83] A. S. Pramono. Experimental study of the influence of tooth profile modifications on spur gear dynamic strain and vibration. Fracture and Strength of Solids VI, 2006, 79~84
    [84] N. Tandon, A. Parey, M. E. Badaoui, et al. Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect. Journal of Sound and Vibration, 2006, 294(3): 547~561
    [85] N. Tandon, A. Parey. Impact velocity modelling and signal processing of spur gear vibration for the estimation of defect size. Mechanical Systems and Signal Processing, 2007, 21(1): 234~243
    [86] Y. R. Jeng, S. J. Hwang. Predictive modeling of scuffing performance of gear oil with MoDTC using response surface methodology. Materials Science Forum, 2006, 505-507: 241~246
    [87] B. R. Hohn, K. Michaelis, H. Collenberg, et al. Effect of temperature on the scuffing load capacity of EP gear lubricants. TriboTest, 2001, 7(4): 317~332
    [88] J. Mandel, G. Draxler, T. Geiman. Scuffing resistance of powder metal gears. International Journal of Powder Metallurgy (Princeton, New Jersey), 2006, 42(1): 47~55
    [89] T. Yamanaka, C. Naruse, S. Haizuka. Study on load carrying characteristics of crossed helical gears (Special focus on scuffing strength, wear and friction loss). Tribology Transactions, 2000, 43(1): 100~108
    [90] C. R. Ribaudo, C. Aylott, D. Hofmann, et al. Engineered surfaces for improved gear scuffing resistance. International Power Transmission and Gearing Conference, 2003: 923~930
    [91] R. W. Snidle, H. P. Evans, M. P. Alanou. Determination of gear and bearing material scuffing limits using high-speed disk machines. ASTM Special Technical Publication, 2001, 1404, 2001: 109~124
    [92] J. D. Castro, J. H. Seabra. Power dissipation - Temperature scuffing criterion for FZG gears. VDI Berichte, 2005, 1904: 1165~1184
    [93] Q. Y. Jiang, G. C. Barber. Experimental determination of bulk temperature and critical temperature in scuffing resistance evaluation of gears. Tribology Transactions, 2000, 43(1):21~26
    [94] A. Towle, R. Graham. Scuffing oF automobile gears. Chartered Mechanical Engineer, 1974, 21(10): 99~104
    [95] L. Maqalhaes, J. Seabra. Wear and scuffing of austempered ductile iron gears. Wear, 1998, 215(1-2): 237~246
    [96] J. Castro, J. Seabra. Scuffing and lubricant film breakdown in FZG gears. Part I. Analytical and experimental approach. Wear, 1998, 215(1-2): 104~113
    [97] D. Popqoshev, R. Valori. Scuffing resistance of advanced gear material/lubricant combinations. Journal of Lubrication Technology, Transactions ASME, 1980, 102(2): 253~256
    [98] E. Conrado, B. R. Hohn, K. Michaelis, et al. Influence of oil supply on the scuffing load-carrying capacity of hypoid gears. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(8): 851~858
    [99] S. J. Haizuka, R. Nemoto, C. Naruse. Study on limiting load for scuffing and specific wear of spur gears (effects of lubricating oil and tooth form). JSME International Journal, Series C, 1995, 38(1): 149~159
    [100] J. W. Polder. Scuffing load capacity of cylindrical gears, development of the flash temperature criterion. European Journal of Mechanical Engineering, 1990, 35(1): 11~16
    [101] N. Patir, H. S. Cheng. Prediction of the bulk temperature in spur gears based on finite temperature analysis. Preprints - Tribology Conference, 1977: 10
    [102] K. L. Wang, H. S. Cheng. Numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears Em Dash 1. Analysis. Journal of Mechanical Design, Transactions of the ASME, 1981, 103(4): 177~187
    [103] K. L. Wang, H. S. Cheng. Numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears Em Dash 2. Results. Journal of Mechanical Design, Transactions of the ASME, 1981, 103(4): 188~194
    [104] 方宗德, 陈国定, 沈允文. 斜齿轮传动的齿面闪温计算. 西北工业大学学报, 1992, 10(2): 21~26
    [105] 黄华梁, 李柯. 渐开线圆柱直齿轮本体温度的边界元法分析. 机械设计, 1993, 10(1): 36~40
    [106] 李润方, 李健, 林腾蛟. 瞬态耦合热弹塑性接触有限元分析方法. 计算力学学报,1993, 10(3):23~38
    [107] 邱良恒, 辛一行, 王统等. 齿轮本体温度场和热变形修形计算. 上海交通大学学报, 1995, 29(2): 79~86
    [108] 桂长林, 李震. 基于系统和时变观点的齿轮胶合分析. 机械工程学报, 1995, 31(3): 1~7
    [109] 桂长林, 李震. 系统时变观点的齿轮胶合机理的求解思路. 机械工程学报, 1995, 31(4): 6~17
    [110] 桂长林, 李震. 齿轮胶合的计算和试验研究. 机械工程学报, 1995, 31(5): 1~12
    [111] R. F. Handschuh, T. P. Kicher. Method for thermal analysis of spiral bevel gears. Journal of Mechanical Design, Transactions of the ASME, 1996, 118(4): 580~585
    [112] 王立华, 李润方, 林腾蛟. 高速重载齿轮的有限元分析. 中国机械工程, 2003, 14(20): 1773~1777
    [113] 北京齿轮厂. 格利森锥齿轮技术资料译文集. 北京: 机械工业出版社, 1983
    [114] F. L. Litvin. Gear geometry and applied theory. Prentice-Hall, Englewood Cliffs, NJ, 1994
    [115] F. L. Litvin. Development of gear technology of gearing. NASA Reference Publication 1406, ARL-TR-1500, 1998
    [116] M. Sugimoto, N. Maruyama, A. Nakayama, et al. Effect of tooth contact and gear dimensions on transmission errors of loaded hypoid gears. Journal of Mechanisms, Transmissions, and Automation in Design, 1991, 113(2): 182~187
    [117] B. Falah, C. Gosselin, L. Cloutier. Experimental and numerical investigation of the meshing cycle and contact ratio in spiral bevel gears. Mechanism & Machine Theory, 1998, 33(1-2): 21~37
    [118] 郑昌启. 弧齿锥齿轮和准双曲面齿轮. 北京: 机械工业出版社, 1988
    [119] 王三民, 袁茹, 陈作模. 弧齿锥齿轮计及误差的轮齿接触分析. 西北工业大学学报, 1994, 12(2): 164~168
    [120] 黄昌华, 温诗铸, 李润方等. 弧齿锥齿轮和准双曲面齿轮润滑加载接触分析. 清华大学学报, 1996, 36(4): 48~53
    [121] 方宗德. 修形斜齿轮的轮齿接触分析. 航空动力学报, 1997, 12(3): 247~250
    [122] 邓效忠, 方宗德, 魏冰阳. 高重合度弧齿锥齿轮加工参数设计与重合度测定. 机械工程学报, 2004, 40(6): 95~99
    [123] 方宗德, 杨宏斌. 准双曲面齿轮传动的轮齿接触分析. 1998, 20(6): 350~355
    [124] F. L Litvin, G. I. Sheveleva, D. Vecchiato, et al. Modified approach for tooth contactanalysis of gear drives and automatic determination of guess values. Computer Methods in Applied Mechanics and Engineering, 2005, 194(27-29,22): 2927~2946
    [125] F. L. Litvin, A. G. Wang, R. F. Handschuh. Computerized design and analysis of face-milled, uniform tooth height spiral bevel gear drives. Journal of Mechanical Design, Transactions of the ASME, 1996, 118(4): 573~585
    [126] F. L. Litvin, A. Fuentes, C. Zanzi, et al. Face-gear drive with spur involute pinion: geometry, generation by a worm, stress analysis. Computer Methods in Applied Mechanics and Engineering, 2002, 191(25-26, 12): 2785~2813
    [127] R. F. Handschuh. Thermal behavior of spiral bevel gears. NASA-TM-106518, 1995
    [128] 朱孝录. 齿轮的试验技术与设备. 北京: 机械工业出版社, 1988
    [129] 范垂本. 齿轮的强度和试验. 北京: 机械工业出版社, 1979
    [130] 谈嘉祯. 齿轮疲劳试验数据统计处理及 R-S-N 曲线的拟合. 北京科技大学学报, 1994, 16(2): 166~170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700